• No results found

Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr-oxide

N/A
N/A
Protected

Academic year: 2021

Share "Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr-oxide"

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Simultaneous NOx and particulate matter removal from diesel

exhaust by hierarchical Fe-doped Ce-Zr-oxide

Citation for published version (APA):

Cheng, Y., Song, W., Liu, J., Zheng, H., Zhao, Z., Xu, C., Wei, Y., & Hensen, E. J. M. (2017). Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr-oxide. ACS Catalysis, 7(6), 3883–3892. https://doi.org/10.1021/acscatal.6b03387

DOI:

10.1021/acscatal.6b03387

Document status and date: Published: 01/06/2017 Document Version:

Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

S1

Supporting Information

1

Simultaneous NO

x

and particulate matter

2

removal from diesel exhaust by hierarchical

3

Fe-doped Ce-Zr-oxide

4

Ying Cheng,

†,‡

Weiyu Song,

†,¦¦,‡

Jian Liu,

,†

Huiling Zheng,

Zhen Zhao,

,§

5

Chunming Xu,

Yuechang Wei,

Emiel J. M. Hensen

,¦¦

6

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18#,

7

Fuxue Road, Chang Ping, Beijing 102249, China.

8

¦¦

Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry,

9

Eindhoven University of Technology, P.O. Box 513, 5600 M B, Eindhoven, the

10

Netherlands.

11

§

Institute of Catalysis for Energy and Environment, Shenyang Normal University,

12

Shenyang 110034, China

13

Corresponding authors: liujian@cup.edu.cn; e.j.m.hensen@tue.nl and

14

zhaozhen@synu.edu.cn; (J. L., E. H. & Z. Z.)

15 16

(3)

S2

1. Test for heat and mass transfer limitations

1

Test external heat transfer limitations: Mears criterion

2

Parameter

Value

Comment

-r

obs

5.6.10

-6

kmol.kg

cat-1

.s

−1

Highest observed rate of CO

2

formation

T

673 K

Temperature

𝜌

𝑏

765 kg.m

-3

≈

-H

R

-393000 kJ.kmol

-1

Enthalpy of combustion C

E

100000 kJ.kmol

-1

Estimated activation energy

H

0.117 kJ.m

-2

.K

-1

.s

-1

Computed from relation between

h and Pr (18) and Re (2600)

numbers; heat capacity of fluidum

estimated by that of N

2

at 673 K

Mears

criterion

external heat transfer

0.066

Satisfied (criterion < 0.15)

3 4 5

Test internal heat transfer limitations: Mears criterion

6

Parameter

Value

Comment

-r

obs

5.6.10

-6

kmol.kg

cat-1

.s

−1

Highest observed rate of CO

2

formation

T

673 K

Temperature

d

p

0.0003 m

Particle diameter

𝜌

𝑐

900 kg.m

-3

Pellet bulk density; ≈

-H

R

-393000 kJ.kmol

-1

Enthalpy of combustion C

E

100000 kJ.kmol

-1

Estimated activation energy

p

0.004 kW/m.K

Thermal conductivity ceria

Mears

criterion

internal heat transfer

0.77

Satisfied (criterion < 3)

7 8

(4)

S3 1

Test for mass transfer limitations: Koros-Nowak criterion

2 3

The reaction rates were calculated by the following equation:

4 1 ( ) 1 catal 1 1

[%]

[L

min ]

rate=

[mol NO g

s ]

[ ] 60[s min ] 22.4[L mol ]

NOx NOx NOx

catal

X

F

x

m

g

   

5

The reactions were conducted over 3DOM Ce

0.8

Fe

0.1

Zr

0.1

O

2

catalyst by varying the

6

amount of catalysts (25 mg, 50 mg, 75 mg, 100 mg, 125 mg) and the corresponding

7

total flow at a fixed reaction temperature of 200

o

C. The NOx conversion rates did not

8

change when the weight of catalyst was higher than 50 mg. These results show that

9

mass transfer limitation can be ruled under the applied reaction conditions (reaction

10

conditions: GHSV = 25,000 h

-1,

1000 ppm NH

3

, 1000 ppm NO, 3 % O

2

in N

2

, model

11

soot/catalyst mass ratio 0.1).

