• No results found

University of Groningen Latitudinal differences in the circadian system of Nasonia vitripennis Floessner, Theresa

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Latitudinal differences in the circadian system of Nasonia vitripennis Floessner, Theresa"

Copied!
35
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Latitudinal differences in the circadian system of Nasonia vitripennis Floessner, Theresa

DOI:

10.33612/diss.102037680

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Floessner, T. (2019). Latitudinal differences in the circadian system of Nasonia vitripennis. University of Groningen. https://doi.org/10.33612/diss.102037680

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

Adewoye, A.B., Kyriacou, C.P., and Tauber, E. 2015. Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila. BMC Genomics

16(1): 1–9. BMC Genomics. doi:10.1186/s12864-015-1787-7.

Albrecht, U., Sun, Z.S., Eichele, G., and Lee, C.C. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7): 1055–1064. doi:10.1016/S0092-8674(00)80495-X.

Allada, R., White, N.E., So, W.V., Hall, J.C., and Rosbash, M. 1998. A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93(5): 791–804. doi:10.1016/S0092-8674(00)81440-3.

Allemand, R. 1976. Influence of light condition modification on the circadian rhythm of vitellogenesis and ovulation in Drosophila melanogaster. J Insect Physiol 22(8): 1075– 1080.

Aschoff, J. 1965. Response curves in circadian periodicity. Circadian Clocks (Ed. Aschoff, J.): 95–111.

Aschoff, J. 1979. Circadian Rhythms: Influences of Internal and External Factors on the Period Measured in Constant Conditions. Z. Tierpsychol. 49(3): 225–249. doi:10.1111/j.1439-0310.1979.tb00290.x.

Aschoff, J., and Pohl, H. 1978. Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65(2): 80–84. doi:10.1007/BF00440545.

Aschoff, J., von Saint, P.U., and Wever, R. 1971. Lifetime of flies under influence of time displacement. Naturwissenschaften 58(0028–1042): 574.

Beersma, D.G.M., Daan, S., and Hut, R.A. 1999. Accuracy of circadian entrainment under fluctuating light conditions: Contributions of phase and period responses. J. Biol. Rhythms

14(4): 320–329. doi:10.1177/074873099129000740.

Beersma, D.G.M., Gargar, K.A., and Daan, S. 2017. Plasticity in the Period of the Circadian Pacemaker Induced by Phase Dispersion of Its Constituent Cellular Clocks. J. Biol. Rhythms. doi:10.1177/0748730417706581.

Berson, D.M. 2003. Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci. 26(6): 314–320. doi:10.1016/S0166-2236(03)00130-9.

Berson, D.M., Dunn, F.A., and Takao, M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science (80-. ). 295(5557): 1070–1073. doi:10.1126/science.1067262.

Bertossa, R.C., van Dijk, J., Diao, W., Saunders, D.S., Beukeboom, L.W., and Beersma, D.G.M. 2013. Circadian Rhythms Differ between Sexes and Closely Related Species of Nasonia Wasps. PLoS One 8(3): 1–13. doi:10.1371/journal.pone.0060167.

(4)

Bertossa, R.C., Van De Zande, L., Beukeboom, L.W., and Beersma, D.G.M. 2014. Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis. Chronobiol. Int. 31(6): 749–760. doi:10.3109/07420528.2014.880451.

Blau, J., and Young, M.W. 1999. Cycling vrille expression is required for a functional Drosophila clock. Cell 99(6): 661–671. doi:10.1016/S0092-8674(00)81554-8.

Bradshaw, A.W.E., Holzapfel, C.M., Mathias, D., Bradshaw, W.E., Holzapfel, C.M., and Mathias, D. 2013. Circadian Rhythmicity and Photoperiodism in the Pitcher ‐ Plant Mosquito : Can the Seasonal Timer Evolve Independently of the Circadian Clock ? Circadian Rhythmicity and Photoperiodism in the Pitcher-Plant Mosquito : Can the Seas.

167(4): 601–605.

Bradshaw, W.E., and Holzapfel, C.M. 2010. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. doi:10.1177/0748730410365656.

Bradshaw, W.E., Quebodeaux, M.C., and Holzapfel, C.M. 2003. Circadian Rhythmicity and Photoperiodism in the Pitcher‐Plant Mosquito: Adaptive Response to the Photic Environment or Correlated Response to the Seasonal Environment? Am. Nat. doi:10.1086/374344.

Brager, A.J., Ehlen, J.C., Castanon-Cervantes, O., Natarajan, D., Delisser, P., Davidson, A.J., and Paul, K.N. 2013. Sleep Loss and the Inflammatory Response in Mice Under Chronic Environmental Circadian Disruption. PLoS One 8(5). doi:10.1371/journal.pone.0063752. Buijink, M.R., Almog, A., Wit, C.B., Roethler, O., Olde Engberink, A.H.O., Meijer, J.H., Garlaschelli, D., Rohling, J.H.T., and Michel, S. 2016. Evidence for weakened intercellular coupling in the mammalian circadian clock under long photoperiod. PLoS One. doi:10.1371/journal.pone.0168954.

Bünning, E. 1936. Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Dtsch. Bot. Ges. 54: 590–607. doi:10.1111/j.1438-8677.1937.tb01941.x. Bünsow, R.C. 1963. Über Tages- und Jahresrhytmische Änderungen der Photoperiodischen

Lichtempfindlichkeit bei Kalanchoe blossfeldiana und ihre Beziehung zur endogenen Tagesrhytmik. Z. Bot.: 205–213.

Buricova, M. 2018. Molecular analysis of circadian photosensitivity and diapause in the jewel wasp Nasonia vitripennis. University of Groningen.

Castanon-Cervantes, O., Wu, M., Ehlen, J.C., Paul, K., Gamble, K.L., Johnson, R.L., Besing, R.C., Menaker, M., Gewirtz, A.T., and Davidson, A.J. 2010. Dysregulation of Inflammatory Responses by Chronic Circadian Disruption. J. Immunol. 185(10): 5796– 5805. doi:10.4049/jimmunol.1001026.

Ceriani, M.F., Darlington, T.K., Staknis, D., Más, P., Petti, A.A., Weitz, C.J., and Kay, S.A. 1999. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science (80-. )(80-. 285(5427): 553–556(80-. doi:10(80-.1126/science(80-.285(80-.5427(80-.553(80-.

(5)

Chen, J.D., Lin, Y.C., and Hsiao, S.T. 2010. Obesity and high blood pressure of 12-hour night shift female clean-room workers. Chronobiol. Int. 27(2): 334–344. doi:10.3109/07420520903502242.

Christiansen-Weniger, P., and Hardie, J. 1999. Environmental and physiological factors for diapause induction and termination in the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae). J. Insect Physiol. doi:10.1016/S0022-1910(98)00134-6.

Comas, M., Beersma, D.G.M., Spoelstra, K., and Daan, S. 2006. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J. Biol. Rhythms 21(5): 362–372. doi:10.1177/0748730406292446.

Costa, R., Peixoto, A.A., Barbujani, G., and Kyriacou, C.P. 1992. A Latitudinal Cline in a Drosophila Clock Gene. Proc. R. Soc. B Biol. Sci. 250(1327): 43–49. doi:10.1098/rspb.1992.0128.

Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., Lin, M.C., Glossop, N.R.J., Hardin, P.E., Young, M.W., Storti, R. V., and Blau, J. 2003. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112(3): 329–341. doi:10.1016/S0092-8674(03)00074-6.

Daan, S. 2000. Colin Pittendrigh, Jurgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 15(3): 195–207. doi:10.1177/074873040001500301.

Daan, S., Merrow, M., and Roenneberg, T. 2002. External time-internal time. J. Biol. Rhythms

17(2): 107–109. doi:10.1177/074873002129002375.

Dalla Benetta, E. 2018. Involvement of clock genes in seasonal, circadian and ultradian rhythms of Nasonia vitripennis. University of Groningen.

Danilevskii, A.S. 1965. Photoperiodism and Seasonal Development of Insects. 1st English Ed. Oliver Boyd, Edinburgh London.

Dardente, H., Menet, J.S., Poirel, V.J., Streicher, D., Gauer, F., Vivien-Roels, B., Klosen, P., Pévet, P., and Masson-Pévet, M. 2003. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Mol. Brain Res. doi:10.1016/S0169-328X(03)00134-7.

Dardente, H., Wyse, C.A., Birnie, M.J., Dupré, S.M., Loudon, A.S.I., Lincoln, G.A., and Hazlerigg, D.G. 2010. A molecular switch for photoperiod responsiveness in mammals. Curr. Biol. 20(24): 2193–2198. doi:10.1016/j.cub.2010.10.048.

