• No results found

1  Efficiency  Implementation  in  the  Construction  of  Active  Portfolios:  An  Assessment  through  the  Fundamental  Law  of  Active  Management    FREDY  ALEXANDER  PULGA  VIVAS

N/A
N/A
Protected

Academic year: 2021

Share "1  Efficiency  Implementation  in  the  Construction  of  Active  Portfolios:  An  Assessment  through  the  Fundamental  Law  of  Active  Management    FREDY  ALEXANDER  PULGA  VIVAS"

Copied!
57
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Efficiency  Implementation  in  the  Construction  of  Active  Portfolios:  An  Assessment   through  the  Fundamental  Law  of  Active  Management    

FREDY  ALEXANDER  PULGA  VIVAS*  

ABSTRACT  

Active   portfolio   management   aims   to   deliver   superior   returns   through   using   an   extensive   analysis   of   securities   in   order   to   identify   mispriced   stocks   and   estimate   alphas.   Moreover,   an   active   strategy   relies   on   the   capability   of   the   active   manager   to   transform   his/her   forecasting   skills   into   an   active   portfolio.   This   thesis   assesses   the   effects   of   investment   constraints   in   the   ex   ante   capabilities   of   an   active   manager   to   construct   portfolios   through   the   fundamental   law   of   active   management,   and   provides   evidence   on   the   efficiency   loss   of   the   manager   in   presence   of   such  constraints  through  a  Monte  Carlo  simulation.  

Portfolio  management  theory  debates  between  two  main  approaches  to  deliver  returns   to  investors.  Investment  strategies  can  be  identified  as  either  passive  or  active,  in  line   with   the   investor’s   beliefs   on   the   degree   of   efficiency   in   the   financial   markets   and   on   how  securities  are  priced.    

The  efficient  market  hypothesis  introduced  by  Fama  (1970)  serves  as  a  baseline   to   distinguish   a   passive   from   an   active   portfolio   strategy.   The   broader   definition   of   market   efficiency   asserts   that   security   prices   incorporate   all   available   information.   Under   the   main   assumption   of   perfect   competition,   a   market   is   efficient   in   the   strong   sense,   when   a   large   number   of   rational   investors,   with   total   access   to   information,   compete   with   each   other   by   forecasting   future   security   returns   and   when   the   frictionless   interaction   between   supply   and   demand   allows   for   asset   prices   to   fully   reflect  such  information  instantaneously.  

In  a  completely  efficient  market  there  is  no  room  for  mispriced  securities,  thus   there  is  no  point  for  an  investor  to  try  achieving  superior  performance.  In  this  line  of                                                                                                                  

(2)

thinking   arise   the   passive   investment   strategies,   where   the   manager   invests   in   the   market,   which   is   normally   defined   by   the   collection   of   a   representative   number   of   securities  into  an  index,  i.e.  the  benchmark.  

In   contrast,   active   investing   aims   to   deliver   returns   above   the   benchmark   by   exploiting  the  inefficiencies  in  the  market.  Such  malfunctioning  mainly  arises  from  the   incompleteness   of   information,   among   other   factors;   therefore   the   theory   underlying   active  portfolio  management  assumes  that  security  prices  do  not  necessarily  reflect  all   available  information.  

According  to  the  theoretical  and  empirical  work  on  efficient  capital  markets  by   Fama  (1970),  security  prices  reflect  all  past  and  public  available  information  under  the   weak  and  semi  strong  form  of  market  efficiency,  thus  investors  do  not  have  access  to   the   inside   information.   Once   considered   a   lower   degree   of   efficiency   in   the   market   (weak   and   semi   strong),   active   management   becomes   operational   through   price   estimates  for  the  set  of  securities  within  the  market.  The  underlying  assumption  of  any   active   strategy   is   that   market   prices   might   converge   to   these   estimated   values.   As   a   consequence,   the   purpose   of   active   investing   is   to   identify   under   and   overvalued   securities  and  exploit  such  mispricing  to  deliver  exceptional  returns.  Consequently,  an   active   strategy   completely   relies   on   the   quality   of   the   information   gathered   for   the   purpose  of  forecasting  future  prices  and  returns  to  outperform  the  market.  

A  lot  of  attention  has  been  given  to  the  identification  and  estimation  of  mispriced   securities.   Nevertheless,   the   success   of   an   active   strategy   depends   on   how   these   estimates   are   efficiently   transformed   into   active   bets   on   the   over   and   under   valued   securities  in  order  to  construct  portfolios  with  superior  performance.    

(3)

portfolios  depends  on  these  restrictions.  As  a  result,  the  performance  of  active  portfolio   management  is  sensitive  to  the  information  that  is  used  to  forecast  returns  and  to  the   capability  of  the  manager  to  transform  these  forecasts  into  a  portfolio.  

Through   “The   Fundamental   Law   of   Active   Management”   (Grinold   (1989))   and   “The   Generalized   Law”   (Clarke   et   al.   (2002)),   one   can   assess   the   quality   of   the   information  about  the  forecasts  as  well  as  the  competitive  advantage  of  a  manager  to   transform   such   information   into   active   portfolios.   The   generalized   law   (Clarke   et   al.   (2002))   posits   an   ex   ante   relationship   between   the   ratio   of   the   forecasted   abnormal   returns  to  the  risk  for  bearing  them  (the  information  ratio),  and  (i)  the  skills  of  active   managers   to   forecast   abnormal   returns   (information   coefficient),   (ii)   their   ability   to   transform  these  skills  into  active  portfolios  (transfer  coefficient)  and  (iii)  the  number  of   independent   bets   on   the   forecasts   (breadth).   Under   this   framework,   it   is   possible   to   evaluate   efficiency   implementation   (Clarke   et   al.   (2005)),   which   is   the   ability   of   the   manager  to  transform  forecasts  on  abnormal  returns  into  active  bets  in  a  portfolio.    

In  this  thesis  we  intend  to  investigate  whether  investment  constraints,  such  as   transaction   costs,   the   prohibition   of   short   sales   and   investment   style,   diminish   the   ex   ante   efficiency   of   the   active   portfolio   manager.   In   order   to   assess   the   impact   of   these   restrictions,   we   apply   a   Monte   Carlo   simulation   to   generate   random   forecasts   on   abnormal   returns   and   to   construct   unconstrained   and   constrained   active   portfolios.   Moreover,   we   perform   these   simulations   for   different   levels   of   active   risk   in   order   to   evaluate  its  impact  on  efficiency  under  each  constraint.  As  a  result,  we  calculate  transfer   coefficients,  expected  returns  and  information  ratios  for  every  case  study  based  on  the   generalized  law.  