12

13

Figure S1. The potential effcct of mass transition when changing the mass of catalyst

14

at 200

o

C (Reaction conditions: GHSV = 25,000 h

-1,

1000 ppm NH

3

, 1000 ppm NO, 3 %

15

O

2

in N

2

, model soot/catalyst mass ratio 0.1).

16 17

(5)

S4

3. Supporting figures and tables

1 2

3

Figure S2. XRD patterns of 3DOM catalysts: (a) CeO2, (b) Ce0.85Fe0.05Zr0.1O2, (c) 4

Ce0.8Fe0.1Zr0.1O2, (d) Ce0.7Fe0.2Zr0.1O2, (e) Ce0.6Fe0.3Zr0.1O2 and (f) Ce0.5Fe0.4Zr0.1O2. 5

(6)

S5 2

Figure S3. SEM images of 3DOM catalysts: (a) CeO2, (b) Ce0.85Fe0.05Zr0.1O2, (c) 3

Ce0.8Fe0.1Zr0.1O2,(d) Ce0.7Fe0.2Zr0.1O2, (e) Ce0.6Fe0.3Zr0.1O2 and(f) Ce0.5Fe0.4Zr0.1O2. 4

(7)

S6 0.0 0.2 0.4 0.6 0.8 1.0 h g f d e c b Vo lume ads orbed cm 3 g -1Relative Pressure P P0-1a 1

Figure S4. N2 adsorption-desorption isotherms of 3DOM catalysts: (a) CeO2,(b) Fe2O3,(c) 2 ZrO2, (d) Ce0.85Fe0.05Zr0.1O2, (e) Ce0.8Fe0.1Zr0.1O2, (f) Ce0.7Fe0.2Zr0.1O2, (g) 3 Ce0.6Fe0.3Zr0.1O2 and (h) Ce0.5Fe0.4Zr0.1O2. 4 5

(8)

S7

Figure S5. NH3 conversion as a function of temperature over 3DOM Ce0.8Fe0.1Zr0.1O2 2

catalyst

3 4

(9)

S8 1

2

Figure S6. NO conversion in separate NO oxidation activity measurements over 3DOM

3

Ce0.9-xFexZr0.1O2 catalysts at a GHSV of 25 000 h-1. 4

(10)

S9 1

2

3

Figure S7. (a) CO2 concentration and (b) NO conversion as a function of temperature 4

upon exposure of 3DOM Ce0.8Fe0.1Zr0.1O2 catalysts loosely mixed with Printex U model 5

soot particles (reaction conditions: GHSV = 25,000 h-1, 1000 ppm NH3, 1000 ppm NO, 3 % 6

O2 in N2, model soot/catalyst mass ratio 0.1). 7

(11)

S10 100 200 300 400 500 600 0 1000 2000 3000 4000 a 435 CO 2 con ce ntration (pp m) Temperature (o C) 50000 h-1 100000 h-1 407 0 100 200 300 400 500 600 0 20 40 60 80 100 b Temperature (o C) NO Co nv ersion (%) 50000 h-1 100000 h-1 1

Figure S8. (a) CO2 concentration and (b) NO conversion as a function of temperature 2

upon exposure of 3DOM Ce0.8Fe0.1Zr0.1O2 catalysts loosely mixed with Printex U model 3

soot particles at various GHSV (reaction conditions: 1000 ppm NH3, 1000 ppm NO, 3 % 4

O2 in N2, model soot/catalyst mass ratio 0.1). 5

(12)

S11 1

2 3

4

Figure S9. (a) CO2 concentration and (b) NO conversion as a function of temperature 5

upon exposure of 3DOM Ce0.8Fe0.1Zr0.1O2 catalysts fresh and aged at 900oC for 5 h in air. 6

After aging the catalyst was loosely mixed with Printex U model soot particles (reaction

7

conditions: 1000 ppm NH3, 1000 ppm NO, 3 % O2 in N2, model soot/catalyst mass ratio 8

0.1).