Davidson, A.J., Sellix, M.T., Daniel, J., Yamazaki, S., Menaker, M., and Block, G.D. 2006. Chronic jet-lag increases mortality in aged mice. Curr.Biol. 16(0960-9822 (Print)): R914– R916. doi:doi: 10.1016/j.cub.2006.09.058.

Dolezel, D. 2015. Photoperiodic time measurement in insects. Curr. Opin. Insect Sci. 7: 98– 103. doi:10.1016/j.cois.2014.12.002.

Emery, P., So, W.V., Kaneko, M., Hall, J.C., and Rosbash, M. 1998. Cry, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5): 669–679. doi:10.1016/S0092-8674(00)81637-2.

(6)

Emery, P., Stanewsky, R., Hall, J.C., and Rosbash, M. 2000a. A unique circadian-rhythm photoreceptor. Nature 404(6777): 456–457. doi:10.1038/35006558.

Emery, P., Stanewsky, R., Helfrich-Förster, C., Emery-Le, M., Hall, J.C., and Rosbash, M. 2000b. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26(2): 493–504. doi:10.1016/S0896-6273(00)81181-2.

Floessner, T., and Hut, R.A. 2017. Basic principles underlying biological oscillations and their entrainment. In Biological Timekeeping: Clocks, Rhythms and Behaviour. Edited by V. Kumar. Springer, India. pp. 47–58.

Folkard, S., and Lombardi, D.A. 2006. Modeling the impact of the components of long work hours on injuries and “accidents.” In Am. J. Ind. Med. pp. 953–963. doi:10.1002/ajim.20307.

Frisch, L. 1960. Biological clocks. Cold Spring Harb. NY.

Gallego, M., and Virshup, D.M. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8(2): 139–148. doi:10.1038/nrm2106. Gan, Y., Yang, C., Tong, X., Sun, H., Cong, Y., Yin, X., Li, L., Cao, S., Dong, X., Gong, Y.,

Shi, O., Deng, J., Bi, H., and Lu, Z. 2015. Shift work and diabetes mellitus: A meta-analysis of observational studies. Occup. Environ. Med. 72(1): 72–78. doi:10.1136/oemed-2014-102150.

Gerkema, M.P., Davies, W.I.L., Foster, R.G., Menaker, M., and Hut, R.A. 2013. The nocturnal bottleneck and the evolution of activity patterns in mammals. doi:10.1098/rspb.2013.0508. Gooley, J.J., Lu, J., Chou, T.C., Scammell, T.E., and Saper, C.B. 2001. Melanopsin in cells of

origin of the retinohypothalamic tract. Nat. Neurosci. 4(12): 1165. doi:10.1038/nn768. Hall, J.C. 2003. Genetics and molecular biology of rhythms in Drosophila and other insects.

Adv. Genet. 48: 1–280. doi:http://dx.doi.org/10.1016/S0065-2660(03)48000-0.

Hannibal, J., Hindersson, P., Knudsen, S.M., Georg, B., and Fahrenkrug, J. 2002. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci.

22(1): RC191. doi:20015919 [pii].

Hardin, P.E. 2005. The circadian timekeeping system of Drosophila. Curr. Biol. 15(17): R714-22. doi:10.1016/j.cub.2005.08.019.

Hardin, P.E., Hall, J.C., and Rosbash, M. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343(6258): 536–540. doi:10.1038/343536a0.

Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.-W., and Berson, D.M. 2006. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol.

(7)

Haug, M.F., Gesemann, M., Lazović, V., and Neuhauss, S.C.F. 2015. Eumetazoan cryptochrome phylogeny and evolution. Genome Biol. Evol. 7(2): 601–619. doi:10.1093/gbe/evv010.

Hazlerigg, D.G., and Wagner, G.C. 2006. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. doi:10.1016/j.tem.2006.02.004.

Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J.C., and Stanewsky, R. 2001. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron

30(1): 249–261. doi:10.1016/S0896-6273(01)00277-X.

Hermann-Luibl, C., Yoshii, T., Senthilan, P.R., Dircksen, H., and Helfrich-Forster, C. 2014. The Ion Transport Peptide Is a New Functional Clock Neuropeptide in the Fruit Fly Drosophila melanogaster. J. Neurosci. 34(29): 9522–9536. doi:10.1523/JNEUROSCI.0111-14.2014.

Hermann, C., Yoshii, T., Dusik, V., and Helfrich-Förster, C. 2012. Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster. J. Comp. Neurol. 520(5): 970–987. doi:10.1002/cne.22742. Hodkova, M., and Socha, R. 1995. Effect of temperature on photoperiodic response in a selected

‘non‐diapause’ strain of Pyrrhocoris apterus (Heteroptera). Physiol. Entomol. doi:10.1111/j.1365-3032.1995.tb00819.x.

Hut, R.A. 2011. Photoperiodism: Shall EYA compare thee to a summers day? Curr. Biol. doi:10.1016/j.cub.2010.11.060.

Hut, R.A., and Beersma, D.G.M. 2011. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. B Biol. Sci. 366(1574): 2141–2154. doi:10.1098/rstb.2010.0409.

Hut, R.A., Kronfeld-Schor, N., van der Vinne, V., and De la Iglesia, H. 2012. In search of a temporal niche: Environmental factors. doi:10.1016/B978-0-444-59427-3.00017-4. Hut, R.A., Oklejewicz, M., Rieux, C., and Cooper, H.M. 2008. Photic sensitivity ranges of

hamster pupillary and circadian phase responses do not overlap. J. Biol. Rhythms 23(1): 37–48. doi:10.1177/0748730407311851.

Hut, R.A., Van Oort, B.E.H., and Daan, S. 1999. Natural entrainment without dawn and dusk: The case of the European ground squirrel (Spermophilus citellus). J. Biol. Rhythms 14(4): 290–299. doi:10.1177/074873099129000704.

Hut, R.A., Paolucci, S., Dor, R., Kyriacou, C.P., and Daan, S. 2013. Latitudinal clines: an evolutionary view on biological rhythms. Proc. R. Soc. B Biol. Sci. 280(1765): 20130433– 20130433. doi:10.1098/rspb.2013.0433.

Johnson, C.H. 1999. Forty Years of Prcs-What Have We Learned? Chronobiol. Int. 16(6): 711– 743. doi:10.3109/07420529909016940.

Kadener, S., Stoleru, D., McDonald, M., Nawathean, P., and Rosbash, M. 2007. Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker

(8)

Karatsoreos, I.N., Bhagat, S., Bloss, E.B., Morrison, J.H., and McEwen, B.S. 2011. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc.Natl.Acad.Sci.U.S.A. doi:10.1073/pnas.1018375108.

Kenagy, G.J. 1980. Center‐of‐gravity of circadian activity and its relation to free‐running period in two rodent species. J. Interdisiplinary Cycle Res. 11(1): 1–8. doi:10.1080/09291018009359682.

Kikukawa, S., and Chippendale, G.M. 1984. Seasonal adaptations of different geographical populations of the sunflower moth, Homoeosoma electellum. J. Insect Physiol. doi:10.1016/0022-1910(84)90024-6.

Klarsfeld, A. 2004. Novel Features of Cryptochrome-Mediated Photoreception in the Brain Circadian Clock of Drosophila. J. Neurosci. 24(6): 1468–1477. doi:10.1523/JNEUROSCI.3661-03.2004.

Klarsfeld, A., and Rouyer, F. 1998. Effects of Circadian Mutations and LD Periodicity on the Life Span of Drosophila melanogaster. J. Biol. Rhythms 13(6): 471–478. doi:10.1177/074873098129000309.

Kloss, B., Price, J.L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C.S., and Young, M.W. 1998. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94(1): 97–107. doi:10.1016/S0092-8674(00)81225-8.

Koh, K., Zheng, X., and Sehgal, A. 2006. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science (80-. ). 312(5781): 1809– 1812. doi:10.1126/science.1124951.

Koštál, V. 2011. Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? J. Insect Physiol. 57(5): 538–556. doi:10.1016/j.jinsphys.2010.10.006.

Kurota, H., and Shimada, M. 2003. Geographical variation in photoperiodic induction of larval diapause in the bruchid beetle, Bruchidius dorsalis: Polymorphism in overwintering stages. Entomol. Exp. Appl. doi:10.1046/j.1570-7458.2003.00033.x.

Lankinen, P. 1986a. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause inDrosophila littoralis. J. Comp. Physiol. A: 123–142. doi:10.1007/BF00612503.