(4)

on   unconstrained   and   constrained   active   portfolios   in   terms   of   efficiency   implementation,  and  the  final  section  concludes.  

I.  Literature  Review  

The   accuracy   of   forecasts   on   abnormal   returns   plays   a   major   role   to   enhance   performance  and  to  add  value  in  active  portfolios.  For  this  reason,  a  lot  of  attention  has   been   given   to   the   identification   of   mispriced   securities   and   the   estimation   of   returns.   Nevertheless,   it   is   also   important   how   these   forecasts   are   efficiently   transformed   into   active  portfolios.    

“The   fundamental   law   of   active   management”   (Grinold   (1989))   focuses   on   the   quality  of  the  information  and  the  skill  of  the  manager  to  forecast  abnormal  returns  to   construct  active  portfolios  and  add  value.  Similarly,  “the  generalized  fundamental  law”   (Clarke  et  al.  (2002))  adds  to  the  aforementioned  analysis,  the  capabilities  of  the  active   manager   to   transform   the   forecasts   on   abnormal   returns   into   active   portfolios.   Moreover,  the  generalized  law  provides  a  framework  to  assess  the  effects  of  imposing   constraints  to  the  manager  on  such  capabilities.  

A.  The  fundamental  law  of  active  management  

One  of  the  main  contributions  to  the  finance  literature  on  portfolio  management   is   “The   fundamental   law   of   active   management”.   Formulated   by   Grinold   (1989),   the   fundamental  law  postulates  an  ex  ante  relationship  to  assess  the  forecasting  skills  of  an   active  manager  to  deliver  exceptional  returns  and  add  value  relative  to  a  benchmark1.  

Specifically,  the  law  relates  the  expected  performance  of  the  manager  measured   by  the  ex  ante  information  ratio,  𝐼𝑅,  to  his/her  ability  to  forecast  abnormal  returns,  as   gauged  through  the  ex  ante  information  coefficient,  𝐼𝐶,  and  the  number  of  independent   bets   that   he/she   makes   on   these   forecasts   or   the   breadth,   𝐵𝑅,   of   the   investment   strategy:  

(5)

With  respect  to  the  ex  ante  information  ratio  of  an  active  portfolio,  𝐼𝑅,  Grinold   (1989),  Sharpe  (1994)  and  Goodwin  (1998)  define  it  as  the  expected  excess  return  of   the  active  portfolio  over  the  benchmark  portfolio,  per  unit  of  volatility  on  excess  return.   Specifically,  it  is  the  ratio  between  the  expected  active  return,  𝐸[𝑅!],  to  active  risk2,  𝜎

!:  

  𝐼𝑅 =![!!]

!!   (2)  

The   ex   ante   information   ratio   measures   the   quality   of   the   proprietary   information  of  the  active  manager,  given  the  risk  he/she  faces  to  build  active  portfolios:   the  better  his/her  information,  the  higher  the  expected  excess  return  for  a  given  level  of   active  risk.  Therefore,  the  main  objective  of  the  active  manager  is  to  achieve  the  highest   ex  ante  information  ratio  within  an  active  portfolio.  

Moreover,   the   fundamental   law   approximates   and   decomposes   the   expected   information  ratio  into  two  separate  components  linked  to  the  performance  of  the  active   manager.   First,   the   ex   ante   information   coefficient   measures   the   accuracy   of   the   manager   to   forecast   abnormal   returns3.   Basically,   it   relates   these   forecasts   to   the  

subsequent  realized  abnormal  returns  through  a  correlation  coefficient.  Grinold  (1989),   Grinold  et  al.  (1992)  and  Grinold  et  al.  (2000)  consider  the  information  coefficient  as  a   measure  of  the  skillfulness  and  accuracy  of  the  manager  to  identify  under  or  overpriced   securities,  to  the  extent  that  he/she  is  able  to  exploit  such  mispricing.  

Second,   the   ex   ante   information   ratio   depends   on   the   scope   of   the   active   investment  strategy.  Grinold  (1989)  asserts  that  breadth  is  the  number  of  independent   decisions   made   by   the   manager   based   on   his/her   forecasts4   within   the   active  

(6)

(2007)  use  an  econometric  framework  to  interpret  the  fundamental  law  and  conclude   that  breadth  is  equivalent  to  the  number  of  explanatory  variables  used  in  a  regression   analysis   to   forecast   abnormal   returns,   and   Grinold   et   al.   (2011)   develop   the   fundamental   law   under   a   dynamic   optimization   model   and   find   that   breadth   is   the   number  of  assets  in  the  portfolio  times  the  rate  of  information  turnover,  which  is  the   equilibrium  rate  of  arrival  and  declining  of  new  and  old  information  on  the  forecasts.  

Besides   the   independence   of   the   forecasts,   the   underlying   assumptions   of   the   fundamental  law  also  relate  to  the  skill  of  the  manager  and  how  he/she  exploits  his/her   information  for  the  investment  process.  With  regard  to  the  skillfulness  of  the  manager,   the  law  assumes  that  the  information  coefficient  is  an  average;  therefore  it  is  constant   between  time  and  securities5.  Additionally,  the  stronger  assumption  of  the  law  is  that  

the   active   manager   adequately   assess   his/her   proprietary   information   and   constructs   active   portfolios   efficiently,   thus   he/she   is   able   to   completely   transform   his/her   skills   into  active  weights.  

As   an   insightful   tool   of   the   investment   process,   the   law   affirms   that   an   active   manager  has  to  be  accurate  in  his/her  forecasts  and  has  to  augment  his/her  investment   opportunities   as   well,   by   analysing   more   assets   or   increasing   the   frequency   of   the   forecasts,  in  order  to  improve  his/her  information  ratio.  Moreover,  a  modest  skill  is  to   be  implemented  more  frequently  among  a  large  number  of  securities.    

B.   The   active   manager’s   opportunity   set   and   preferences:   a   perspective   from   the   fundamental  law  

The  active  manager  opportunity  set  is  determined  by  the  relationship  between   expected  active  return  and  active  risk  determined  by  the  information  ratio:  

  𝐸[𝑅!] = 𝐼𝑅 ∙ 𝜎!     (3)    

(7)

the  manager  has  to  bear  more  active  risk6.  Moreover,  from  equation  3,  the  information  

ratio  is  the  slope  of  the  residual  frontier,  therefore,  when  the  active  manager  increases   it,   he/she   augments   the   scope   of   the   investment   opportunities   in   the   return   risk   continuum.  

