• No results found

University of Groningen Vitamin B12 Transport in Bacteria Rempel, Stephan

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Vitamin B12 Transport in Bacteria Rempel, Stephan"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Vitamin B12 Transport in Bacteria Rempel, Stephan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Rempel, S. (2019). Vitamin B12 Transport in Bacteria: A structural and biochemical study to identify new transport systems. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

PROPOSITIONS

belonging to the thesis

Vitamin B12 Transport in Bacteria

a structural and biochemical study to identify new transport systems

by

STEPHAN REMPEL

1. Bacterial vitamin B12 transporters are structurally diverse and their transport mechanisms differ. 2. Some vitamin B12 transport systems may have

achieved kinetic convergence, like BtuCDF and ECF-CbrT.

3. Solitary S-components represent a functional transport system for compounds that are not needed in high amounts by bacterial cells.

4. Solitary and non-solitary S-components are functionally distinct.

5. The sequence analysis of BtuM shows the strengths and limitations of bioinformatic predictions.

6. Characterizing a protein, of which only its sequence is known has its perks but also poses a formidable challenge.

7. At the moment, an unsustainable large amount of PhD degrees is awarded.

8. Like for other academic degrees, there should be a grading system for PhD candidates.

9. Fairness at the workplace is important to keep a healthy, supportive, and positively competitive atmosphere.

Referenties

GERELATEERDE DOCUMENTEN

The similar overall structures of SWEET and Pnu proteins as well as the use a facilitated diffusion mechanism by both transporter families to transport their

NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into NAD.. Although a crystal

and it has been successfully used for detecting binding of small molecules or specific ligands to membrane protein, such as binding of nicotinamide riboside (vitamin B3),

Upon superimposition of the ribosome bound cryo-EM model of trigger factor (TF) [50] with SecA, no steric clashes between monomeric SecA and TF were observed,

The research described in this thesis was carried out in the Membrane Enzymology Group of the Groningen Biomolecular and Biotechnology (GBB) Institute of the University of

Although the molecular identity of ECF-type ABC transporters remained elusive at the time, the results cumulated in the remarkably accurate description of the function

in 2009 (15) predicted that the energy coupling factor (ECF-) type ABC transporter ECF-CbrT might be a Cbl transporter (15). ECF-transporters are multi-subunit membrane complexes

Cbl-bound mutants H28A, Y85L, and R153A displayed the same spectral properties as the WT protein (Suppl. Figure 10a), and MS analysis showed that the binding of Cbl