9

(13)

S12 1

2

Figure S10. SEM images of 3DOM Ce0.8Fe0.1Zr0.1O2 catalyst aged at 900oC for 5 h in air. 3

(14)

S13 1

2

Figure S11. (left) Ce 3d and (right) O 1s XPS spectra for 3DOM (a) CeZrO2 and (b) 3

Ce0.8Fe0.1Zr0.1O2. 4

(15)

S14 100 200 300 400 500 600 Intens ity ( a.u.) Temperature (oC) g f e d c b a 1

Figure S12. NH3-TPD curves for 3DOM (a) CeO2, (b) CeZrO2, (c) Ce0.85Fe0.05Zr0.1O2, (d) 2

Ce0.8Fe0.1Zr0.1O2, (e) Ce0.7Fe0.2Zr0.1O2, (f) Ce0.6Fe0.3Zr0.1O2 and (g) Ce0.5Fe0.4Zr0.1O2. 3

(16)

S15 20 40 200 300 400 500 600 0 2500 5000 7500 405 CO 2 con ce ntration (pp m) Temperature (oC) NH3+NO+O2+N2 O2+N2 375 1

Figure S13. Comparison of CO2 concentration as function of temperature over 3DOM 2

Ce0.8Fe0.1Zr0.1O2 catalyst mixed with Printex U model soot particles in the absence and 3

presence of NO and NH3 (reaction conditions: [1000 ppm NH3, 1000 ppm NO], 3 % O2 in 4

N2, model soot/catalyst mass ratio 0.1). 5

6

(17)

S16 1 -9 -6 -3 0 3 -3 0 3 De nsi ty o f S tates (a. u. ) Energy (ev) - O 2*CeO2 - O 2*Fe-CeO2 2

Figure S14. Projected density of states of the O 2p orbital of O2 adsorbed on CeO2-x(111) 3

and FeCe-xO2-y(111). 4

(18)

S17

Table S1. Average crystal grain size for (111) reflection andSBET of the different samples. 1

Catalyst Crystal

face I/I1

Crystal grain size

a (nm) SBET b(m2/g) CeO2 111 100 12.3 11.7 Fe2O3 - - - - ZrO2 - - - - Ce0.85Fe0.05Zr0.1O2 111 100 7.1 25.7 Ce0.8Fe0.1Zr0.1O2 111 100 5.8 27.3 Ce0.7Fe0.2Zr0.1O2 111 100 5.5 25.3 Ce0.6Fe0.3Zr0.1O2 111 100 5.1 20.7 Ce0.5Fe0.4Zr0.1O2 111 100 4.8 20.3 Particle Ce0.8Fe0.1Zr0.1O2 111 100 12.1 46.6

a Calculated from the (111) reflection. 2

b SBET is the specific surface area calculated by BET method. 3

4 5

(19)

S18

Table S2. Comparison of catalytic performance in soot oxidation and NO reduction of the catalyst optimized in this study and data from literature.

1

Catalyst Reactant gas O2

(vol%) Contact Tm[1] (oC) Maximum conversion of NO Noble metal (Y or N) Reference

Ce0.8Fe0.1Zr0.1O2 NH3+NO+O2 3 loose 375 100.0% N This work

Ce0.1Co0.9Cr2O4 NO+O2 10 loose 390 69.8% N 1

Cu2Mg1Al0.9La0.1Ox NO+O2 5 loose 362 52.5% N 2

Cu2Mg1Al1Ox NO+O2 5 loose 415 47.2% N 2

Cu/BaO/La2O3 NO+O2 5 loose 375 - N 3

Au0.06/Ce0.8Zr0.2O2 NO+O2 5 loose 347 - Y 4

Fe2O3 NO+O2 6 loose 365 58.0% N 5

Ce0.76Zr0.24O2(500) NO+O2 5 loose 520 14.0% N 6

ZrO2(500) NO+O2 5 loose 580 12.0% N 6

KCu2/Al2O3 C3H6+NO+O2 5 loose 450 50.0% N 7

KCo2/Al2O3 NO+O2 5 loose 500 50.0% N 7

CoCr2O4 NO+O2 10 loose 385 10.0% N 8

Fe1.9K0.1O3 NO+O2 6 loose 350 30.0% N 9

Fe1.9K0.1O3 NO+O2+H2O 6 loose 378 18.0% N 9

La1.8K0.2Cu0.9V0.1O4 NO+O2 4 loose 470 75.0% N 10

(20)