Additionally,   the   fundamental   law   sets   an   important   relationship   between   the   skills  of  an  active  manager  and  the  value  that  he/she  adds  throughout  the  investment   process.  The  value  added  function,  𝑉𝐴,  represents  the  trade  off  between  the  forecasts  on   abnormal  returns  and  active  risk:  

  𝑉𝐴 = 𝐸 𝑅! − 𝜆!𝜎!!    (4)  

Where  the  parameter  𝜆!  is  a  measure  of  active  risk  aversion7.  For  higher  levels  of  

active   risk   aversion,   the   valued   added   from   active   management   is   lower   for   a   fixed   amount   of   active   risk   and   vice   versa,   as   can   be   seen   in   figure   1.   Thus,   the   goal   of   the   active   manager   is   to   maximize   the   value   added   from   expected   active   return   and   its   inherent  risk  given  his/her  aversion.  

(8)

The   set   of   preferences   of   the   active   manager   is   derived   from   the   value   added   function  and  plots  all  possible  active  portfolios  with  different  combinations  of  expected   active  return  and  active  risk  for  a  constant  magnitude  of  value  added,  as  described  in   figure  2.  

  With  the  residual  frontier  and  the  set  of  preferences,  the  optimization  problem  of   the  active  manager  can  be  solved,  as  shown  in  figure  3:  the  maximum  value  added,  𝑉𝐴∗,  

by   the   manager   is   proportional   to   the   square   of   the   information   ratio   of   the   active   portfolio8,  under  a  mean  variance  approach  for  constructing  active  portfolios:  

  𝑉𝐴∗ = !

!!!∙ 𝐼𝑅!

!     (5)    

(9)

  Grinold  (1989)  acknowledges  that  the  fundamental  law  is  not  intended  to  be  an   operational   tool   for   practitioners,   but   to   reveal   the   insights   of   value   added   by   active   portfolio  managers  through  active  investing.  Actually,  the  original  version  of  the  law  is   formulated   as   an   approximation   thus   it   is   not   an   equality.   As   a   consequence   of   the   aforementioned   assumptions   of   the   fundamental   law,   it   sets   the   upper   boundary   for   information   ratios   and   value   added   (Grinold   (1989),   Goodwin   (1998),   Clarke   et   al.   (2002)).  

C.  The  fundamental  law  and  the  transfer  coefficient  

In   an   attempt   to   explain   the   differences   between   the   information   ratios   estimated  through  the  fundamental  law  and  the  observed  information  ratios  of  active   portfolios,   Clarke   et   al.   (2002)   introduce   the   ex   ante   concepts   of   transfer   and   performance9  coefficients  and  present  “The  generalized  fundamental  law”.    

(10)

assess  the  transformation  of  the  manager  skills  into  the  portfolio  construction  process,   Clarke  et  al.  (2002)  define  the  ex  ante  transfer  coefficient  as  the  correlation  between  the   forecasts  on  abnormal  returns  and  the  active  weights10  of  the  securities  that  constitute  

the  active  portfolio.  

Under  this  framework,  the  transfer  coefficient,  𝑇𝐶,  becomes  a  scale  factor  for  the   information  coefficient  in  the  generalized  fundamental  law:  

  𝐼𝑅 ≈ 𝑇𝐶 ∙ 𝐼𝐶 ∙ 𝐵𝑅    (6)  

In   the   original   version   of   the   fundamental   law,   it   is   assumed   that   there   is   a   perfect  correlation  between  the  active  weights  and  the  forecasts  on  abnormal  returns;   therefore  the  active  manager  is  capable  of  fully  exploiting  his/her  abilities  to  forecast   returns  and  transforming  them  into  active  weights.  In  the  generalized  version,  there  is   room  for  inefficiencies,  which  arise  from  the  constraints  imposed  to  the  active  manager   through   the   investment   constraints11   of   the   managed   portfolio.   In   presence   of   such  

constraints,   the   transfer   coefficient   becomes   lower   than   one   thus   the   manager   is   not   able   to   completely   transform   his/her   skills   into   the   active   portfolio.   Therefore,   the   information   ratios   and   the   value   added   of   the   portfolio   manager   become   lower   than   those  estimated  from  the  original  version  of  the  fundamental  law.  

The   generalized   law   adds   a   new   component   to   active   management   in   order   to   achieve  outstanding  portfolio  performance.  The  information  ratio  improves  by  means  of   a  better  ability  to  construct  an  active  portfolio,  which  nearly  reflects  the  proper  weights   of  the  forecasts;  an  increase  in  the  forecasting  skill,  and  the  greater  the  investment  set.  

(11)

efficiency   changes   in   presence   of   different   constraints   when   constructing   active   portfolios  (Clarke  et  al.  (2005)).  

II.  Methodology  

We   construct   active   portfolios   using   a   mean   variance   optimization   framework.   The  objective  is  to  find  efficient  portfolios  that  maximize  expected  returns  controlling   for   risk,   which   is   measured   by   the   standard   deviation   of   expected   returns.   This   quantitative   method   requires   the   estimation   of   a   variance   covariance   matrix   of   stock   returns,   a   vector   of   betas,   a   vector   of   expected   returns   and   a   vector   of   alphas   or   expected   residual   returns12   for   the   securities   that   constitute   the   index.   Moreover,   the  

optimization   model   needs   further   assumptions   on   the   risk   free   rate   and   the   expected   benchmark  return13,  which  are  also  used  as  inputs.  

A.  Estimating  the  variance  covariance  matrix:  the  average  constant  correlation  model  

As   a   starting   point,   we   calculate   the   elements   in   the   historical   variance   covariance   matrix   from   the   daily   logarithm   returns   of   the   stocks   quoted   in   the   benchmark14  as  follows:  

  𝜎!" =!! ! 𝑅!"− 𝑅!

!!! 𝑅!"− 𝑅!    (7)  

Where  the  ijth  element  of  the  variance  covariance  matrix  is  the  term  𝜎!"  which   denotes  the  covariance  between  securities  i  and  j;  𝑅!"  and  𝑅!"  are  their  corresponding   logarithm  returns  in  time  t;  𝑅!  and  𝑅!  are  their  time  mean  logarithm  returns,  and  T  is  the  

number   of   total   observations.   The   elements   in   the   diagonal   of   the   historical   variance   covariance   matrix   represent   the   variance   of   each   stock   and   the   off   diagonal   elements   are  the  covariance  among  securities.  

