• No results found

Blue organic light-emitting diodes based on pyrazoline phenyl derivative Synthetic Metals

N/A
N/A
Protected

Academic year: 2022

Share "Blue organic light-emitting diodes based on pyrazoline phenyl derivative Synthetic Metals"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

SyntheticMetals162 (2012) 352–355

ContentslistsavailableatSciVerseScienceDirect

Synthetic Metals

jou rn a l h o m e pa ge : w w w . e l s e v i e r . c o m / l o c a t e / s y n m e t

Blue organic light-emitting diodes based on pyrazoline phenyl derivative

P. Stakhira

a,∗

, S. Khomyak

a

, V. Cherpak

a

, D. Volyniuk

a

, J. Simokaitiene

b

, A. Tomkeviciene

b

, N.A. Kukhta

b

, J.V. Grazulevicius

b

, A.V. Kukhta

c

, X.W. Sun

c

, H.V. Demir

c,d

, Z. Hotra

a,e

, L. Voznyak

a

aLvivPolytechnicNationalUniversity,S.Bandera12,79013Lviv,Ukraine

bDepartmentofOrganicTechnology,KaunasUniversityofTechnology,Radvilenupl.19,LT-50254Kaunas,Lithuania

cSchoolofElectricalandElectronicEngineering,NanyangTechnologicalUniversity,NanyangAvenue,639798Singapore

dUNAMDepartmentofElectricalandElectronicEngineering,DepartmentofPhysics,BilkentUniversity,Bilkent,06800Ankara,Turkey

eRzeszówUniversityofTechnology,W.Pola2,Rzeszów35-959,Poland

a r t i c l e i n f o

Articlehistory:

Received14September2011 Receivedinrevisedform 13December2011 Accepted20December2011 Available online 21 January 2012

Keywords:

Organiclightemittingdiode Blueemitting

Vacuumdeposition Pyrazolinederivative Carbazolederivates

a b s t r a c t

The results of an experimental study of the electroluminescent device made of ITO/CuI/2,6- di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H-pyrazol-3-yl)-phenol (HPhP)/3,6-Di(9-carbazolyl)-9-(2- ethylhexyl)carbazole(TCz1)/Ca:Alwithefficacyupto10.63cd/Aarepresented.HPhPprovidesblue emissionwithapeakwavelengthat445nm.ThelayerofTCz1actsasanelectron-transportinglayer.In theframeworkofdensityfunctionaltheory(DFT)approachthegeometryconfigurationandenergylevels ofHPhParefoundbeinginagoodagreementwithspectralandcyclicvoltammogramdata.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the key steps towards the development of efficient organiclight-emittingdiodes(OLED)reliesonthechoiceofasuit- ableorganicemitter.Thismaterialhastoformthinhomogeneous amorphous films, whilst avoiding forming various uncontrol- lablecomplexes(chargetransfercomplexes,exciplexes,etc.)with neighbouringmolecularlayersandelectrodestopreventexciton quenching.Inadditionitshouldexhibitahighluminescencequan- tumyield[1].Usually,OLEDsbasedonorganicmaterialsemitting inthebluespectralregionstillsufferlowlevelsofefficacyandshort lifetimesascomparedtothoseemittingingreenandred.Blueemit- tingmaterialshaveawideforbiddengap[2],makingitdifficultto injectchargecarriersfromelectrodes[3].Moreover,suchmaterials arerelativelyunstableunderappliedelectricfieldandatmospheric factors[4].BlueemittingOLEDshavebeenextensivelystudiedfor thelast tenyearsand alotofnewhighperformancemolecules havebeenproposedbasedondifferentapproaches[2,5–10].How- ever,theperformancecharacteristicsarestilllowerthanforgreen andredemittingOLEDs,andthesearchofnewefficientbluelight- emittingmaterialsisstillurgentandessential.

∗ Correspondingauthor.Tel.:+380322582162.

E-mailaddress:stakhira@polynet.lviv.ua(P.Stakhira).

Inthiscontext,pyrazolinederivativeswithgoodluminescence properties(withsolutionphotoluminescencequantumyieldsup to60–70%)[11,12]canbeofinterestfortheapplicationinOLEDs.

