• No results found

The extended finite element method for fluid solid interaction

N/A
N/A
Protected

Academic year: 2021

Share "The extended finite element method for fluid solid interaction"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The extended finite element method for fluid solid interaction

Citation for published version (APA):

Baltussen, M. G. H. M., Toonder, den, J. M. J., & Anderson, P. D. (2009). The extended finite element method for fluid solid interaction. Poster session presented at Mate Poster Award 2009 : 14th Annual Poster Contest.

Document status and date: Published: 01/01/2009 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Polymer Technology

The Extended Finite Element Method

for Fluid Solid Interaction

M. G. H. M. Baltussen

1

, J. M. J. den Toonder

1,2

, and P. D. Anderson

1

1Eindhoven University of Technology,2Philips Applied Technologies

/department of mechanical engineering

Introduction

Many daily processes depend on the intricate interaction of a fluid with a solid. Examples are the flight of birds and insects, hartvalves, flapping flags and on smaller length-scales, the mo-tion of lung cilia, sperm and red blood cells, see Fig. 1. Re-cently the eXtended Finite Element Method (XFEM) has been successfully applied to fluid solid interaction (fsi) problems[1].

Fig. 1Left: A flag flapping in the wind. Center: Paramecium, an orga-nism covered with cilia. Right: Red blood cells.

Objective

Model the interaction between a solid and a fluid with the eX-tended Finite Element Method.

Numerical Model

In fixed mesh FSI the fluid mesh is intersected by the solid mesh. Since the fluid and solid stresses are differ-ent, a discontinuity exists within these elements. In the XFEM extra degrees of freedom are added to these elements, whilst elements fully underneath the solid are deprived of them. The equations of motion are applied only on the fluid part of the intersected elements, see Fig. 2 for the domain and the triangular subdomains used for integration.

Fig. 2The fluid mesh intersected by the solid (line), with the nodes coupling the fluid and solid together, the enriched nodes and the nodes which are underneath the solid.

Model problem

The flow in a lid-driven cavity containing an immersed elastic cylinder is modelled, see Fig. 3. The fluid is assumed inertialess, incompressible and Newtonian, the solid inertialess, incompressible and Neo-Hookean.

H

U R

Fig. 3The problem domain, with height H, lid velocity U and particle radius R = 0.1H.

Results

The governing dimensionless group in the equations of mo-tion is R = GH/ηU, where G is the modulus of the solid and η the viscosity of the fluid. This number is the ratio of the elastic and viscous forces on the interface. Simula-tions are peformed for R = 0.01 and R = 0.1. Parti-cle paths and the shape of the solid are shown in Fig. 4.

t = 0.5H/U

t = 1H/U

t = 2H/U

Fig. 4Particle paths and the position of the solid for R = 0.01 (left) and R = 0.1 (right) at different times.

The compliant particle (left) deforms much more than the stiff particle (right). This results in more complex flow patterns, al-though the general motion of the solid is similar.

Conclusion

Fluid solid interaction has been modelled within a XFEM frame-work and the motion of particles with different properties in a driven cavity flow have been simulated. More compliant par-ticles deform more and hence create more complex flow pat-terns.

References

[1] GERSTENBERGER A. , WALL, W. A. : An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interac-tion(Comput. Methods Appl. Mech. Engrg. 2008)

Acknowledgements

Referenties

GERELATEERDE DOCUMENTEN

Figuur 2.4: Gewasstand lelie op 10 augustus 2005 op met Rhizoctonia besmette grond, onbehandeld (boven), met Verticillium biguttatum (midden) en met Amistar 6 l/ha (onder)..

Dans l'analyse critique et l'évaluation des dictionnaires disponibles dans les langues gabonaises, il a été démontré que le point faible principal de ces travaux

Een nieuwe bestemming werd gezocht, onder meer als cultureel centrum voor het kasteel van Schoten, als poli- tiebureau voor het 'Gelmelenhof in dezelfde gemeente, als ziekenhuis

Zicht op de bouwput met de restanten van de waterput 18/03/2015, Copyright Onroerend Erfgoed, foto: Geert Vynckier.. agentschap Onroerend Erfgoed Havenlaan 88

Bij het sleuvenonderzoek werd in de uiterst noordwestelijke hoek van het terrein (sleuf 25) een spoor aangetroffen dat als een standgreppel met twee paalkuilen kon

Op basis van de analyse naar de werkelijke stik- stofbehoefte wordt nu door LTO in samenwer- king met de KAVB een hogere gebruiksnorm voor Zantedeschia bepleit.. Aanpassing van

The numerical algorithm for two-fluid flows presented here combines a space-time discontinuous Galerkin (STDG) discretization of the flow field with a cut-cell mesh refinement

In order to remove the spikes appearing near the expansion and shock waves in the solution with the interface flux (34) the HWENO slope limiter is used, and in Figure 16 the