Similarly,  we  compute  the  elements  of  the  historical  correlation  matrix  with  the   information  of  the  historical  variance  covariance  matrix,  as  defined  by:  

  𝜌!" = !!"

(12)

In  this  case,  the  ijth  element  of  the  historical  correlation  matrix  is  defined  by  𝜌!",   which  is  the  correlation  coefficient  between  securities  i  and  j.  The  off  diagonal  elements   of  the  historical  correlation  matrix  are  the  correlation  coefficients,  whereas  a  set  of  ones   (the  correlation  between  the  logarithm  returns  of  a  given  security  and  itself)  constitutes   the  diagonal.  

Afterwards,   we   estimate   a   variance   covariance   matrix   by   using   the   average   constant  correlation  model  (Elton  et  al.  (2010)).  First,  we  calculate  the  mean  value  of   the   correlation   coefficients,   𝜌,   of   the   off   diagonal   elements   from   the   historical   correlation  matrix.  Next,  we  construct  the  average  correlation  matrix  in  such  way  that   the   off   diagonal   elements   are   𝜌,   and   the   diagonal   elements   are   ones.   Using   these   estimated   correlations,   we   calculate   the   ijth   element   of   the   estimated   variance   covariance   matrix,   which   is   the   estimated   covariance   between   securities   i   and   j,   as   follows:  

  𝜎!" = 𝜌𝜎!𝜎!    (9)  

As   before,   the   off   diagonal   elements   are   the   estimated   covariance   between   the   securities,  and  the  diagonal  elements  are  the  historical  variances  of  each  security.    

B.  Expected  returns:  a  market  model  

Assume  that  the  total  excess  return  on  a  given  security,  𝑟!,  defined  as  the  return   on  excess  of  security  i  over  the  risk  free  rate,  is  determined  by  two  components:  (i)  a   part,  which  is  related  to  the  benchmark,  and  (ii)  a  portion  that  does  not  depend  on  it:  

  𝑟! = 𝛽!𝑟!+ 𝜃!    (10)  

The   first   expression   in   equation   (10)   is   the   portion   of   the   excess   return   of   security  i  related  to  the  benchmark,  i.e.  systematic.  𝛽!  is  a  measure  of  the  sensitivity  of  

the   excess   return   of   stock   i   due   to   changes   in   the   benchmark   excess   return15,   𝑟

!.   The  

(13)

return  is  of  the  most  importance  in  this  model  and  in  the  forthcoming  analysis  since  it   defines  the  aim  of  active  management.  

From  equation  (10),  the  expected  return  on  any  stock  i,  𝐸 𝑅! ,  is  defined  by:  

  𝐸 𝑅! = 𝑅!+ 𝛽! 𝐸 𝑅! − 𝑅! + 𝛼!    (11)  

Where   𝑅!   is   the   risk   free   rate,   𝛽!   is   the   beta   of   stock   i,   as   previously   defined,   𝐸 𝑅!  is  the  expected  return  on  the  benchmark  and  𝛼!  is  the  expected  residual  return   for  security  i.  

Note  that  the  first  two  expressions  on  the  right  hand  of  equation  (11)  refer  to  the   standard   version   of   the   CAPM   model   (Sharpe   (1966)),   specifically   to   the   Security   Market  Line,  where  the  expected  return  on  a  given  security  is  determined  by  the  risk   free   rate   added   to   its   beta   times   the   benchmark   excess   return.   Additionally,   the   third   term  on  the  right  hand  of  the  market  model  represents  a  residual  return  for  estimating   stock  returns:  the  so  called  alpha.  

B.1.  Constructing  betas  on  a  market  model  

As   early   noticed,   we   calculate   the   betas   for   each   security   in   order   to   estimate   returns.   We   retrieve   these   betas   from   historical   data   using   regression   analysis   on   the   realized   returns   of   the   benchmark   and   its   constituent   securities.   The   regressed   equation,  consistent  with  the  market  model,  is:  

  𝑟!" = 𝜃!"+ 𝛽!𝑟!" + 𝜖!"    (12)  

The  expression  𝜃!"  is  the  estimated  historical  residual  return,  𝛽!  is  the  estimated  

historical  beta,  and  𝜖!"  is  the  error  term  on  the  regression  on  security  i.    

(14)

  𝛽! = !!"

!!!    (13)  

As  the  reader  can  observe,  the  regression  analysis  yields  historical  estimations   on  betas  and  residual  returns  for  each  security  listed  in  the  benchmark.  Nevertheless,   we   make   two   assumptions   in   order   to   forecast   expected   returns   using   the   market   model:   first,   historical   betas   are   representative   of   the   future   sensitivity   of   excess   returns   due   to   changes   in   the   benchmark   return   and,   second,   forecasts   of   residual   returns  are  not  the  result  of  regression  analysis,  but  of  the  estimation  by  skillful  active   managers.  For  the  latter,  the  next  subsection  explains  how  alphas  are  estimated.  

B.2.  Expected  residual  returns  

When   looking   into   the   future,   an   active   manager   forecasts   residual   returns   on   stocks   in   order   to   construct   active   portfolios.   These   estimations   make   the   difference   between   the   consensus   on   expected   returns,   as   those   provided   by   the   CAPM,   and   the   beliefs   of   the   active   manager   to   produce   a   better   performing   portfolio   by   identifying   over  and  undervalued  securities.  

Grinold  (1994),  in  his  article  “Alpha  is  Volatility  times  IC  times  Score”,  presents  a   technique  to  forecast  residual  returns  or  alphas,  𝛼!.  With  this  methodology,  we  estimate   expected   residual   returns   by   means   of   the   residual   risk   of   each   security,   𝜎!",   the  

information  coefficient,  𝐼𝐶,  and  a  score,  𝑆!.  Specifically,  the  expected  residual  return  for   the  ith  stock  is17:  

  𝛼! = 𝜎!" ∙ 𝐼𝐶 ∙ 𝑆!    (14)  

With  regard  to  the  residual  risk  for  each  security,  the  market  model  provides  the   background  to  decompose  the  total  risk  on  stock  i,  as  measured  by  the  variance  of  its   returns,  into  two  components:  first,  the  systematic  risk,  𝛽!!𝜎

!!,  which  is  the  part  of  the  

(15)

residual   risk,   in   terms   of   the   variance   for   each   security,   as   the   difference   between   its   total  and  systematic  risk:  

  𝜎!"! = 𝜎

!!− 𝛽!!∙ 𝜎!!    (15)  

Similarly,   the   second   component   of   alpha   relates   to   the   information   coefficient   defined   in   the   fundamental   and   the   generalized   law,   which   is   a   measure   of   the   forecasting  skills  of  the  active  manager  on  residual  returns18.  