Typically,smallmoleculesshowtendencyofcrystallization,which decreasesthelifetimeandluminescencecapabilityofOLEDs.1,3,5- Triphenyl-4,5-dihydro-1H-pyrazolwithphenylgroupinposition5 ofpyrazolineringwasfoundtoformstableamorphousfilmsby vacuumdeposition[13].Anonplanarmolecularstructureessen- tiallypreventscrystallizationand thusdecreasesdegradationof electroluminescent structure [14,15]. It was also reported [15]

thattheuseof2,6-di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H- pyrazol-3-yl)-phenol(HPhP)(Fig.1(left))asahole-transporting layerresultsinthesuppressionofdegradationprocessesinOLED underatmosphericfactors.Theaimofthisworkwastostudythe possibilityofapplicationofHPhPasalight-emittinglayerinthe OLEDstructure.

2. Experimental

2,6-Di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H-pyrazol-3- yl)-phenol (HPhP) [15] and 3,6-di(9-carbazolyl)-9-(2- ethylhexyl)carbazole (TCz1) (Fig. 1 (right)) [16] were obtained asreportedearlier.ThegasphasemoleculargeometriesofHPhP wereoptimizedseparatelyintheneutraland cationicstates,by meansofdensityfunctional theory(DFT) withhybridexchange 0379-6779/$seefrontmatter © 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.synthmet.2011.12.017

(2)

P.Stakhiraetal./SyntheticMetals162 (2012) 352–355 353

Fig.1.MolecularstructuresofHPhP(left)andTCz1(right).

correlation B3LYP functional with the average account of the exchangeinteractionscontributionandwithbasisset6-311G(d), whichsufficesforgoodcorrelationofthetheoryandexperiment formoleculesofsuchsize.Thecalculationsonthecationicspecies wereperformedusingtheunrestrictedB3LYPformalism.Standard boundary conditions and algorithm were applied [17]. From groundstategeometrysingletexcitedstatesenergiesandoscilla- torstrengthsoftransitionswerecalculatedbytimedependent(TD DFT)(usingB3LYPfunctionaland6-311G(d,p)basisset)providing wavelengths for the majority of important transitions of the conjugatedmolecules.Transitionconditionreferencewasbased ontheexcitationgivingthebasiccontribution.Verticalelectronic transitionsspectraofthemoleculesweresimulatedusingGauss- Sum2.2program [18].Maximainthecomputedspectracanbe comparedeasilywiththeexperimentaldata.Verticalionization potential(IPv)valueswerealsocalculatedastheenergydifference betweentheenergyofthecationintheneutralgeometryandthe neutralmoleculeintheneutralgeometry;andadiabaticpotentials (IPa)asthedifferencebetweenthecation intherelaxedcation geometryandtheneutralmoleculeinneutralgeometry.

Using HPhP, a multilayered light-emitting structure ITO/CuI(12nm)/HPhP(25nm)/TCz1(14nm)/Ca:Al was fabricated.

ItsenergydiagramispresentedinFig.2.Copperiodide(CuI)was usedastheholeinjectionlayer[19,20].3,6-Di(9-carbazolyl)-9-(2- ethylhexyl)carbazole(TCz1) servedas theelectron-transporting layer.Thechoiceofthismaterialwasbasedonitsrelativelyhigh electronmobility(2×10−4cm2/Vs)[16]exceedingbyoneorder ofmagnitude thevalue ofhole mobility,highthermal stability [16,21], and good energetical compatibility with Ca electrode (Fig.2)[22].Thedevicewasfabricatedbymeansofvacuumdepo- sitionontoaprecleanedITOcoatedglasssubstrateundervacuum of10−5Torr.ThethicknessoftheCuI,HPhP,andTCz1layerswas measuredbyellipsometrytechnique[23].Forphotoluminescence and absorption spectra measurements, the organic films were

Fig. 2. Energy diagram of organic light-emitting diode made of ITO/CuI/HPhP/TCz1/Ca:Al.

thermovacuumdepositedonquartzsubstrate.Absorptionspectra were recorded with a Shimadzu UV-2450 spectrophotometer.