Lankinen, P. 1986b. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause inDrosophila littoralis. J. Comp. Physiol. A. doi:10.1007/BF00612503. Lankinen, P. 1993. North-south differences in circadian eclosion rhythm in european

populations of drosophila subobscura. Heredity (Edinb). 71(2): 210–218. doi:10.1038/hdy.1993.126.

Lees, A.D. 1953. The significance of the light and dark phases in the photoperiodic control of diapause in Metatetranychus ulmi koch. Ann. Appl. Biol. 40(3): 487–497. doi:10.1111/j.1744-7348.1953.tb02388.x.

(9)

Lees, A.D. 1955. The Physiology of Diapause in Arthropods. Cambridge Univ. Press.

Lees, A.D. 1973. Photoperiodic time measurement in the aphid Megoura viciae. J. Insect Physiol. 27: 761–771.

Lees, A.D. 1990. Dual photoperiodic timers controlling sex and female morph determination in the pea aphid Acyrthosiphon pisum. J. Insect Physiol. 39: 585–591. doi:10.1016/0022-1910(90)90027-D.

Van der Leest, H.T., Rohling, J.H.T., Michel, S., and Meijer, J.H. 2009. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS One. doi:10.1371/journal.pone.0004976.

Levandovski, R., Dantas, G., Fernandes, L.C., Caumo, W., Torres, I., Roenneberg, T., Hidalgo, M.P.L., and Allebrandt, K.V. 2011. Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol. Int. 28(9): 771–778. doi:10.3109/07420528.2011.602445.

Lewis, R.D., and Saunders, D.S. 1987. A Damped Circadian Oscillator Model of an Insect Photoperiodic Clock . I . Description of the Model Based on a Feedback Control System. J. theor. Biol. 128: 47–59. doi:10.1016/S0022-5193(87)80030-9.

Lim, C., Chung, B.Y., Pitman, J.L., McGill, J.J., Pradhan, S., Lee, J., Keegan, K.P., Choe, J., and Allada, R. 2007. clockwork orange Encodes a Transcriptional Repressor Important for Circadian-Clock Amplitude in Drosophila. Curr. Biol. 17(12): 1082–1089. doi:10.1016/j.cub.2007.05.039.

Lin, Y. 2004. The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System. J. Neurosci. doi:10.1523/JNEUROSCI.2370-04.2004.

Marcovitch, S. 1923. Plant lice and light exposure. Science (80-. ). 58: 537–538.

Masumoto, K.H., Ukai-Tadenuma, M., Kasukawa, T., Nagano, M., Uno, K.D., Tsujino, K., Horikawa, K., Shigeyoshi, Y., and Ueda, H.R. 2010. Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism. Curr. Biol. doi:10.1016/j.cub.2010.11.038.

Matsumoto, A., Ukai-Tadenuma, M., Yamada, R.G., Houl, J., Uno, K.D., Kasukawa, T., Dauwalder, B., Itoh, T.Q., Takahashi, K., Ueda, R., Hardin, P.E., Tanimura, T., and Ueda, H.R. 2007. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev. 21(13): 1687–1700. doi:10.1101/gad.1552207.

Meireles-Filho, A.C.A., and Kyriacou, C.P. 2013. Circadian rhythms in insect disease vectors. doi:10.1590/0074-0276130438.

(10)

Menegazzi, P., Dalla Benetta, E., Beauchamp, M., Schlichting, M., Steffan-Dewenter, I., and Helfrich-Förster, C. 2017. Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Curr. Biol. 27(6): 833–839. doi:10.1016/j.cub.2017.01.036.

Meng, Q.J., Logunova, L., Maywood, E.S., Gallego, M., Lebiecki, J., Brown, T.M., Sládek, M., Semikhodskii, A.S., Glossop, N.R.J., Piggins, H.D., Chesham, J.E., Bechtold, D.A., Yoo, S.H., Takahashi, J.S., Virshup, D.M., Boot-Handford, R.P., Hastings, M.H., and Loudon, A.S.I. 2008. Setting Clock Speed in Mammals: The CK1ε tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron

58(1): 78–88. doi:10.1016/j.neuron.2008.01.019.

Menzel, R., Steinmann, E., de Souza, J., and Backhaus, W. 1988. Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia rufa. J. Exp. Biol.

Merlin, C., Beaver, L.E., Taylor, O.R., Wolfe, S.A., and Reppert, S.M. 2013. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 23(1): 159–168. doi:10.1101/gr.145599.112.

Mukai, A., and Goto, S.G. 2016. The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Appl. Entomol. Zool. 51(2): 185–194. Springer Japan. doi:10.1007/s13355-015-0384-1.

Muona, O., and Lumme, J. 2006. Geographical Variation in the Reproductive Cycle and Photoperiodic Diapause of Drosophila phalerata and D. transversa (Drosophilidae:Diptera). Evolution (N. Y). doi:10.2307/2407949.

Myers, M.P., Wager-Smith, K., Rothenfluh-Hilfiker, A., and Young, M.W. 1996. Light-Induced Degradation of TIMELESS and Entrainment of the Drosophila Circadian Clock. Science (80-. ). 271(5256): 1736–1740. doi:10.1126/science.271.5256.1736.

Nanda, K.K., and Hamner, K.C. 1958. Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soy bean. Bot.Gaz.: 14–25.

Nishiitsutsuji-Uwo, J., and Pittendrigh, C.S. 1968. Central nervous system control of circadian rhythmicity in the cockroach - II. The pathway of light signals that entrain the rhythm. Zeitschrift f??r Vergleichende Physiol. 58(1): 1–13. doi:10.1007/BF00302433.

O’Neill, J.S., Lee, K.D., Zhang, L., Feeney, K., Webster, S.G., Blades, M.J., Kyriacou, C.P., Hastings, M.H., and Wilcockson, D.C. 2015. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr. Biol. 25(8): R326–R327. doi:10.1016/j.cub.2015.02.052.

Oklejewicz, M., Hut, R.A., Daan, S., Loudon, A.S., and Stirland, A.J. 1997. Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. J. Biol. Rhythms 12(0748-7304 (Print)): 413–422. Zoological Laboratory, University of Groningen, Haren, The Netherlands. doi:https://doi.org/10.1177/074873049701200503.

(11)

Ouyang, Y., Andersson, C.R., Kondo, T., Golden, S.S., and Johnson, C.H. 1998. Resonating circadian clocks enhance fitness in cyanobacteria. Proc.Natl.Acad.Sci.U.S.A 95(0027-8424 (Print)): 8660–8664. Department of Biology, Vanderbilt University, Nashville, TN 37235, USA.

Panda, S., Sato, T.K., Castrucci, A.M., Rollag, M.D., DeGrip, W.J., Hogenesch, J.B., Provencio, I., and Kay, S.A. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science (80-. ). doi:10.1126/science.1076848.

Paolucci, S., Salis, L., Vermeulen, C.J., Beukeboom, L.W., and van de Zande, L. 2016. QTL analysis of the photoperiodic response and clinal distribution of period alleles in Nasonia vitripennis. Mol. Ecol. 25(19): 4805–4817. doi:10.1111/mec.13802.

Paolucci, S., Van de Zande, L., and Beukeboom, L.W. 2013. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J. Evol. Biol. 26(4): 705–718. doi:10.1111/jeb.12113.

Pattanayak, G.K., Phong, C., and Rust, M.J. 2014. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset. Curr. Biol. 24(16): 1934–1938. doi:10.1016/j.cub.2014.07.022.

Pavlidis, T. 1967. A mathematical model for the light affected system in the drosophila eclosion rhythm. Bull. Math. Biophys. 29(2): 291–310. doi:10.1007/BF02476901.

Peschel, N., Chen, K.F., Szabo, G., and Stanewsky, R. 2009. Light-Dependent Interactions between the Drosophila Circadian Clock Factors Cryptochrome, Jetlag, and Timeless. Curr. Biol. 19(3): 241–247. Elsevier Ltd. doi:10.1016/j.cub.2008.12.042.

Phillips, D.J., Savenkova, M.I., and Karatsoreos, I.N. 2015. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain. Behav. Immun. doi:10.1016/j.bbi.2014.12.008.

Pittendrigh, C.S. 1966. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z Pflanzenphysiol. 54: 275–307.

Pittendrigh, C.S. 1972. Circadian Surfaces and the Diversity of Possible Roles of Circadian Organization in Photoperiodic Induction. Proc. Natl. Acad. Sci. 69(9): 2734–2737. doi:10.1073/pnas.69.9.2734.

Pittendrigh, C.S., and Bruce, V.G. 1957. An oscillator model for biological clocks. In Rhythmic and Synthetic Processes in Growth. Edited ByRundnick D. Princeton.