Finally,  the  score  is  a  measure  of  the  confidence  of  the  active  manager  about  a   particular   security   at   a   particular   moment   in   time,   thus   it   can   be   addressed   as   “the   personal  bet”  of  the  manager  on  each  stock.    

Unlike  the  information  coefficient,  the  scores  change  over  time  and  across  stocks.   Additionally,   the   scores   are   normally   distributed   and   standardized,   therefore,   the   average   and   the   standard   deviation   of   the   scores   is   approximately   zero   and   one   respectively,  for  a  given  set  of  securities.  Moreover,  it  also  holds  for  a  set  of  scores  on  a   specific  stock  over  time.    

Since   the   score   reflects   the   confidence   of   the   manager   on   a   particular   stock,   it   may  incorporate  his/her  beliefs  into  the  form  of  a  “tip”,  a  buy  and  sell  recommendation   or   a   numerical   forecast   based   on   technical   or   fundamental   analysis,   among   other   methodologies  to  value  stocks  (Grinold  (1994))19.    

In  order  to  simulate  the  scores,  we  use  a  Monte  Carlo  simulation  to  generate  a   sample   of   normal   distributed   random   numbers.   Specifically,   we   create   a   thousand   scores  for  every  security  in  the  benchmark  and  we  compute  the  same  number  of  alphas   and  portfolios  for  each  constraint  and  level  of  active  risk  we  analyse20.  

C.  The  optimal  standard  active  portfolio  

(16)

optimal  active  portfolio  under  the  mean  variance  framework.  This  is  the  standard  active   portfolio.  

We  carry  out  further  optimization  experiments  to  construct  active  portfolios  that   consider   different   types   of   investment   constraints   on   the   active   manager   using   the   mean  variance  approach.  The  following  subsections  outline  the  main  characteristics  of   the  basic  optimization  problem,  which  is  narrowly  altered  when  investment  constraints   are  introduced.  

C.1.  Expected  excess  returns  and  tracking  error  

Denote  the  weight  of  stock  i  in  the  benchmark  portfolio  as  𝑤!",  and  its  portfolio   holding   as   𝑤!".   Now,   define   the   active   weight   of   security   i,   ∆𝑤!,   as   the   difference  

between  the  portfolio  and  the  benchmark  holdings:  

  ∆𝑤! ≡ 𝑤!" − 𝑤!"    (16)  

Active  weights  represent  the  increasing  (decreasing)  position  on  a  given  security   by  changing  its  investment  loading  from  the  benchmark  to  the  managed  portfolio,  thus   they   are   the   result   of   active   management.   Note   that   the   active   holdings   can   be   either   positive   or   negative,   which   means   that   more   or   less   investing   on   a   specific   stock   is   required  to  attain  the  active  portfolio  relative  to  its  initial  position  on  the  benchmark.    

As   early   noticed,   the   sum   of   the   security   holdings   on   the   benchmark   portfolio   equals   one.   Henceforth,   we   assume   that   the   sum   of   the   stock   weights   in   the   active   portfolio  equals  one,  implying  that  this  portfolio  is  fully  invested21.  As  a  consequence,  

the  sum  of  the  active  weights  equals  zero.  

On  the  other  hand,  the  expected  return  on  the  benchmark  portfolio  𝐸 𝑅!  is  the   weighted  average  sum  of  the  expected  returns  by  the  benchmark  weights:  

  𝐸 𝑅! = ! 𝑤!"∙ 𝐸 𝑅!

!!!    (17)  

(17)

  𝐸 𝑅! = ! 𝑤!" ∙ 𝐸 𝑅!

!!!    (18)  

Then,   we   define   the   expected   excess   return   as   the   difference   between   the   expected  return  on  the  managed  portfolio  and  the  benchmark.  The  resulting  difference   is   the   expected   active   return,   𝐸 𝑅! ,   on   the   managed   portfolio,   which   is   the   weighted  

average  sum  of  the  expected  stock  returns  by  the  active  holdings:  

  𝐸 𝑅! = 𝐸 𝑅! − 𝐸 𝑅! = ! ∆𝑤!∙ 𝐸 𝑅!

!!!    (19)  

Correspondingly,   the   expected   active   return   has   an   inherent   risk   measured   by   the   standard   deviation   of   the   excess   returns   of   the   managed   portfolio   over   the   benchmark,   i.e.   the   tracking   error22.   Basically,   the   active   holdings   and   the   estimated  

variance   covariance   matrix   determine   the   tracking   error   or   active   risk,   𝜎!,   as   follows   (using  matrix  notation):  

  𝜎! = ∆𝑊!∙ 𝑉 ∙ ∆𝑊    (20)  

Where   ∆𝑊   is   the   vector   of   active   holdings   and   𝑉   is   the   variance   covariance   matrix  as  discussed  previously  in  the  methodology  section,  subsection  A23.  

C.2.  The  ex  ante  information  ratio  and  the  optimization  problem  

The   conventional   approach   to   construct   efficient   portfolios   based   on   the   mean   variance  framework  focuses  on  the  maximization  of  the  Sharpe  ratio24.  The  investment  

strategy   consists   in   selecting   the   portfolio   that   maximizes   it;   hence,   the   result   is   an   optimal   combination   of   portfolio   holdings.   In   general,   maximizing   the   Sharpe   ratio   implies   an   asset   mix   of   the   risky   portfolio   and   the   risk   free   asset,   where   the   optimal   portfolio  is  fully  invested  and  financed  at  the  risk  free  rate  (Sharpe  (1994)  and  Goodwin   (1998)).  

(18)

his/her   objective,   the   active   manager   chooses   a   portfolio   that   maximizes   its   ex   ante   information  ratio  (equation  2).  

As  explained  section  I,  the  ex  ante  information  ratio  is  a  measure  of  opportunity   (Grinold   et   al.   (2000))   from   a   forward   looking   perspective.   As   an   ex   ante   measure,   it   represents   the   maximum   expected   active   return   per   unit   of   active   risk   that   can   be   achieved  for  the  manager  by  using  efficiently  his/her  private  information,  thus  it  sets   the   upper   boundary   on   the   ex   post   information   ratios   for   the   portfolios   under   management.  