Photoluminescence measurements were performed with a CM 2203fluorimeter.Thecurrentdensity–voltage–luminance(J–V–L) characteristicsand electroluminescence(EL) spectrawere mea- suredusingaProgrammableTestPowerLED300E,Spectrometer HAAS-2000,andanintegratingsphere(d=0.3m).Itiswellknown that nowadays there are two different methods to determine the external quantum efficiency and other data of OLEDs.The firstmethod,whichiscalledthe‘luminance-conversionmethod’, evaluatestheabsoluteluminanceofadeviceusingaconventional luminancemeter,andthenconvertsluminancevaluesintophoton numbers. Thismethod assumesa Lambertian emission pattern forperfectsurfaceemitters,andisthesimplestandwidelyused.

However,farnotallOLEDemissionpatternscanbeapproximated withasimpleLambertianbehaviourbecauseofinterferenceand othereffects intheOLEDs.Thesecondmethod,which iscalled the “direct-measurement method”, directly evaluates the total absolute emission intensity of a device with a small emissive surface using calibratedphotosensitive detectors. To accurately measuretheabsoluteemissionintensity,integratingspheresare oftenused.Thedirect external efficiencymeasurementmethod withintegratedspherewasfoundtobemorepreciseandusefulas comparedwithusualluminance-conversionmethod[23].Forthis reasonwecarriedoutmeasurementsinanintegratingsphere.

Themeasurementsofcyclicvoltammogramswerecarriedout at a glassycarbon electrode in dichloromethane solutions con- taining0.1Mtetrabutylammoniumperchlorateaselectrolyteand Ag/AgNO3asthereferenceelectrode.Eachmeasurementwascali- bratedwithferrocene.

3. Resultsanddiscussion

ToestimatethegeometryandenergylevelsofHPhPandtocheck theirmatchingwiththoseoftheneighbouringmaterials,calcula- tionsofmolecularcharacteristicsbymeansofasoftwarepackage ofquantum-chemicalcalculations(Gaussian03)withintheframe- workofthedensityfunctionaltheory(DFT)[24]werecarriedout.

DFTanditstime-dependentextension(TD-DFT)haveemergedin recentyearsasareliablestandardtoolforthetheoreticalstudyof geometricalandelectronicpropertiesoflongconjugatedorganic molecules[25,26].Itisparticularlyusefulinthestudiesofexcited states.

TheoptimizedmolecularstructureofHPhPispresentedinFig.3.

Thestudiedmoleculewasfoundtobenon-planar,hencecapable toformstableamorphousfilms.ThecalculatedspectrumforHPhP molecule(Fig.3)hasthesimilarshapeandmaximacomparedtothe experimentalresult[15].ThecalculatedbandgapofthefreeHPhP moleculeisca.3.7eV(comparablewiththeexperimentalvalueof ca.3.45eV)withthehighestoccupiedmolecularorbital(HOMO) andthelowestunoccupiedmolecularorbital(LUMO)of−5.048 and−1.347eV,respectively.TheexperimentalHOMO(5.085eV) value(seeFig.4)wasfoundtobeingoodcoincidencewithcalcula- tions.Themainorbitals(Fig.3)showrathertypicalchangesinthe electrondensitydistributions.Verticalionizationpotentialoffree moleculeis6.192eVandadiabaticoneis6.054eV.Thecalculated datawereusedinOLEDenergydiagram(Fig.2).

Absorption(curve1)andphotoluminescence(curve2)spectra ofthestructureHPhP/TCz1arepresentedinFig.5a.Theabsorp- tionspectrumhastwomaximaat342and366nmasaresultofthe superpositionofabsorptionbyTCz1andHPhP.Thesemaximacor- respondtothevibronicbandsofthefirstelectrontransition(S0–S1) ofsinglecarbazolemoiety[21,27]andpyrazolinering[15,28].Pho- toluminescencespectrumofthestructureHPhP/TCz1(Fig.5a,curve 2)isalsoasuperpositionoftheluminescencespectraofTCz1and

(3)

354 P.Stakhiraetal./SyntheticMetals162 (2012) 352–355

Fig.3.OptimizedmolecularstructureofHPhP,calculatedabsorptionspectrum,and LUMOandHOMOelectrondensitydistributions.