Pittendrigh, C.S., and Bruce, V.G. 1959. Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. In Photoperiodism and related phenomena in plants and animals. Edited by Withrow. A.A.A.S., Washington. pp. 475– 505.

Pittendrigh, C.S., and Daan, S. 1976. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J. Comp. Physiol. A 106: 291–331.

(12)

Pittendrigh, C.S., Eichhorn, J.H., Minis, D.H., and Bruce, V.G. 1970. Circadian Systems , VI . Photoperiodic Time Measurement in Pectinophora gossypiella. Proc. Natl. Acad. Sci.

66(3): 758–764.

Pittendrigh, C.S., Kyner, W.T., and Takamura, T. 1991. The Amplitude of Circadian Oscillations: Temperature Dependence, Latitudinal Clines, and the Photoperiodic Time Measurement. J. Biol. Rhythms 6(4): 299–313. doi:10.1177/074873049100600402. Pittendrigh, C.S., and Minis, D.H. 1964a. The Entrainment of Circadian Oscillations by Light

and Their Role as Photoperiodic Clocks. Am. Nat. 98(902): 261–294.

doi:10.1086/282327.

Pittendrigh, C.S., and Minis, D.H. 1964b. The Entrainment of Circadian Oscillations by Light and Their Role as Photoperiodic Clocks Author ( s ): Soc. Am. Press. Chicago 98(902): 261–294.

Pittendrigh, C.S., and Minis, D.H. 1971. The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. Natl. Acad. Sci. Washington.: 212–250.

Pittendrigh, C.S., and Minis, D.H. 1972a. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 69(6): 1537–1539. doi:10.1073/pnas.69.6.1537.

Pittendrigh, C.S., and Minis, D.H. 1972b. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc.Natl.Acad.Sci.U.S.A 69(0027-8424 (Print)): 1537–1539.

Pittendrigh, C.S., and Takamura, T. 1987. Temperature dependence and evolutionary adjustment of critical night length in insect photoperiodism. Proc. Natl. Acad. Sci. 84(20): 7169–7173. doi:10.1073/pnas.84.20.7169.

Pittendrigh, C.S., and Takamura, T. 1989. Latitudinal Clines in the Properties of a Circadian Pacemaker. J. Biol. Rhythms 4(2): 105–123. doi:10.1177/074873048900400209.

Pivarciova, L., Vaneckova, H., Provaznik, J., Wu, B.C.H., Pivarci, M., Peckova, O., Bazalova, O., Cada, S., Kment, P., Kotwica-Rolinska, J., and Dolezel, D. 2016. Unexpected Geographic Variability of the Free Running Period in the Linden Bug Pyrrhocoris apterus. J. Biol. Rhythms 31(6): 568–576. doi:10.1177/0748730416671213.

Plano, S.A., Casiraghi, L.P., Moro, P.G., Paladino, N., Golombek, D.A., and Chiesa, J.J. 2017. Circadian and metabolic effects of light: Implications in weight homeostasis and health. Front. Neurol. 8(OCT): 1–21. doi:10.3389/fneur.2017.00558.

Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., and Young, M.W. 1998. double-time is a novel Drosophila clock gene that regulates period protein accumulation. Cell

94(1): 83–95. doi:10.1016/S0092-8674(00)81224-6.

Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P., and Rollag, M.D. 1998. Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. 95(1): 340–345.

(13)

Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F., and Rollag, M.D. 2000. A Novel Human Opsin in the Inner Retina. J. Neurosci. 20(2): 600–605. doi:10.1523/JNEUROSCI.20-02-00600.2000.

Provencio, I., Rollag, M.D., and Castrucci, A.M. 2002. Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415: 493. doi:10.1038/415493a.

Ramakers, C., Ruijter, J.M., Lekanne Deprez, R.H., and Moorman, A.F.M. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339(1): 62–66. doi:10.1016/S0304-3940(02)01423-4.

Ramkisoensing, A., Gu, C., Van Engeldorp Gastelaars, H.M.D., Michel, S., Deboer, T., Rohling, J.H.T., and Meijer, J.H. 2014. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network. J. Biol. Rhythms. doi:10.1177/0748730413516750. Rieger, D., Stanewsky, R., and Helfrich-Förster, C. 2003. Cryptochrome, compound eyes,

Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18(5): 377–391. doi:10.1177/0748730403256997.

Roberts, S.K. 1965. Photoreception and Entrainment of Cockroach Activity Rhythms. Science

148(3672): 958–959. doi:10.1126/science.148.3672.958.

Roenneberg, T., Allebrandt, K. V., Merrow, M., and Vetter, C. 2012. Social jetlag and obesity. Curr. Biol. 22(10): 939–943. doi:10.1016/j.cub.2012.03.038.

Rosa, R.R. 1995. Extended workshifts and excessive fatigue. J. Sleep Res. 4: 51–56. doi:10.1111/j.1365-2869.1995.tb00227.x.

Rosato, E., Trevisan, A., Sandrelli, F., Zordan, M., Kyriacou, C.P., and Costa, R. 1997. Conceptual translation of timeless reveals alternative initiating methionines in Drosophila. Nucleic Acids Res. 25(3): 455–457. doi:10.1093/nar/25.3.455.

Rubin, E.B., Shemesh, Y., Cohen, M., Elgavish, S., Robertson, H.M., and Bloch, G. 2006. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16: 1352–1365. doi:10.1101/gr.5094806.

Ruby, N.F., Brennan, T.J., Xie, X., Cao, V., Franken, P., Heller, H.C., and O’Hara, B.F. 2002. Role of melanopsin in circadian responses to light. Science (80-. ). doi:10.1126/science.1076701.

Ruijter, J.M., Ramakers, C., Hoogaars, W.M.H., Karlen, Y., Bakker, O., van den hoff, M.J.B., and Moorman, A.F.M. 2009. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37(6). doi:10.1093/nar/gkp045. Rutila, J.E., Suri, V., Le, M., So, W.V., Rosbash, M., and Hall, J.C. 1998. Cycle is a second

bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5): 805–814. doi:10.1016/S0092-8674(00)81441-5.

(14)

Saint-Charles, A., Michard-Vanhée, C., Alejevski, F., Chélot, E., Boivin, A., and Rouyer, F. 2016. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. J. Comp. Neurol. 524(14): 2828–2844. doi:10.1002/cne.23994.

Sandrelli, F., Tauber, E., Pegoraro, M., Mazzotta, G., Cisotto, P., Landskron, J., Stanewsky, R., Piccin, A., Rosato, E., Zordan, M., Costa, R., and Kyriacou, C.P. 2007. A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316(5833): 1898–900. doi:10.1126/science.1138426.

Saunders, D.S. 1962. The effect of the age of female Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae) upon the incidence of larval diapause. J. Insect Physiol.

8(3): 309–318. doi:10.1016/0022-1910(62)90034-3.

Saunders, D.S. 1965a. Larval diapause of maternal origin: induction of diapause in Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). J Exp Biol 42(3): 495–508.

Saunders, D.S. 1965b. Larval diapause induced by a maternally-operating photopeirod. Nat. Lond. 206: 739–740.

Saunders, D.S. 1966a. Larval diapause of maternal origin-II. The effect of photoperiod and temperature on Nasonia vitripennis. J. Insect Physiol. 12(5): 569–581. doi:10.1016/0022-1910(66)90095-3.

Saunders, D.S. 1966b. Larval diapause of maternal origin-III. The effect of host shortage on Nasonia vitripennis. J. Insect Physiol. 12(8): 899–908. doi:10.1016/0022-1910(66)90077-1.

Saunders, D.S. 1968. Photoperiodism and time measurement in the parasitic wasp, Nasonia vitripennis. J. Insect Physiol. 14(4): 433–450. doi:10.1016/0022-1910(68)90060-7. Saunders, D.S. 1969. Diapause and photoperiodism in the parasitic wasp Nasonia vitripennis,

with special reference to the nature of the photoperiodic clock. Symp. Soc. exp. Biol. 23: 301–329.

Saunders, D.S. 1970. Circadian clock in insect photoperiodism. Science (80-. ). 168(3931): 601–603. doi:10.1126/science.168.3931.601.

Saunders, D.S. 1974. Evidence for “dawn” and “dusk” oscillators in the Nasonia photoperiodic clock. J. Insect Physiol. 20(1): 77–88. doi:10.1016/0022-1910(74)90125-5.

Saunders, D.S. 1990. The Circadian Basis of Ovarian Diapause Regulation in Drosophila melanogaster: Is the period Gene Causally Involved in Photoperiodic Time Measurement? J. Biol. Rhythms. doi:10.1177/074873049000500404.

Saunders, D.S., and Bertossa, R.C. 2011. Deciphering time measurement: The role of circadian “clock” genes and formal experimentation in insect photoperiodism. J. Insect Physiol.