We  construct  the  standard  active  portfolio  in  order  to  maximize  its  information   ratio  subject  to  the  constraint  that  the  sum  of  the  active  weights  equal  zero,  hence  the   managed  portfolio  is  fully  invested.  The  optimization  problem  yields  a  vector  of  active   holdings,   which   reflects   the   forecasts   on   residual   returns   made   by   the   manager   and   determines  the  under  or  over  weighting  of  the  securities  in  the  active  portfolio  relative   to  the  benchmark.  

Regarding  the  forthcoming  experiments,  we  modify  the  constraints  of  the  basic   optimization  problem  in  order  to  incorporate  the  investment  limitations  imposed  to  the   active   manager   for   each   case   study.   Moreover,   we   perform   a   sensitivity   analysis   by   adding  more  restrictions  on  the  amount  of  active  risk  that  the  active  manager  is  allowed   to   face.   We   perform   the   forecasts   of   residual   results   through   the   Monte   Carlo   simulation,  and  the  subsequent  optimizations  using  Matlab®25.  

III.  Data  

Data  consists  of  a  set  of  closing  prices  for  the  benchmark,  which  in  this  case  is   the  Amsterdam  Exchange  Index  (AEX  Index®)  produced  by  NYSE  Euronext,  and  for  its   25  constituent  securities26.  

We  collect  daily  observations  from  datastream®  for  the  period  beginning  on  the   20th  of  June  2011  as  to  the  20th  of  July  201227,  for  a  total  of  282  observations  for  each,  

(19)

  Table  I  presents  descriptive  statistics  for  the  time  series  of  closing  prices.  As  can   be   seen,   more   than   half   of   the   securities   display   coefficients   of   variation   above   10%.   Actually,   the   stocks   that   exhibit   the   highest   dispersion   relative   to   their   means   are   Air   France  Klm,  Aperam  and  PostNl  (37%,  27%  and  26%  respectively).  On  the  other  hand,   Reed  Elsevier,  Unilever  and  Unibail  Rodamco  display  the  lowest  coefficients  of  variation   (5%  in  average).  Similarly,  the  AEX  index®  exhibits  a  6%  coefficient  of  variation.  

We  transform  the  original  time  series  into  daily  logarithm  returns  for  the  index   and  the  stocks,  as  defined  by:  

  𝑅! = 𝐿𝑛 !!"

(20)

  Where   𝑅!   denotes   the   logarithm   return28   for   security   i,   or   the   index,   and   𝑃

!  

represents   the   corresponding   daily   closing   prices   at   time   periods   𝑡   and   𝑡 − 1   respectively.  In   terms   of   daily   logarithm   returns,   the   transformed   data   set   consists   of   281  daily  observations  for  the  benchmark  its  25  constituent  securities.  

(21)

returns  (5,696;  5,167  and  4,821  basis  points  respectively)29.  Accordingly,  the  returns  on  

these  securities  also  display  the  greatest  daily  standard  deviations  (4%  in  average).  On   the  other  hand,  the  returns  on  the  AEX  index®  present  a  range  of  899  basis  points  and  a   standard  deviation  of  1%  approximately.  These  statistics  circumscribe  the  index  amid   the  less  volatile  securities.  

In   order   to   estimate   the   risk   free   rate   of   the   optimization   model,   we   gather   monthly   data   on   the   Euribor   three   month   rate   from   January   2007   to   June   2012.   We   compute  its  arithmetic  mean  and  calculate  the  equivalent  continuously  compound  rate   on  a  daily  basis.  As  a  result,  the  risk  free  rate  is  assumed  as  0.009%  on  a  daily  basis.  We   collect  this  information  from  datastream®.  

Similarly,  we  estimate  the  expected  benchmark  return  from  the  daily  logarithm   returns  of  the  AEX  Index®.  We  calculate  the  arithmetic  mean  of  the  time  series  from  the   1st   of   September   2011   to   the   1st   of   March   2012.   As   a   result,   the   expected   benchmark  

return  is  assumed  as  0.083%  on  a  daily  basis.  

IV.  From  unconstrained  to  constrained  active  portfolios:  an  efficiency  assessment   We   conduct   a   first   optimization   to   build   the   standard   active   portfolio   without   restrictions,   except   for   the   full   investment   constraint.   The   standard   active   portfolio   is   the   baseline   to   analyse   the   impact   of   imposing   investment   constraints   to   the   active   manager.    

For   the   case   studies   we   conduct   further   optimizations   subject   to   different   restrictions  and  we  compare  these  results  with  the  unconstrained  portfolio  in  terms  of   expected   active   returns,   expected   adjusted   returns,   information   ratios   and   transfer   coefficients30.   These   optimizations   are   performed   at   a   5%   level   of   active   risk   on   an  

(22)

A.  Expected  adjusted  returns  

As  a  starting  point,  we  estimate  alphas  and  betas  and  use  them  as  inputs  in  the   market  model  to  calculate  the  expected  adjusted  returns  for  each  security  quoted  in  the   AEX  Index®.  

(23)

we  perform  a  Monte  Carlo  simulation  in  order  to  simulate  scores  for  every  security  in   the   index32.   Since   each   score   represents   a   personal   bet   on   a   particular   stock   at   any  

moment   in   time,   the   set   of   scores   define   a   large   sample   of   the   beliefs   of   the   active   manager  on  the  expected  performance  of  these  securities.  Table  III  exhibits  the  residual   risk  for  each  security,  the  results  of  the  Monte  Carlo  simulation  on  the  scores  and  the   construction  of  alphas.  

(24)

As   a   result   of   the   simulation   process   to   determine   the   scores,   alphas   have   a   random   component,   which   is   scaled   by   the   information   coefficient   of   the   manager.   Furthermore,  the  residual  risk  of  each  security  incorporates  idiosyncratic  elements.  In   this  sense,  one  can  interpret  these  forecasts  as  random  private  information  to  construct   active  portfolios  to  outperform  the  benchmark.  

Additionally,   we   estimate   betas   for   each   security   from   historical   data   on   logarithm  returns  through  regression  analysis  as  explained  in  the  methodology  section.   With  the  information  on  alphas  and  betas,  we  construct  a  matrix  of  expected  adjusted   returns  that  has  a  thousand  estimations  for  each  security.  Table  IV  exhibits  estimated   historical   betas;   expected   returns   derived   from   these   betas,   and   mean   values   and   standard  deviations  of  expected  adjusted  returns  for  each  security.  