HPhP.Theshortwaveshoulderintheregionof380–420nmcan beexplainedbyvibronictransitionsinTCz1[16].Thelong-wave maximumbelongstoLUMO–HOMOradiativetransitioninHPhP molecule.

Incontrasttophotoluminescencespectrumtheelectrolumines- cencespectrumofthestructureITO/CuI/HPhP/TCz1/Ca:Al(Fig.5b) ischaracterizedbyonlyasinglemaximum(max=445nm),which corresponds to HPhP photoluminescence maximum confirming the fact that radiative recombination of charge carriers occurs onlywithinHPhPlayer,andTCz1layeractsonlyasanelectron- transportingone.Nospectralshifthasbeenobservedwithcurrent densitychanges. Electroluminescenceisalso characterizedby a narrowspectraldistribution(spectralhalfwidthis75nm),which islowerthanthetypicalvalue.Fortheconsideredstructure,the obtainedcolourCIEcoordinates(0.175,0.11)correspondtopure bluecolour. It is worth ofnoting that, in contrasttoTCz1,the

Fig.4. CyclicvoltammogramsofHpPhmeasuredatscanrateof50mVs−1(from 0Vto1.0V)vs.Ag/Ag+inasolutionofTBAP(0.1M)inCH2Cl2.EHOMOwasfound asfollows:EHOMO=4.8+Eonsetvs.Fc,whereEonsetvs.Fc=EonsetE(E=0.215V),and Eonsetvs.Fc=0.50.215=0.285V.

Fig. 5.Absorption (curve 1) and photoluminescence (curve 2, ex=300nm) spectra of HphP/TCz1 (a) and photoluminescence spectrum of the layer of HPhP(curve1,ex=300nm)andelectroluminescencespectrumofthestructure ITO/CuI/HPhP/TCz1/Ca:Al(curve2)(b).

attempts ofusingconventional electrontransporting Alq3 layer withHPhPresultedintypicalgreenemissionofAlq3[15].

Thecurrentdensity–voltagecurveofthedeviceshowsaturn- onvoltageVonof9.4V(Fig.6a),whichisratherhigh.Commonly, thresholdvoltageisdeterminedbythestructure thickness,film conductivityandinjectionbarriers.Thefirsttwoparametersare favourable in this structure (lowthickness, good conductivity), howevertheinjectionbarrierforholesisratherhighasitisevident fromFig.2.Themaximalbrightnessof1450cd/m2isobservedat 15.5V(Fig.6a).Thebiasincreasingresultsinthereductionofthe devicebrightness,followedbystructuraldegradation.

Fig.6bshowsefficacyofITO/CuI/HPhP/TCz1/Ca:Alelectrolumi- nescentstructure.Itcanbenoted,thatorganiclayersarerather thinanddonotessentiallyaffecttheperformanceduetooptical effects.Themaximalratioofthebrightness(1035cd/m2)tothe currentdensity (9.74mA/cm2)gives anefficacylevel ashighas 10.63cd/A.Thisvalueishighforblueemittingfluorescentmate- rials[2,6].Thereasonofsuchefficacyisapparentlyraisedfrom3 timeslowercurrentdensitiesatthesamebrightnessascompared to typicaldevices. Low currents are observed in our electrolu- minescentstructurescontainingonlyHPhPmoleculesusedboth as transporting (see [15]) and luminescent material. Thus, the observedefficacyvalueisdeterminedbyHPhPmolecule. Itcan besupposedthat OH-groupinthis moleculenot onlyimproves the device stability, but also affects a charge transporting or

(4)

P.Stakhiraetal./SyntheticMetals162 (2012) 352–355 355

Fig. 6. OLED characteristics of the device ITO/CuI/HPhP/TCz1/Ca:Al:

voltage–amperecharacteristic(a),andvoltage–brightnesscharacteristic(b).

recombination properties, though OH-group is not involved in HOMO–LUMOtransition(seeFig.3).Actually,recombinationzone ofITO/CuI/HPhP/TCz1/Ca:AlstructureislocatedwithinHPhPlayer ascompared toITO/CuI/HPhP/Alq3/Ca:Aldiode owingtohigher TCz1electron mobility [16] and gap than that of Alq3. On the other side, optical properties of HPhP and PhP molecules are almostthesame,butcurrents inOLEDsarevery different[15].