S19

La1.9K0.1Cu0.95V0.05O4 NO+O2 5 loose 365 58.0% N 12

CuSO4-ZSM-5 NH3+NO+O2 10 tight - 98.0% N 13

10%Fe/CeO2 O2 10 tight 375 - N 14

La0.9K0.1CoO3 NO+O2 10 tight 362 12.5% N 15

4.5wt.%K/CoMgAlO NO+O2 10 tight 371 32.0% N 16

Fe2O3 NH3+NO+O2 3 - - 100.0% N 17

La0.9Sr0.1MnO3 NO+O2 8 - - 86.0% N 18

Cu-SSZ-13 NH3+NO+O2+H2O 10 - - 36.0% N 19

0.5%Pd-2%Mn/TiO2–Al2O3 NO+O2+H2 5 - - 88.5% Y 20

K/Pd/Co3Al(O) NO+O2 10 tight 353 - Y 21

Ru/ZnO:CeO2 N2+O2 20 loose 360 - Y 22

Ru/Ce0.4Zr0.6O2/cordierite N2+O2 20 loose 360 - Y 23

Ag/Al2O3 NO+DME+O2 10 - - 90.0% Y 24 Pd/Al2O3 NO+DME+O2 10 - - 80.0% Y 24 Pt/Al2O3 NO+DME+O2 10 - - 51.0% Y 24 Rh/Al2O3 NO+DME+O2 10 - - 78.0% Y 24 La0.8K0.2Fe0.67Mn0.3Pt0.03O3 - 21 loose 367 21.2% Y 25 Co2.5Mg0.5Al2Ce8O NO+O2 10 tight 384 15.4% N 26

La0.6K0.4CoO3/Al2O3+W/HZSM-5 NO+O2+C2H2+CO 5 loose 421 74.0% N 27

(21)

S20

Ce0.9La0.1O2 NOx+O2 10 loose 480 - N 29

3DOM Ce0.6Zr0.3Pr0.1O2 NO+O2 10 loose 402 - N 30

Ce0.69Zr0.31O2 O2 - tight 440 - N 31

Ce0.69Zr0.31O2 O2 - loose 580 - N 31

CuO-CeO2 O2 9.5 tight 378 - N 32

CuO-CeO2 O2 9.5 loose 519 - N 32

Ce0.76Zr0.24O2 NOx+O2 5 loose 520 - N 33

Co20/nmCeO2 NO+O2 5 loose 368 - N 34

Co-K(4.5%)/MgO O2 6 - 378 - N 35 Ce0.85Fe0.15O1.925 O2 6 tight 389 - N 36 Ce0.47Zr0.48Fe0.05O1.975 O2 6 tight - N 36 Ce0.45Zr0.40Fe0.15O1.925 O2 6 tight 411 - N 36 Ce0.48Zr0.50La0.02O1.99 O2 6 tight 414 - N 36 Ce0.48Zr0.50Pr0.02O1.99 O2 6 tight 410 - N 36 Ce0.48Zr0.50Sm0.02O1.99 O2 6 tight 411 - N 36 Ce0.48Zr0.50Tb0.02O1.99 O2 6 tight 414 - N 36 LaCrO3 O2 4 tight 495 - N 37 La0.9Rb0.1CrO3 O2 4 tight 448 - N 37 La0.9CrO3 O2 4 tight 447 - N 37 La0.8CrO3 O2 4 tight 441 - N 37

(22)

S21

La0.9Na0.1CrO3 O2 4 tight 455 - N 37

La0.9K0.1CrO3 O2 4 tight 454 - N 37

La0.8Cr0.9Li0.1O3 O2 4 tight 408 - N 37

Ce/Zr/K/Ru NO+O2 3 loose 391 - N 38

Ag–Ba/CeO2 NO+O2 10 loose 465 - Y 39

CuO/Ce0.8M0.2Ox NOx+O2 5 loose - - N 40

Ag/LaCoO3-800 air - loose 435 - Y 41

Ag/LaCoO3-400 NOx+O2 10 loose 385 - Y 41

20 nm-CeO2 NO+O2 12 loose 413 70.0% N 42

CuCoMgAl NO+O2 5 tight 467 39.0% N 43

CuMgAl NO+O2 5 tight 493 37.0% N 43

Fe-K/Al2O3(DL) NO+O2 5 loose 500 3.0% N 44

K/Al2O3(450) NO+O2 5 loose 483 1.5% N 45

Co2.5Mg0.5Al1 - 8%Ce8%O NO+O2 10 tight 384 15.4% N 46

La0.8K0.2Fe0.7Mn0.3O3 NO+O2 5 tight 366 16.6% N 47

1

[1] Tm included the temperature of maximum combustion rate which are reported in the references. 2

(23)

S22

References

1 2

(1) Niu, X.; Zhou, L.; Hu, X.; Han, W. RSC Adv. 2015, 5, 52595-52601.