57(5): 557–566. Elsevier Ltd. doi:10.1016/j.jinsphys.2011.01.013.

(15)

Saunders, D.S., Steel, C., Vafopoulou, X., and Lewis, R. 2002. Insect clocks, 3ed. Elsevier, Amsterdam. doi:https://doi.org/10.1016/B978-0-444-50407-4.X5000-9.

Saunders, D.S., Sutton, D., and Jarvis, R.A. 1970. The effect of host species on diapause induction in. 16(C).

Sawyer, L.A., Hennessy, J.M., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R., and Kyriacou, C.P. 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science (80-. ). 278(5346): 2117–2120. doi:10.1126/science.278.5346.2117.

Sbragaglia, V., Lamanna, F., Mat, A.M., Rotllant, G., Joly, S., Ketmaier, V., De La Iglesia, H.O., and Aguzzi, J. 2015. Identification, characterization, and diel pattern of expression of canonical clock genes in Nephrops norvegicus (crustacea: Decapoda) eyestalk. PLoS One 10(11). doi:10.1371/journal.pone.0141893.

Schlichting, M., and Helfrich-Forster, C. 2015. Photic Entrainment in Drosophila Assessed by Locomotor Activity Recordings. Methods Enzymol. 552: 105–123. doi:http://dx.doi.org/10.1016/bs.mie.2014.10.017.

Schmid, B., Helfrich-Förster, C., and Yoshii, T. 2011. A new ImageJ plug-in “actogramJ” for chronobiological analyses. J. Biol. Rhythms 26(5): 464–467. doi:10.1177/0748730411414264.

Sehgal, A., Price, J., Man, B., and Young, M. 1994. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science (80-. ). 263(5153): 1603– 1606. doi:10.1126/science.8128246.

Shearman, L.P., Zylka, M.J., Weaver, D.R., Kolakowski, L.F., and Reppert, S.M. 1997. Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19(6): 1261–1269. doi:10.1016/S0896-6273(00)80417-1.

Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J.C., and Okamura, H. 1997. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell

91(7): 1043–1053. doi:10.1016/S0092-8674(00)80494-8.

Shimizu, T., and Kawasaki, K. 2001. Geographic variability in diapause response of Japanese Orius species. Entomol. Exp. Appl. doi:10.1023/A:1018943409650.

Sokolove, P.G., and Bushell, W.N. 1978. The chi square periodogram: its utility for analysis of circadian rhythms. J. Theor. Biol. 72(1): 131–160. doi:https://doi.org/10.1016/0022-5193(78)90022-X.

Sosniyenko, S., Hut, R.A., Daan, S., and Sumová, A. 2009. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus. Eur. J. Neurosci. 30(9): 1802–1814. doi:10.1111/j.1460-9568.2009.06945.x.

Spoelstra, K., Albrecht, U., van der Horst, G.T.J., Brauer, V., and Daan, S. 2004. Phase Responses to Light Pulses in Mice Lacking Functional per or cry Genes. J. Biol. Rhythms

(16)

Spoelstra, K., Wikelski, M., Daan, S., Loudon, A.S.I., and Hau, M. 2016. Natural selection against a circadian clock gene mutation in mice. Proc. Natl. Acad. Sci. 113(3): 686–691. doi:10.1073/pnas.1516442113.

Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash, M., and Hall, J.C. 1998. The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95(5): 681–692. doi:10.1016/S0092-8674(00)81638-4. Stephan, W., and Li, H. 2007. The recent demographic and adaptive history of Drosophila

melanogaster. doi:10.1038/sj.hdy.6800901.

Su, S. Bin, Lu, C.W., Kao, Y.Y., and Guo, H.R. 2008. Effects of 12-hour rotating shifts on menstrual cycles of photoelectronic workers in Taiwan. In Chronobiol. Int. pp. 237–248. doi:10.1080/07420520802106884.

Suri, V., Qian, Z., Hall, J.C., and Rosbash, M. 1998. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 21(1): 225–234. doi:10.1016/S0896-6273(00)80529-2.

Suwa, A., and Gotoh, T. 2006. Geographic variation in diapause induction and mode of diapause inheritance in Tetranychus pueraricola. J. Appl. Entomol. doi:10.1111/j.1439-0418.2006.01050.x.

Syed, S., Saez, L., and Young, M.W. 2011. Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J. Biol. Chem. 286(31): 27654–27662. doi:10.1074/jbc.M111.243618.

Tauber, E., and Zordan, M. 2007. newly derived timeless allele in drosophila melanogaster. Science (80-. ).: 1895–1899.

Tauber, E., Zordan, M., Sandrelli, F., Pegoraro, M., Osterwalder, N., Breda, C., Daga, A., Selmin, A., Monger, K., Benna, C., Rosato, E., Kyriacou, C.P., and Costa, R. 2007. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science (80-. )(80-. 316(5833): 1895–1898(80-. doi:10(80-.1126/science(80-.1138412(80-.

Tauber, M.J., and Tauber, C.A. 1972. Geographic variation in critical photoperiod and in diapause intensity of Chrysopa carnea (Neuroptera). J. Insect Physiol. doi:10.1016/0022-1910(72)90061-3.

Tauber, M.J., Tauber, C.A., and Masaki, S. 1986. Seasonal adaptations of insects. In Ecology. doi:10.1007/s11873-011-0171-2.

Tomioka, K., and Chiba, Y. 1984. Effects of Nymphal Stage Optic Nerve Severance or Optic Lobe Removal on the Circadian Locomotor Rhythm of the Cricket, Gryllus bimaculatus. Zoolog. Sci. (1): 375–382.

Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., and Sassone-Corsi, P. 2002. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. doi:10.1073/pnas.102075599.

(17)

Tyukmaeva, V.I., Salminen, T.S., Kankare, M., Knott, K.E., and Hoikkala, A. 2011. Adaptation to a seasonally varying environment: A strong latitudinal cline in reproductive diapause combined with high gene flow in Drosophila montana. Ecol. Evol. doi:10.1002/ece3.14. Vaz Nunes, M., Lewis, R.D., and Saunders, D.S. 1991a. A coupled oscillator feedback system

as a model for the photoperiodic clock in insects and mites. I. The basic control system as a model for circadian rhythms. J. Theor. Biol. 152(3): 287–298. doi:10.1016/S0022-5193(05)80195-X.

Vaz Nunes, M., Saunders, D.S., and Lewis, R.D. 1991b. A coupled oscillator feedback system as a model for the photoperiodic clock in insects and mites. II. Simulations of photoperiodic responses. J. Theor. Biol. 152(3): 299–317. doi:10.1016/S0022-5193(05)80196-1.

Vaze, K.M., and Helfrich-Förster, C. 2016. Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause. Physiol. Entomol. 41(4): 378–389. doi:10.1111/phen.12165.

Van Der Veen, D.R., Riede, S.J., Heideman, P.D., Hau, M., Van Der Vinne, V., and Hut, R.A. 2017. Flexible clock systems: Adjusting the temporal programme. doi:10.1098/rstb.2016.0254.

Velarde, R.A., Sauer, C.D., Walden, K.K.O., Fahrbach, S.E., and Robertson, H.M. 2005. Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem. Mol. Biol. 35(12): 1367–1377. doi:10.1016/j.ibmb.2005.09.001.

Veleri, S., Rieger, D., Helfrich-Förster, C., and Stanewsky, R. 2007. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms 22(1): 29–42. doi:10.1177/0748730406295754.

Wang, X.P., Yang, Q.S., Dalin, P., Zhou, X.M., Luo, Z.W., and Lei, C.L. 2012. Geographic variation in photoperiodic diapause induction and diapause intensity inSericinus montelus(Lepidoptera: Papilionidae). Insect Sci. doi:10.1111/j.1744-7917.2011.01473.x. Weinstock, G.M., Robinson, G.E., Gibbs, R.A., von Saint Paul, U., Villasana, D., and Wright,

R. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443(7114): 931–949. doi:10.1038/nature05260.

Werren, J.H., and Loehlin, D.W. 2009. The parasitoid wasp Nasonia: An emerging model system with haploid male genetics. Cold Spring Harb. Protoc. 4(10).

doi:10.1101/pdb.emo134.

Withrow, R.B. 1959. Photoperiodism and related phenomena in plants and animals. Am. Assoc. Adv. Sci. Washington, DC.

Wittmann, M., Dinich, J., Merrow, M., and Roenneberg, T. 2006. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 23(1–2): 497–509. doi:10.1080/07420520500545979.