Thus, it can besupposed that the reason of higher efficacy of HPhPbasedOLEDsisbetterbalanceofchargecarriersorrecom- binationconditions.Wecannoticethatoneofthelastefficiency valuesfor fluorescentOLEDsisas highas 9.4%[6]and exceed- ingtheoretical predictions.Thus, many processes in OLEDsare notfullystudiedyetand thisinteresting questionisstill under study.

4. Conclusion

Inconclusion,wehavedevelopedblueOLEDwiththeconfigu- rationITO/CuI/2,6-di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H- pyrazol-3-yl)-phenol(HPhP)/3,6-Di(9-carbazolyl)-9-(2-ethylhexy- l) carbazole (TCz1)/Ca:Al which exhibits an emission peak at 445nm andcolour CIE coordinatesof (0.175,0.11) withahigh

efficacyof10.63cd/A.Wehavedemonstratedthatlightemission isobservedfromHPhPlayer,whilstthelayerofTCz1actsasthe electrontransportinglayer.TheHPhPgeometryconfigurationand energylevelshavebeenfoundintheframeworkofDFTapproach, whichareinagreementwithavailableexperimentaldata.

Acknowledgements

Thisresearchwaspartiallyfundedbyagrantno.MIP-059/2011 from the Research Council of Lithuania, NRF-RF-2009-09 and NRF-CRP-6-2010-2ofSingapore,andStateFundforFundamental ResearchesofUkraine.

References

[1]A.V.Kukhta,J.Appl.Spectrosc.70(2003)165–194.

[2] Z.Ma,P.Sonar,Z.-K.Chen,Curr.Org.Chem.14(2010)2034–2069.

[3]Y.Liu,X.Tao,F.Wang,X.Dang,D.Zou,Y.Ren,M.Jiang,Org.Electron.9(2008) 609–616.

[4]Y.Sato,S.Ichinosawa,H.Kanai,IEEEJ.Sel.Top.Quant.Electron.4(1998)40–48.

[5] A.C.Grimsdale,K.L.Chan,R.E.Martin,P.G.Jokisz,A.B.Holmes,Chem.Rev.109 (2009)897–1091.

[6]C.-G.Zhen,Y.-F.Dai,W.-J.Zeng,Z.Ma,Z.-K.Chen,J.Kieffer,Adv.Funct.Mater.

21(2011)699–707.

[7] J.Wang,W.Wan,H.Jiang,Y.Gao,X.Jiang,H.Lin,W.Zhao,J.Hao,Org.Lett.12 (2010)3874–3877.

[8]D.Thirion,J.Rault-Berthelot,L.Vignau,C.PorielSynthesis,Org.Lett.13(2011) 4418–4421.

[9] N.Cocherel,C.Poriel,L.Vignau,J.-F.Bergamini,J.Rault-Berthelot,Org.Lett.12 (2010)452–455.

[10]A.L.Fischer,K.E.Linton,K.T.Kamtekar,C.Pearson,M.R.Bryce,M.C.Petty,Chem.

Mater.23(2011)1640–1642.

[11] Z.Lu,Q.Jiang,W.Zhu,M.Xie,Y.Hou,X.Chen,Z.Wang,D.Zou,T.Tsutsui,Synth.

Met.111–112(2000)425–427.

[12]M.Jin,Y.J.Liang,R.Lu,X.H.Chuai,Z.H.Yi,Y.Y.Zhao,H.J.Zhang,Synth.Met.140 (2004)37–41.

[13] X.H.Zhang,S.K.Wu,Z.Q.Gao,C.S.Lee,S.T.Lee,H.-L.Kwong,ThinSolidFilms 371(2000)40–46.

[14]X.H.Zhang,W.Y.Lai,T.C.Wong,Z.Q.Gao,Y.C.Jiang,S.K.Wu,H.L.Kwong,C.S.