3

(2) Wang, Z.; Yan, X.; Bi, X.; Wang, L.; Zhang, Z.; Jiang, Z.; Xiao, T.; Umar, A.; Wang, Q. Mater.

4

Res. Bull. 2014, 51, 119-127.

5

(3) Mori, K.; Iwata, Y.; Yamamoto, M.; Kimura, N.; Miyauchi, A.; Okamoto, G.; Toyoshima, T.;

6

Yamashita, H. J. Phys. Chem. C 2014, 118, 9078-9085.

7

(4) Wei, Y.; Liu, J.; Zhao, Z.; Duan, A.; Jiang, G.; Xu, C.; Gao, J.; He, H.; Wang, X. Energ.

8

Environ. Sci. 2011, 4, 2959-2970.

9

(5) Reichert, D.; Bockhorn, H.; Kureti, S. Appl. Catal. B 2008, 80, 248-259.

10

(6) Atribak, I.; Buenolopez, A.; Garciagarcia, A. J. Catal. 2008, 259, 123-132.

11

(7) Nejar, N.; Illán-Gómez, M. J. Appl. Catal. B 2007, 70, 261-268.

12

(8) Fino, D.; Russo, N.; Saracco, G.; Specchia, V. J. Catal. 2006, 242, 38-47.

13

(9) Kureti, S.; Weisweiler, W.; Hizbullah, K. Appl. Catal. B 2003, 43, 281-291.

14

(10) Fino, D.; Fino, P.; Saracco, G.; Specchia, V. Appl. Catal. B 2003, 43, 243-259.

15

(11) Shangguan, W.; Teraoka, Y.; Kagawa, S. Appl. Catal. B 1997, 12, 237-247.

16

(12) Teraoka, Y.; Nakano, K.; Shangguan, W.; Kagawa, S. Catal. Today 1996, 27, 107-113.

17

(13) Kang, W.; Choi, B. Chem. Eng. Sci. 2016, 141, 175-183.

18

(14) Zhang, Z.; Han, D.; Wei, S.; Zhang, Y. J. Catal. 2010, 276, 16-23.

19

(15) Li, Z.; Meng, M.; Li, Q.; Xie, Y.; Hu, T.; Zhang, J. Chem. Eng. J. 2010, 164, 98-105.

20

(16) Li, Q.; Meng, M.; Tsubaki, N.; Li, X.; Li, Z.; Xie, Y.; Hu, T.; Zhang, J. Appl. Catal. B 2009,

21

91, 406-415.

22

(17) Mou, X.; Zhang, B.; Li, Y.; Yao, L.; Wei, X.; Su, D. S.; Shen, W. Angew. Chem. Int. Ed. 2012,

23

51, 2989-2993.

24

(18) Kim, C. H.; Qi, G.; Dahlberg, K.; Li, W. Science 2010, 327, 1624-1627.

(24)

S23

(19) Paolucci, C.; Verma, A. A.; Bates, S. A.; Kispersky, V. F.; Miller, J. T.; Gounder, R.; Delgass,

1

W. N.; Ribeiro, F. H.; Schneider, W. F. Angew. Chem. Int. Ed. 2014, 53, 11828-11833.

2

(20) Duan, K.; Chen, B.; Zhu, T.; Liu, Z. Appl. Catal. B 2015, 176, 618-626.

3

(21) Liu, D.; Guo, X.; Meng, M.; Zhang, Y.; Jiang, Z. Chem. Eng. Sci. 2015, 135, 421-430.

4

(22) Nascimento, L. F.; Martins, R. F.; Serra, O. A. J. Rare Earths 2014, 32, 610-620.

5

(23) Nascimento, L. F.; Martins, R. F.; Silva, R. F.; Sousa Filho, P. C.; Serra, O. A. React. Kinet.

6

Mech. Cat. 2013, 111, 149-165.

7

(24) Shimokawabe, M.; Kuwana, A.; Oku, S.; Yoshida, K.; Arai, M. Catal. Today 2011, 164,

8

480-483.

9

(25) Meng, X.; Wang, Z.; Shen, X.; Jing, M.; Jin, L.; Wang, P. J. nanosci. nanotechno. 2015, 15,

10

2258-2263.