Wyse, C.A., Coogan, A.N., Selman, C., Hazlerigg, D.G., and Speakman, J.R. 2010. Association between mammalian lifespan and circadian free-running period: the circadian resonance

(18)

Yang, Z., Emerson, M., Su, H.S., and Sehgal, A. 1998. Response of the timeless protein to light correlates with behavioral entrainment and suggests a nonvisual pathway for circadian photoreception. Neuron 21(1): 215–223. doi:10.1016/S0896-6273(00)80528-0.

Yasuyama, K., and Meinertzhagen, I.A. 1999. Extraretinal photoreceptors at the compound eye’s posterior margin in Drosophila melanogaster. J. Comp. Neurol. 412(2): 193–202. doi:10.1002/(SICI)1096-9861(19990920)412:2<193::AID-CNE1>3.0.CO;2-0.

Yoshii, T., Hermann-Luibl, C., Kistenpfennig, C., Schmid, B., Tomioka, K., and Helfrich-Forster, C. 2015. Cryptochrome-Dependent and -Independent Circadian Entrainment Circuits in Drosophila. J. Neurosci. 35(15): 6131–6141. doi:10.1523/JNEUROSCI.0070-15.2015.

Yuan, Q., Metterville, D., Briscoe, A.D., and Reppert, S.M. 2007. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24(4): 948–955. doi:10.1093/molbev/msm011.

Zeng, H., Qian, Z., Myers, M.P., and Rosbash, M. 1996. A light-entrainment mechanism for the drosophila circadian clock. Nature 380(6570): 129–135. doi:10.1038/380129a0. Zhang, L., Hastings, M.H., Green, E.W., Tauber, E., Sladek, M., Webster, S.G., Kyriacou, C.P.,

and Wilcockson, D.C. 2013. Dissociation of circadian and circatidal timekeeping in the marine crustacean eurydice pulchra. Curr. Biol. 23(19): 1863–1873. doi:10.1016/j.cub.2013.08.038.

Zhang, Y., Markert, M.J., Groves, S.C., Hardin, P.E., and Merlin, C. 2017. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl. Acad. Sci. (10): 201702014. doi:10.1073/pnas.1702014114.

Zhou, J., Yu, W., and Hardin, P.E. 2016. CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE. PLoS Genet. 12(11). doi:10.1371/journal.pgen.1006430.

Zhu, H., Sauman, I., Yuan, Q., Casselman, A., Emery-Le, M., Emery, P., and Reppert, S.M. 2008. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6(1): 0138–0155. doi:10.1371/journal.pbio.0060004.

Zhu, H., Yuan, Q., Briscoe, A.D., Froy, O., Casselman, A., and Reppert, S.M. 2006. The two CRYs of the butterfly. doi:10.1016/j.cub.2006.03.026.

Zonato, V., Collins, L., Pegoraro, M., Tauber, E., and Kyriacou, C.P. 2017. Is diapause an ancient adaptation in Drosophila? J. Insect Physiol. 98: 267–274. The Authors. doi:10.1016/j.jinsphys.2017.01.017.

Zonato, V., Vanin, S., Costa, R., Tauber, E., and Kyriacou, C.P. 2018. Inverse European Latitudinal Cline at the timeless Locus of Drosophila melanogaster Reveals Selection on a Clock Gene: Population Genetics of ls-tim. J. Biol. Rhythms 33(1): 15–23. doi:10.1177/0748730417742309.

(19)
(20)
(21)

Endogenous timing mechanisms organise molecular, physiological and behavioural processes and synchronize them to external stimuli. Daily light-dark cycles entrain the core circadian clock of most organisms and leads to an internal representation of the environmental light condition which synchronizes peripheral secondary clocks and following processes. A circadian phase of approximately 24 h adjusts to the external phase of 24 h and resets to it. Although there is no change in the external cycle length, photoperiod changes over the year and this pattern changes with latitude. Equatorial regions show nearly no annual variation in photoperiod which changes towards the poles. In polar regions variation occurs from constant darkness in winter to constant light in summer. These extreme photoperiods are more shallow at temperate regions but still show annual variation of several hours. That fluctuation in photoperiod goes along with variation in temperature and is followed by resource availability, necessary for survival and reproduction of higher tropic organisms. Therefore, annual variation of environmental conditions (temperature, nutrition supply) requires adaptation of organisms that depend on latitude. Robust and accurate seasonal timing mechanisms are needed which induce species specific survival strategies to overcome unfavourable conditions. Therefore it seems likely to assess time of year by measuring photoperiod, a solid and recurring external cue, to anticipate seasonal changes. The circadian system provides a daily timing device that conceptually be involved in measuring day length. The question is how the circadian and the annual timing mechanisms influence each other and how these systems adapt to different environmental conditions. Various strategies can be divers and species specific, as described by others.

We studied Nasonia vitripennis, a parasitoid wasp with a world-wide distribution range showing a strong seasonal response of larval diapause induces by short photoperiods and a robust circadian period under constant conditions. We have investigated lines collected from different geographical locations in Europe, one originating from Oulu, Finland (65°3’40.16’’N, 25°31’40.80’’E; northern line) and one from Corsica, France (42°22’40.80’’N, 8°44’52.80’’E, southern line; Paolucci et al. 2013). With these lines we performed comparative studies to get a better understanding of the effect of photoperiod on the circadian system and the mechanisms that drive adaptation of the biological clock to seasonal environments. The aim of this thesis is not to provide extensive proof of evolutionary adaptation to latitude, but rather to provide novel insights and provide more detailed pieces of chronobiological evidence on how possible mechanisms of adaptation might work in nature. We determined differences between the lines in circadian light resetting, its effect on survival and photoperiodism and circadian period. Further molecular studies on light reception of the circadian system were conducted to provide more insight in how the hymenopteran circadian clock might entrain to the external light-dark cycle.

We performed locomotor activity recording to determine free-running period (Chapter 2) and established phase response curves under various light durations and intensities to determine circadian light sensitivity (Chapter 3). Our results show a longer free-running period and a higher light sensitivity in the northern line compared to the southern one. We propose that the longer free-running period is necessary due to the involvement of the circadian system in diapause regulation, to induce diapause at longer photoperiods and herewith to

(22)

2013). This would match the increasing critical photoperiod at increasing latitudes shown in

Nasonia (Paolucci et al., 2013). Furthermore, we hypothesise that the northern line is more light

sensitive to keep daily circadian organisation in long natural photoperiods due to strong light resetting. General oscillator theory provides a phase-period rule, which might be able to explain the slower clock in the northern line and its functional involvement in changes of the critical photoperiod. Longer free-running periods, deviating more from 24 h, will result in a shift of the phase angle of entrainment and hence a shift in the exposure of the light sensitive window involved in diapause regulation.

While longer circadian periods might accommodate a fitness enhancing latitudinal adaptation in diapause timing, according to the circadian resonance fitness hypothesis it is also expected to have adverse effects on adult survival when the deviation from 24-h increases (Ouyang et al. 1998; Wyse et al. 2010). The circadian resonance fitness hypothesis predicts fitness costs in terms of reduced survival due to larger daily phase shifts needed for daily circadian entrainment (Pittendrigh and Minis 1972). From this, the expectation follows that the more the circadian period deviates from 24-h, the more longevity is reduced. We tested this longevity hypothesis in a range of environmental light-dark periods (T-cycles) and photoperiod combinations (Chapter 2). Higher longevity was expected to occur in T-cycles close to free-running period, but we did not observe a reduction in longevity in our northern and southern lines with the light-dark period deviating from internal circadian period. These results may be understood by the strong circadian light response we have established in Nasonia, especially in the northern line (Chapter 2 & Chapter 3). We hypothesize that the higher light sensitivity enables a stronger light resetting to maintain a fixed phase angle of behavioural entrainment, independent of intrinsic circadian period. This fixed phase angle of entrainment might be the reason that survival is not reduced when large deviations between circadian period and environmental period may evolve to optimize photoperiodic adaptation.

To understand how our previous results about daily circadian properties and light sensitivity can explain differences in seasonal timing processes, we applied a partial Nanda-Hamner protocol to measure diapause induction under different T-cycles and photoperiods (Chapter 4). We aimed to explain differences in diapause response in a northern and a southern line by studying differences in circadian entrainment properties in a combination of different T-cycles and photoperiods. Our results confirm that the critical photoperiod at which Nasonia females change from producing non-diapausing larvae to diapausing larvae is different for the northern line (longer free-running period) and the southern line (shorter free-running period than the northern line). The northern line was diapausing in all T-cycles when photoperiods were short, whereas diapause in short photoperiod only occurred in the southern line when T-cycles were close to 24 h. Due to the differences of the phase-period relationship (Chapter 2) in the northern and southern lines and the results of the diapause induction experiments (Chapter 4), we suggest that our results are best explained by an external coincidence timing model rather than the more complex internal coincidence timing model as proposed by Saunders (1974, Chapter 4). The higher light sensitivity in the northern line seems to result in a flatter phase-period relationship under a rage of T-cycles while the lower light sensitivity of

(23)

adaptation in Nasonia could indeed be causally linked to differences in properties of the circadian system. Our findings indicate that differences in circadian light sensitivity and variation in circadian free-running period might be a sufficient mechanism to explain adaptation to latitude in nature. This hypothesis, however, remains to be tested in natural populations with original genetic variation.