B.   The   benchmark   and   the   standard   active   portfolio:   a   first   assessment   on   private   information  

We  perform  an  initial  optimization  without  investment  constraints  based  on  the   matrix  of  alphas33.  The  result  is  a  matrix  (25  x  1000)  of  active  portfolio  weights  where  

the  rows  represent  the  stocks  quoted  in  the  index  and  the  columns  the  corresponding   active  weights  for  every  standard  active  portfolio.  

This   matrix   represents   a   set   of   different   scenarios   where   the   active   manager   freely   assesses   which   securities   are   over   or   undervalued   relative   to   the   benchmark   portfolio   based   on   the   forecasts   on   residual   returns.   Each   optimized   unconstrained   portfolio   is   in   line   with   the   original   version   of   the   fundamental   law   of   active   management   (Grinold   (1989)),   where   there   is   a   perfect   correlation   between   the   forecasts  of  residual  returns  and  the  active  weights,  thus  there  is  no  loss  in  efficiency   when  the  active  manager  transform  his/her  skills  into  active  portfolios34.    

(25)

  The  holdings  of  the  benchmark  portfolio  correspond  to  the  relative  value  of  the   market   capitalization   of   each   security   quoted   in   the   AEX   Index®35.   In   addition,   the  

benchmark  holdings  are  positive,  which  implies  that  there  are  no  short  positions  in  this   portfolio.  

(26)

by   the   incremental   participation   in   the   majority   of   the   stocks,   despite   a   lessening   in   some  large,  mid  and  low  cap  securities.  The  proceedings  of  short  sales  are  used  to  fund   the  purchase  of  undervalued  stocks  within  the  standard  active  portfolio.    

 

The  composition  of  the  standard  active  portfolio  is  the  result  of  the  forecasts  on   residual   returns   and   the   estimated   variance   covariance   matrix.   As   a   consequence,   the   active   weights   reflect   the   optimal   combination   of   the   excess   return   of   the   standard   active  portfolio  over  the  benchmark  and  the  tracking  error.  

(27)

 

As  can  be  seen  in  Table  VI,  the  expected  return  of  the  standard  active  portfolio  is   greater   than   the   expected   return   of   the   benchmark   portfolio.   Actually,   the   expected   active  return  of  the  standard  active  portfolio  is  2.2  basis  points  on  a  daily  basis.  On  the   other  hand,  the  risk  of  the  standard  active  portfolio  is  higher  relative  to  the  benchmark.   Nevertheless,   the   Sharpe   ratio   of   the   active   portfolio   suggests   that   it   is   more   efficient   than  the  benchmark  in  terms  of  a  risk  to  reward  ratio.  

(28)

In   resume,   the   interrelation   of   systemic   and   idiosyncratic   factors   allows   for   a   standard   active   portfolio,   which   displays   greater   expected   returns   and   Sharpe   ratios   with  a  marginal  increase  in  overall  risk,  derived  from  the  fact  that  the  optimization  was   conducted   subject   to   the   constraint   of   a   0.315%   level   of   active   risk   on   a   daily   basis.   Under  the  random  believes  of  the  manager  and  the  active  risk  allowed,  the  result  is  an   ex  ante  active  portfolio  that  dominates  the  benchmark  in  the  return    risk  continuum.  

C.  Case  study  1:  including  transaction  costs  

We  include  transactions  costs  in  the  standard  active  portfolio  by  calculating  its   total   turnover.   First,   we   define   the   active   portfolio   turnover,   𝑇,   as   the   sum   of   the   absolute  values  of  the  active  weights  in  the  managed  portfolio.  The  portfolio  turnover   incorporates   the   total   change   in   the   portfolio   loadings   as   a   consequence   of   active   management,  setting  as  a  starting  point  the  benchmark  portfolio  for  calculations.  

  𝑇 = !!!! ∆𝑤!    (22)  

Once  we  compute  portfolio  turnover,  we  calculate  transaction  costs  by  applying   a   constant   rate   among   securities.   In   this   scenario,   the   expected   active   return   of   the   managed   portfolio   is   lowered   by   the   total   amount   of   the   transaction   costs,   which   is   equivalent   to   the   portfolio   turnover   times   the   cost   rate.   Therefore,   the   optimization   problem  entails  portfolio  turnover  and  transaction  costs36.  

Figure   5   exhibits   the   active   weights   of   the   managed   portfolio   in   presence   of   transaction  costs.  Compared  with  the  standard  active  portfolio,  the  new  active  weights   are  adjusted  in  such  way  that  the  majority  of  purchases  and  sells  decrease  in  absolute   terms37,  thus  the  first  impact  of  transaction  costs  is  a  lower  exposition  of  the  managed  

(29)

transaction  costs  in  order  to  attain  the  highest  expected  active  return  given  a  level  of   active  risk.  

 

As   Table   VII   illustrates,   transaction   costs   restrict   the   manager   in   achieving   the   highest  active  return  in  the  managed  portfolio  relative  to  the  standard  active  portfolio,   as   measured   through   the   information   ratio.   Basically,   the   limitation   of   the   manager   arises   because   there   is   a   trade   off   between   maximizing   forecasted   returns   and   minimizing  transaction  costs  in  the  optimization  process.    

(30)

the  active  weights  do  not  only  reflect  which  securities  are  over  or  undervalued,  but  the   relative  cost  of  assuming  active  positions.  

We  assess  the  loss  in  efficiency  originated  from  the  presence  of  transaction  costs   through  the  transfer  coefficient,  which  falls  from  0.993  in  the  standard  active  portfolio   to  0.876  in  the  managed  portfolio.  The  limitations  introduced  by  transaction  costs  imply   a   relative   reduction   in   the   information   ratio   of   11.76%   from   the   standard   active   portfolio.   Moreover,   transaction   costs   induce   a   decline   in   total   expected   return   equivalent   to   four   basis   points   on   an   annual   basis,   and   an   overall   increase   in   risk   relative   to   the   standard   active   portfolio.   Consequently,   the   resulting   active   portfolio   displays  a  lowered  Sharpe  ratio.  

D.  Case  study  2:  the  long  only  constraint  

Though  it  seems  innocuous,  the  long  only  investment  policy  sets  up  a  constraint   for  constructing  active  portfolios.  In  practical  terms,  the  long  only  constraint  may  not  be   seen  as  such  since  it  is  assumed  that  the  available  monetary  resources  are  completely   allocated  among  the  asset  classes,  suggesting  that  the  weights  of  the  managed  portfolio   are  non  negative.   Nevertheless,  the  absence  of  short  positions   limits  the  ability  of  the   manager  to  fully  exploit  his/her  private  information  on  the  securities  that  constitute  the   active  portfolio.  