11

(26) Dai, F.; Meng, M.; Zha, Y.; Li, Z.; Hu, T.; Xie, Y.; Zhang, J. Fuel Process. Technol. 2012, 104,

12

43-49.

13

(27) Liu, J.; Xu, J.; Zhao, Z.; Duan, A.; Jiang, G.; Jing, Y. J. Environ. Sci. 2010, 22, 1104-1109.

14

(28) Atribak, I.; Azambre, B.; Bueno López, A.; García-García, A. Appl. Catal. B 2009, 92,

15

126-137.

16

(29) Bueno-López, A. Appl. Catal. B 2014, 146, 1-11.

17

(30) Zhang, G.; Zhao, Z.; Xu, J.; Zheng, J.; Liu, J.; Jiang, G.; Duan, A.; He, H. Appl. Catal. B

18

2011, 107, 302-315.

19

(31) Liu, Q.; Li, J.; Zhao, Z.; Gao, M.; Kong, L.; Liu, J.; Wei, Y. Catal. Sci. Technol. 2016, 6,

20

5927-5941.

21

(32) Zhou, G.; Liu, H.; Cui, K.; Jia, A.; Hu, G.; Jiao, Z.; Liu, Y.; Zhang, X. Appl. Surf. Sci. 2016,

22

383, 248-252.

23

(33) Atribak, I.; Bueno-López, A.; García-García, A. J. Catal. 2008, 259, 123-132.

24

(34) Liu, J.; Zhao, Z.; Wang, J.; Xu, C.; Duan, A.; Jiang, G.; Yang, Q. Appl. Catal. B 2008, 84,

(25)

S24

185-195.

1

(35) Xu, C.; Zhang, B.; Wang, Y.; Shao, Q.; Zhou, W.; Fan, D.; Bandstra, J. Z.; Shi, Z.; Tratnyek, P.

2

G. Environ. Sci. Technol. 2016, 50, 11879-11887.

3

(36) Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Catal. Today 2006, 114, 40-47.

4

(37) Lahr, R. H.; Goetsch, H. E.; Haig, S. J.; Noe-Hays, A.; Love, N. G.; Aga, D. S.; Bott, C. B.;

5

Foxman, B.; Jimenez, J.; Luo, T.; Nace, K.; Ramadugu, K.; Wigginton, K. R. Environ. Sci.

6

Technol. 2016, 50, 11619-11626.

7

(38) Matarrese, R.; Morandi, S.; Castoldi, L.; Villa, P.; Lietti, L. Appl. Catal. B 2017, 201,

8

318-330.

9

(39) Castoldi, L.; Aneggi, E.; Matarrese, R.; Bonzi, R.; Llorca, J.; Trovarelli, A.; Lietti, L. Catal.

10

Today 2015, 258, Part 2, 405-415.

11

(40) Bueno-López, A.; Lozano-Castelló, D.; McCue, A. J.; Anderson, J. A. Appl. Catal. B 2016,

12

198, 266-275.

13

(41) Fan, Q.; Zhang, S.; Sun, L.; Dong, X.; Zhang, L.; Shan, W.; Zhu, Z. Chinese J. Catal 2016,

14

37, 428-435.

15

(42) Huang, H.; Liu, J.; Sun, P.; Ye, S. RSC Adv. 2016, 6, 102028-102034.

16

(43) Wang, Z.; Lu, P.; Zhang, X.; Wang, L.; Li, Q.; Zhang, Z. RSC Adv. 2015, 5, 52743-52753.

17

(44) Ascaso, S.; Gálvez, M. E.; Da Costa, P.; Moliner, R.; Lázaro, M. J. Comptes Rendus Chimie

18

2014, 17, 681-686.

19

(45) Gálvez, M. E.; Ascaso, S.; Stelmachowski, P.; Legutko, P.; Kotarba, A.; Moliner, R.; Lázaro,

20

M. J. Appl. Catal. B 2014, 152-153, 88-98.

21

(46) Dai, F.; Meng, M.; Zha, Y.; Li, Z.; Hu, T.; Xie, Y.; Zhang, J. Fuel Process. Technol. 2012, 104,

22

43-49.

23

(47) Meng, X.; Shen, X.; He, F.; Jing, M.; Dong, M.; Xiang, J.; Wang, P. J. nanosci. nanotechno.

24

2013, 13, 2624-2631.

25

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of