We have shown strong evidence that circadian light resetting is critical for adaptive circadian entrainment of Nasonia and seasonal timing of diapause, but the molecular mechanism by which the circadian system of Nasonia, or other hymenopteran insects, entrains to light is still unknown. hymenopteran do not encode for the photo-sensitive variant of the clock protein Cryptochrome, as observed in Drosophilids and other insect species; hymenoptera encode for the mammalian-like photo-insensitive Cryptochrome. The mammalian clock resets is induced by light through immediate early gene induction of per1 and subsequently per2 through a CREB signalling pathway (Albrecht et al. 1997; Shearman et al. 1997; Shigeyoshi et al. 1997; Travnickova-Bendova et al. 2002). To identify and locate the circadian light resetting mechanism of the clock work of Nasonia, we tested light induced immediate early gene induction of canonical clock genes (Chapter 5). Additionally, we measured opsin gene expression levels to identify possible mechanism by which the north-south difference in light sensitivity might be explained (Chapter 5). Our results do not support the idea of circadian light resetting by immediate early gene induction of clock genes. Also the opsin measurement did not provide further insight in the underlying processes and by this critical differences between the lines. Further research is required to elucidate circadian light resetting mechanisms in hymenoptera. Once mapped, we hypothesise that the genes involved in the molecular mechanisms of circadian light reception will provide a substrate for latitude related selection pressure enabling the circadian system to change the photoperiodic response with increasing latitude.

(24)
(25)

Endogene timingsmechanismen organiseren moleculaire, physiologische en gedragsprocessen en synchroneren deze processen met externe stimuli. Dagelijkse licht-donker cycli entraineren de circadiane klok van vrijwel alle organismen. Lichtinformatie biedt het hart van dit system een representatie van tijd van de dag, welke vervolgens gebruikt wordt om perifere en daaropvolgende processen te synchroniseren. De circadiane cyclus past zijn periode van ongeveer 24 uur aan zodat deze overeenkomt met de 24-uurs periode van de externe cyclus. Daarbij wordt de fase van de circadiane cyclus gecorrigeerd om een gewenste fasehoek met de externe 24-uurs cyclus te realiseren. Hoewel er geen verandering plaatsvindt in de periode van de externe cyclus is fotoperiode afhankelijk van breedtegraad. De jaarlijkse variatie in fotoperiode is het grootst op de polen en is nauwelijks aanwezig op gebieden rond de evenaar. Fotoperiode op poolgebieden varieert van constant donker in de winter tot constant licht in de zomer. Deze extreme fotoperioden vlakken af richting meer gematigde gebieden, maar ook hier treden nog steeds jaarlijkse variaties in fotoperiode op van enkele uren. Die fluctuatie in fotoperiode gaat gepaard met variatie in temperatuur. Deze variatie op zijn beurt beïnvloedt beschikbaarheid van voedsel en andere hulpbronnen, welke cruciaal zijn voor voorplanting en overleving. Daarom vragen jaarlijkse variaties in omgevingsfactoren (temperatuur, voedselbeschikbaarheid) specifieke overlevingsstrategiën van een organisme, welke afhankelijk zijn van waar op de wereld het betreffende organisme zich bevindt. Om goed om te kunnen gaan met de nadelige condities die dit soort jaarlijkse veranderingen met zich mee brengen, zijn nauwkeurige en robuuste tijdsinschattingsmechanismen op seizoensniveau nodig. Het is daarom aannemelijk dat organismen de tijd van het jaar in kunnen schatten aan de hand van gemeten fotoperiode, een betrouwbaar en steeds terugkerend signaal, om zich voor te kunnen bereiden op seizoensgebonden veranderingen in de omgeving. De vraag is wat precies de wisselwerking is tussen circadiane en circannuele tijdswaarnemingssystemen, en hoe deze systemen zich aanpassen aan verschillende omgevingscondities. Het is al bekend dat zulke aanpassingsstrategieën zeer divers en soortspecifiek zijn.

Wij hebben Nasonia vitripennis bestudeerd, een parasitoïde wesp die over de hele wereld te vinden is. Deze wesp laat een sterke seizoensgebonden respons zien in de vorm van larvale diapause geïnduceerd door korte fotoperioden, en heeft een robuuste circadiane periode onder constante condities. We hebben genetische lijnen bestudeerd, verzameld uit verschillende geografische locaties in Europa: een lijn uitt Oulu, Finland (65°3’40.16’’N, 25°31’40.80’’E; noordelijke lijn) en een lijn uit Corsica, Frankrijk (42°22’40.80’’N, 8°44’52.80’’E, zuidelijke lijn; Paolucci et al. 2013). We hebben vergelijkende studies ondernomen met deze twee lijnen om een beter begrip te ontwikkelen van het effect van fotoperiode op het circadiane systeem, en de mechanismen die verantwoordelijk zijn voor aanpassingen van de biologische klok aan seizoensgebonden omgevingsveranderingen. We hebben verschillen vastgesteld tussen deze lijnen met betrekking tot circadiane klokverschuivingen door licht, de invloed van de klok op overleving, fotoperiode en circadiane periode. Daarnaast hebben we verder onderzoek betreffende verwerking van lichtinformatie door het circadiane systeem uitgevoerd.

We hebben opnames gemaakt van locomotorische ativiteit om de periode in vrijloop vast te stellen (Hoofdstuk 2) en we hebben fase-respons curves vastgesteld onder verscheidene lichtduren en intensiteiten om de lichtgevoeligheid van het circadiane systeem te bepalen

(26)

lichtgevoeligheid zien voor de noordelijke vergeleken met de zuidelijke lijn. Wij stellen voor dat de langere periode in vrijloop nodig is vanwege betrokkenheid van het circadiane systeem bij de regulering van diapause, zodat diapause al bij langere fotoperioden plaatsvindt om de lange wintercondities in noordelijke habitats te kunnen overleven (Hut and Beersma 2011; Hut et al. 2013). Dit zou overeenkomen met de toenemende kritische fotoperiode naarmate de breedtegraad ook toeneemt, zoals eerder aangetoond voor Nasonia (Paolucci et al., 2013). Verder stellen wij de hypothese op dat de noordelijke lijn lichtgevoeliger is om dagelijkse circadiane organisatie in stand te houden tijdens lange fotoperiodes, met behulp van sterke circadiane licht respons. De fase-periode regel zou variatie in circadiane periode en de betrokkenheid hiervan bij veranderingen in de kritische fotoperiode kunnen verklaren; deze regel stelt dat langere periodes in vrijloop, die meer afwijken van 24 uur, resulteren in een verschuiving in de fasehoek van entrainment. Daarbij zou de hogere lichtgevoeligheid van de noordelijke lijn ervoor zorgen dat deze lijn een groter bereik van entrainment heeft dan de zuidelijke lijn.

Hoewel langere circadiane periodes een 'fitness'-bevorderende breedtegraadsafhankelijke adaptatie in de timing van diapause kunnen bevorderen, kan tegelijkertijd verwacht worden volgens de ciradiane resonantie 'fitness' theorie dat langere ciracadiane periodes nadelige effecten hebben naarmate de afwijking ten opzichte van 24 uur toeneemt (Ouyang et al. 1998; Wyse et al. 2010). De circadiane resonantie 'fitness' theorie voorspelt 'fitness' kosten in de vorm van verlaagde overlevingskansen, doordat een biologische klok die meer afwijkt van 24 uur elke dag een grotere faseverschuiving nodig heeft om geëntraineerd te blijven (Pittendrigh and Minis 1972). Vandaar de verwachting dat hoe meer een circadiane periode afwijkt van 24 uur, hoe korter de levensduur. We hebben deze levensduurhypothese getest onder verschillende combinaties van licht-donker periodes (T-cycli) en fotoperiodes (Hoofdstuk 2). We verwachtten een langere levensduur te zien bij T-cycli dichterbij de periode in vrijloop, maar we vonden geen afname in levensduur in de noordelijke en zuidelijke lijnen. Deze resultaten kunnen verklaard worden door de sterke circadiane lichtrespons (het opnieuw instellen van het circadiane systeem met een enkele lichtpuls) die we vooral gemeten hebben in de noordelijke lijn (Hoofdstuk 2 en Hoofdstuk 3). We stellen de hypothese voor dat de hogere lichtgevoeligheid deze wesp in staat stelt om een sterke circadiane lichtrespons te laten zien opdat een vaste fasehoek van entrainment kan worden behouden, onafhanelijk van de periode in vrijloop. Deze vaste fasehoek van entrainment zou de reden kunnen zijn dat de levensduur niet afneemt terwijl grote afwijkingen tussen de periode in vrijloop en de periode van de licht-donker cyclus geëvolueerd zijn om fotoperiodieke adaptatie te optimaliseren.