When  short  sales  are  not  allowed,  the  manager  is  just  permitted  diminishing  the   weight   of   an   overvalued   security   to   zero   in   the   managed   portfolio,   meaning   that   it   is   completely  sold.  Therefore,  the  minimum  value  of  an  active  weight  for  a  given  stock  is   the  negative  of  its  corresponding  benchmark  weight.    

(31)

When   we   perform   the   optimization   subject   to   the   long   only   constraint   in   presence   of   transaction   costs,   the   short   positions   in   the   standard   active   portfolio   are   now   positive   weights   in   the   managed   portfolio.   Moreover,   since   the   manager   is   only   allowed  to  completely  sell  an  overvalued  security  in  the  managed  portfolio,  the  weights   on  the  previous  short  positions  are  now  negligible,  as  can  be  seen  in  Figure  6.  

 

The   long   only   constraint   produces   a   less   diversified   portfolio,   where   those   securities   that   exhibit   higher   forecasted   residual   returns   display   higher   weights38,   as  

depicted   by   figures   6   and   7.   Furthermore,   figure   7   shows   that   the   active   weights   for   those   securities   with   relatively   low   forecasted   residual   returns   reduce   monotonically   towards  zero  in  the  managed  portfolio.    

(32)

As  a  result,  there  is  a  reallocation  of  funds  towards  those  securities  that  exhibit   the  highest  forecasts,  thus  the  active  manager  is  forced  to  augment  the  investment  loads   in  these  securities  in  order  to  compensate  the  relative  loss  imposed  by  the  absence  of   short  sales  in  the  managed  portfolio.  

 

The  combined  impact  of  the  long  only  constraint  and  the  presence  of  transaction   costs  in  the  active  weights  is  a  deepening  loss  in  efficiency,  as  can  be  seen  in  Table  VIII.   The  fact  that  the  securities  with  negative  adjusted  excess  returns  are  not  allowed  to  be   short  sold,  and  that  even  these  stocks  are  practically  not  held  in  the  managed  portfolio,   results  in  a  decrease  in  the  portfolio  turnover,  which  accounts  for  48.28%.  

(33)

Moreover,   the   long   only   constraint   coins   a   further   decrease   in   efficiency,   as   measured  by  the  transfer  coefficient,  compared  with  the  standard  active  portfolio  and   the   scenario   in   case   study   1.   The   long   only   constraint   produces   a   managed   portfolio   with   a   transfer   coefficient   of   0.840,   which   is   lower   relative   to   the   standard   active   portfolio.  This  transfer  coefficient  indicates  that  15.48%  of  the  skills  of  the  manager  are   lost  during  the  portfolio  construction  process.    

Such   circumstance   negatively   affects   the   information   ratio   of   the   managed   portfolio,   which   falls   from   0.069   to   0.058   as   a   consequence   of   the   deterioration   in   expected  active  returns.  In  general,  the  total  return  on  the  managed  portfolio  decreases   33  basis  points  on  an  annual  basis  and  its  total  risk  increases  relative  to  the  standard   active  portfolio,  leading  to  an  overall  decline  in  its  Sharpe  ratio,  which  falls  from  0.056   to  0.054.  

E.  Case  study  3:  industry  oriented  investing  

In   some   cases,   the   investment   problem   is   circumscribed   to   a   specific   subset   of   securities  within  the  benchmark.  More  specifically,  the  active  portfolio  must  be  invested   in  an  industry,  a  sector  or  a  sub  sector  of  the  index39  due  to  the  investment  policies  and  

objectives.  For  example,  the  portfolio  must  focus  just  in  technology  or  consumption  or   energy  companies  in  the  index,  setting  aside  the  rest  of  the  securities  that  constitute  the   benchmark.   This   type   of   constraint   constitutes   a   restriction   to   the   manager   in   two   aspects:   first,   he/she   faces   a   reduced   set   of   investment   alternatives,   thus   breadth   is   lower;  second,  the  active  manager  is  not  able  to  fully  transform  his/her  skills  into  the   active  portfolio  due  to  his/her  forecasts  are  now  restricted  to  some  specified  categories   within  the  index.  

(34)

transaction  costs  under  the  long  only  constraint,  thus  the  manager  is  restricted  to  have   only  long  positions  in  the  managed  portfolio.    

As  discussed  earlier,  the  forecast  of  residual  returns  of  each  security  determines   the  magnitude  of  the  active  weights.  The  main  difference  with  the  previous  case  studies   is   that   there   are   active   holdings,   which   are   equal   to   the   negative   weight   on   the   benchmark   as   a   result   of   the   limitation   of   the   manager   to   invest   in   the   excluded   securities,   independently   on   the   magnitude   of   the   forecasted   residual   returns.   Therefore,   these   stocks   must   be   completely   sold   to   construct   the   active   portfolio,   no   matter  the  beliefs  of  the  manager  on  such  securities.  

 

The   manager   focuses   on   the   forecasted   residual   returns   of   those   securities   available  among  the  selected  industries,  given  the  industry  oriented  constraint  and  the   long   only   constraint.   Under   this   consideration,   the   stocks   that   exhibit   higher   alphas   increase  their  share  in  the  managed  portfolio  relative  to  the  standard  active  portfolio,  as   shown  in  the  left  side  of  Figure  841.  Similarly,  the  active  weights  for  those  securities  with  

Referenties

GERELATEERDE DOCUMENTEN

The following hypotheses examine the relationship of each active principle – making plural realities productive, involvement of stakeholders, ongoing dialogue, freedom of

To test what explains active share, a pooled regression was performed with cross sectional market volatility, tracking error, number of stocks in the portfolio

Moreover, it focuses on experience by working on multiple different projects and posits that experience of leaders in different projects has a positive effect on learning

The situation with rough road in combination with the tire load objective could not be performed, because the industrial ac- tuator cannot deliver the desired forces due to the

The PFC might be the application of several electronic devices, i.e., converters or an intelligent node [5], that is used to control the power flow for its feeder based on the

A direct-drive active suspension comprising a tubular PM actuator together with a coil spring is considered for the objectives of improvement of comfort or reduction of the dynamic

daarnaast ook leiden tot een reductie van de letselernst. Het is echter de vraag wat de verkeersveiligheidsconsequenties van deze systemen zouden zijn. Zo zou een

Een tweede voorbeeld: als probleemoplossen een gedragsvorm is die aan dezelfde wetmatigheden beantwoordt als meer motorische vormen van gedrag moet dit gedrag door regeling