Lee,S.T.Lee,Synth.Met.114(2000)115–117.

[15] V.Cherpak,P.Stakhira,S.Khomyak,D.Volunuyk,L.Voznyak,Z.Hotra,V.

Sorokin,A.Rybalochka,O.Oliynyk,Opt.Mater.33(2011)1727–1731.

[16]A.Tomkeviciene,J.Grazulevicius,A.Gruodis,T.-H.Ke,C.-C.Wu,K.Kazlauskas, J.Phys.Chem.C115(2011)4887–4897.

[17] N.M.O’Boyle,A.L. Tenderholt,K.M. Langner,J. Comput.Chem.29(2008) 839–845.

[18]P.Stakhira,V.Cherpak,D.Volynyuk,F.Ivastchyshyn,Z.Hotra,V.Tataryn,G.

Luka,ThinSolidFilms518(2010)7016–7018.

[19] G.Luka,P.Stakhira, V.Cherpak,D. Volynyuk,Z.Hotra, M.Godlewski,E.

Guziewicz,B.Witkowski,W.Paszkowicz,A.Kostruba,J.Appl.Phys.108(2010) 064518.

[20]M.-H.Tsai,Y.-H.Hong,C.-H.Chang,H.-C.Su,C.-C.Wu,A.Matoliukstyte,J.

Simokaitiene,S.Grigalevicius,J.V.Grazulevicius,C.-P.Hsu,Adv.Mater.19 (2007)862–866.

[21]V.V.Cherpak,P.Y.Stakhira,D.Yu.Volynyuk,J.Simokaitiene,A.Tomkeviciene, J.V.Grazulevicius,A.Bucinskas,V.M.Yashchuk,A.V.Kukhta,I.N.Kukhta,V.V.

Kosach,Z.Yu.Hotra,Synth.Met.161(2011)1343–1346.

[22]O.Aksimentyeva,V.Beluh,D.Poliovyi,V.Cherpak,P.Stakhira,D.Volynyuk, Mol.Cryst.Liq.Cryst.467(2007)143–152.

[23]I.Tanaka,S.Tokito,Jap.J.Appl.Phys.43(2004)7733–7736.

[24]M.J.Frisch,G.W.Trucks,H.B.Schlegel,etal.,Gaussian03,RevisionD.01,Gaus- sian,Inc.,Wallingford,CT,2004.

[25]A.VlˇcekJr.,S.Záliˇs,Coord.Chem.Rev.251(2007)258–287.

[26]A.V.Kukhta,I.N.Kukhta,S.A.Bagnich,S.M.Kazakov,V.A.Andreev,O.L.Neyra, E.Meza,Chem.Phys.Lett.434(2007)11–14.

[27]J.Simokaitiene,S.Grigalevicius,J.V.Grazulevicius,R.Rutkaite,K.Kazlauskas, S.Jursenas,V.Jankauskas,J.Sidaravicius,J.Optoelectron.Adv.Mater.8(2006) 876–882.

[28]P.Zhao,R.Li,H.Wang,F.Jian,H.Guo,Spectrochim.ActaA74(2009)87–93.

Referenties

GERELATEERDE DOCUMENTEN

Employing the EL emission profile as obtained using a recently developed method from the measured angular-, wavelength-, and polarization-dependent emission intensity, 22 and using

In these QD-LEDs, energy trans- fer plays an important role when charge recombination is dominant in the polymer, but by introducing an electron transport layer, the QD emission can

found similarly large deviations when applying (as in the work of Groves and Greenham) the Langevin formula using the unipolar electron and hole mobi- lities, i.e., the mobilities

We will now focus our attention on three main aspects derived from what has been dis- cussed above: give a short definition of international business negotiating as related to

By using the proposed consistent notation the modelling of the dynamic behaviour of rigid bodies is simplified tremendously and increases the insight and

Given a dataset detect multiples levels of hierarchy with meaningful clusters at each level of hierarchy using a modified version of Agglomerative Hierarchical Kernel

De iPod is ongeveer 15,5% goedkoper

The sources which had already been extracted before by applying the single- channel EMD-ICA to the channel T1 (muscle artifact on the left side of the head and the seizure activity)