Om te begrijpen hoe bovengenoemde resultaten over dagelijkse circadiane eigenschappen en lichtgevoeligheid verschillen kunnen verklaren in seizoensgebonden timingsprocessen, hebben we het Nanda-Hammer protocol toegepast om diapause-inductie te meten onder verschillende T-cycli en fotoperioden (Hoofdstuk 4). Het doel was hier om verschillen in de diapause-respons te verklaren in een noordelijke en zuidelijke lijn, door verschillen in de eigenschappen van circadiane entrainment in combinatie met verschillende T-cycli en fotoperioden te bestuderen. Onze resultaten laten zien dat de kritische fotoperiode, wanneer

(27)

lijn (kortere periode in vrijloop dan de noordelijke lijn). De noordelijke lijn produceerde diapause-larvae onder alle T-cycli bij bepaalde korte fotoperioden, terwijl de zuidelijke lijn alleen diapause-larvae produceerde bij T-cycli dichtbij 24 uur en bij bepaalde korte fotoperioden. Dit is een sterke aanwijzing dat seizoensgebonden breedtegraadsafhankelijke adaptatie in Nasonia veroorzaakt kan worden door verschillen in eigenschappen van het circadiane systeem. Verschillen in lichtgevoeligheid tuseen beide lijnen, variatie in periode in vrijloop en circadiane fase zouden deze resultaten mogelijk kunnen verklaren. De hogere lichtgevoeligheid in de noordelijke lijn lijkt te leiden tot een vlakkere fase-periode relatie onder een verscheidenheid aan T-cycli, terwijl de lagere lichtgevoeligheid van de zuidelijke lijn resulteert in een stijlere helling van de fase-periode relatie zoals verwacht wordt aan de hand van de fase-periode regel. Vanwege de verschillen in de fase-periode relatie (Hoofdstuk 2) in de noordelijke en zuidelijke lijnen en de resultaten van de diapause experimenten (Hoofdstuk 4), suggereren wij dat onze resultaten het best verklaard kunen worden door een extern toevalligheidstiming model in plaats van het meer complexe interne toevalligheidstiming model zoals voorgesteld door Saunders (1974, Hoofdstuk 4).

We hebben sterk bewijs gepresenteerd dat het herinstellen van de circadiane klok door licht van groot belang is voor adaptieve circadiane entrainment van Nasonia en de seizoensgebonden timing van diapause, maar het moleculaire mechanisme waarmee het circadiane systeem van Nasonia of andere vliesvleugelige insecten entraineren aan licht is nog steeds niet bekend. In tegenstelling tot Drosophilidae, encoderen vliesvleugeligen de lichtgevoelige klokproteïne Cryptochrome niet; zij encoderen het zoogdierachtige Cryptochrome dat niet gevoelig is voor licht. De klok van zoogdieren reageert op licht door 'immediate early gene' inductie van per1 en vervolgens per2 via een CREB signaalroute (Albrecht et al. 1997; Shearman et al. 1997; Shigeyoshi et al. 1997; Travnickova-Bendova et al. 2002). Om het circadiane lichtherstellingsmechanisme van de klok van Nasonia te identificeren en te lokaliseren, hebben we lichtgeïnduceerde 'immediate early gene' inductie getest van canonieke klokgenen (Hoofdstuk 5). Daarbij hebben we opsine-gen expressie gemeten om het mogelijke mechanisme te identificeren waarmee het verschil in lichtgevoeligheid tussen de noordelijke en zuidelijke lijnen zou kunnen worden verklaard (Hoofdstuk 5). Onze resultaten ondersteunen het idee van circadiane aanpassing door licht door 'immediate early gene' inductie van klokgenen niet. Ook de opsin-metingen biedden geen verder inzicht in de onderliggende processen en hiermee belangrijke verschillen tussen de twee lijnen. Verder onderzoek is nodig om mechanismen van circadiane klokverschuivingen door licht te verklaren in vliesvleugeligen.

(28)
(29)

Time flies! Well, depends ;). After 6.5 years I am happy, proud, exhausted and still surprised to be able to close this chapter of my life with this piece of work and a PhD degree! But I couldn’t have done this without massive support by a big group of people.

First of all, I would like to thank my supervisors Roelof Hut and Domien Beersma. I enjoyed the stimulating discussions, the meetings and the exchange of opinions about our research a lot. Thank you for your enthusiasm, your interest and support. Roelof, your passion for science and chronobiology has always been very inspiring and infectious. I am deeply grateful that you believed in the project and me as a scientist and never lost patience with me (at least not that you have shown it to me ;) )! Domien, you do not force your opinion on anyone, but you have always been interested and when asked, you always were up for a good advice. With your calm way, you could even restrain my nervousness and stress level before presentations. Thank you a lot for that as well.

Many thanks to the assessment committee (Bregje Wertheim, Jeff Harvey, Bambos Kyriacou) for taking the time to read and approve this thesis and to the PhD Examining Committee (Barbara Helm, Jeff Harvey, Bambos Kyriacou, Peter Meerlo, Ralf Stanewsky) for accepting to take part of the PhD graduation ceremony.

My project was part of the European Initial Training Network “INsecTIME” and I feel very privileged that I could be part of a group of wonderful personalities and great scientists! Our meetings and conversations have been very inspiring, we have learnt a lot from each other and had a great time together.

My dearest paranymphs Giulia & Meghan, I couldn’t imagine this phase of my life without you! You are my ladies in crime! I’m very thankful for the time we spent together in Groningen, the fun, the frustration, the parties and drama. You have become my best friends and although now there is quite some distance between us, thanks to modern communication technology there is not a week without us communicating somehow. But of course, I miss our girls nights, weekend trips and lunch, talking a mix of science, Dutch singularities, politics, reality TV shows, feminism, students and many other things. Thank you for your friendship and the many great experiences we have shared together!!

A giant thank you to the entire Chrono Lab! Namely Vincent, Tom, Sjaak, Moniek, Simone, Renske, Emma, Marijke, Menno, Peter, Laura, Lauren, Sjoerd. You are amazing! Although my insect project didn’t entirely match with your work, you always showed great interest in my work and provided helpful advices. Besides work, it was fun have a little chit chat in the hallway or going for a Friday afternoon/evening/night borrel, traveling to conferences or having a nice sushi dinner together. I really enjoyed the time we spent together! Special thanks to Vincent, my first friend in the Netherlands. Tom, my Dutch translator with a most wonderful dry humour and Renske who hosted me so often when I came back to Groningen to work with Roelof or when I needed somebody for a quick Dutch-English translation or a companion for a glass of wine ;). I really appreciate your friendships!

Thanks to the Nasonia Lab! Anna and Silvia for teaching me the handling with the animals and for helping out when needed, thanks Leo and Louis for interesting discussions and helpful

Referenties

GERELATEERDE DOCUMENTEN

dbt and pdf of the northern (A, C, E, G) and southern line (B, D, F, H) in response to a light pulse applied at ZT20 comparing groups illuminated (triangles; open triangles

We did not question the involvement of the circadian clock in seasonal timing measurement, which was shown before in Nasonia (Saunders 1970, 1974), instead we made an attempt to

Strong circadian light sensitivity and a broad phase angle of entrainment can explain photoperiodic response in different T-cycles by applying the external

Variation in circadian free-running period in Nasonia vitripennis is necessary for adaptation of seasonal diapause induction to different latitudes (Chapter 2). The

This research has been carried out at the Groningen Institute for Evolutionary Life Sciences (GELIFES) of the University of Groningen (The Netherlands), according to the

I will investigate the possible role of clock genes in photoperiodism and diapause induction in the wasp Nasonia vitripennis, making use of natural

This different timing of activity reflects the speed of the clock in constant darkness (DD): southern lines show shorter free running rhythms (τ) close to 24h (faster

For the clock genes period (per), chryptochrome-2 (cry-2), clock (clk) and cycle (cyc), circadian expression depending on photoperiod and latitude of origin was analysed