• No results found

Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid

N/A
N/A
Protected

Academic year: 2021

Share "Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO 2 reduction to formic acid

Yuvraj Y. Birdja

a

, Jing Shen

a,b

, Marc T.M. Koper

a,∗

aLeidenInstituteofChemistry,LeidenUniversity,POBox9502,2300RALeiden,TheNetherlands

bChemistryandChemicalEngineeringDepartment,HunanInstituteofEngineering,Xiangtan,China

a r t i c l e i n f o

Articlehistory:

Received22August2016

Receivedinrevisedform23January2017 Accepted27February2017

Availableonline23March2017

Keywords:

Carbondioxidereduction Hydrogenevolution Formicacidformation Immobilizedmolecularcatalysts Metalloporphyrins

a b s t r a c t

Electrocatalyticconversionofcarbondioxidehasgainedmuchinterestforthesynthesisofvalue-added chemicalsandsolarfuels.Importantissuessuchashighoverpotentialsandcompetitionofhydrogen evolutionstillneedtobeovercomefordeeperinsightintothereactionmechanisminordertosteerthe selectivitytowardsspecificproducts.Hereinwereportonseveralmetalloprotoporphyrinsimmobilized onapyrolyticgraphiteelectrodefortheselectivereductionofcarbondioxidetoformicacid.Noformic acidisdetectedonCr-,Mn-,Co-andFe-protoporphyrinsinperchloricacidofpH3,whileNi-,Pd-,Cu- andGa-protoporphyrinsshowonlyalittleformicacid.Rh,InandSnmetalcentersproducesignificant amountsofformicacid.However,thefaradaicefficiencyvariesfrom1%to70%dependingonthemetal center,thepHoftheelectrolyteandtheappliedpotential.Thedifferentiationofthefaradaicefficiency forformicacidonthesemetalloprotoporphyrinsisstronglyrelatedtotheactivityoftheporphyrinfor thehydrogenevolutionreaction.CO2reductiononRh-protoporphyrinisshowntobecoupledstronglyto thehydrogenevolutionreaction,whilstonSn-andIn-protoporphyrinsuchstrongcouplingbetweenthe tworeactionsisabsent.TheactivityforthehydrogenevolutionincreasesintheorderIn<Sn<Rhmetal centers,leadingtofaradaicefficiencyforformicacidincreasingintheorderRh<Sn<Inmetalcenters.

In-protoporphyrinisthemoststableandshowsahighfaradaicefficiencyofca.70%,atapHof9.6and apotentialof−1.9VvsRHE.Experimentsinbicarbonateelectrolytewereperformedinanattemptto qualitativelystudytheroleofbicarbonateinformicacidformation.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Inthepastfewdecadestheconsequencesofanthropogeniccar- bondioxideaccumulationintheatmospherehavebeenaddressed repeatedly.Itisnowadaysgenerallyacceptedthattheincreasing carbondioxidelevels intheatmosphere poseseriousproblems ifnoactionistaken[1].TheemissionofCO2hasincreasedsince theindustrialrevolution,leadingtoanincreasedamountofCO2in theatmosphere[2].AccumulationofatmosphericCO2leadstothe greenhouseeffectwhichcontributestoglobalwarmingandclimate change.Anotherimportantsustainabilityissueisthedepletionof fossilfuelsourceswhichiscausedbyanincreasingworldpopu- lationandachanginglifestyle,resultinginanincreasingenergy demand.Mankindisstillstronglydependentonfossilfuelsforits energyconsumption.Adrawbackoftheuseoffossilfuelsisthe

∗ Correspondingauthor.

E-mailaddress:m.koper@chem.leidenuniv.nl(M.T.M.Koper).

productionofCO2aftercombustionwhichisoftensimplyreleased in the atmosphere. In the past couple of years much research hasbeendonetomitigateCO2accumulation[3–6]andsearchfor renewableenergysources[7–9].ApromisingwaytoutilizeCO2

isbyelectrochemicalCO2 conversion.Comparedtoothermeth- odstheadvantageofelectrochemicalconversion,whenoperational onanindustrialscale,istwo-fold:itreducestheCO2emissionsin theatmosphereononehand,anditproducesrenewablefuelsand commoditychemicalsontheother.Moreover,additionaladvan- tagesarethefactthattheprocesscanbecarriedoutatambient conditions,watercanbeusedashydrogensourceand,iftheelec- tricityusedisproducedfromrenewablesources,onecancontribute toacompletelysustainablecarboncycle.However,therearestill significanthurdleswhich shouldbeovercomeorcircumvented, suchasthecompetitionofthehydrogenevolutionreaction,high overpotentialsforCO2reduction,poorsolubilityofCO2inaqueous mediaandthepoorselectivityforspecificfuels.Forimplementa- tioninthecurrentinfrastructure,liquidfuelsaremoreconvenient thangaseousfuels.Thereforemuchworkhasbeenfocusedonthe http://dx.doi.org/10.1016/j.cattod.2017.02.046

0920-5861/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

selectiveproductionofmethanol,ethanolandformicacid.These fuelscanbeemployeddirectlyinfuelcellstoproduceelectricity (e.g.DirectMethanolFuelCellandDirectFormicAcidFuelCell).

ElectroreductionofCO2toformicacidislesscomplexandthere- foreeasiertooptimizecomparedtoalcohols,asonlytwoelectrons needtobetransferred.

Molecularcatalystshave been gaining more attentionlately as they are relatively inexpensive and more abundantly avail- ablecomparedto(noble)metalcatalysts.Theyusuallyshowhigh activitiesandgood selectivitiesforvarious reactionswhich can betunedbymodifyingthecatalystwithadditionalligands,using electron-donating or electron-withdrawing groups [10–13]. In homogeneouselectrocatalysis,thesecatalystsareoftendissolved innon-aqueous solvents,astheyare poorlysoluble inaqueous electrolytes.Furthermore,largeamountsofcatalystareneededto dissolveintheelectrolyte.CO2canbindtoametalcenterwhich resultsinitsactivation[14]bya weakenedC–Ointeractiondue totransferofelectrondensity.Aftercoordinationtoametalcen- ter,reactionscantakeplacewhichwereinitiallynotpossiblefor freeCO2.Manydifferentmolecularcatalystshavebeenreported forCO2 reductionsuchasporphyrins,phthalocyanines,cyclams, phosphinesandpolypyridines[15,16].

Immobilizationofmolecularcatalystsshouldinprinciplecom- binethebestofbothworlds:molecularcatalysisonheterogeneous surfaces[17,18].Asystemwithhighefficiencyandselectivitycan be createdwhereby the catalyst structure can be modified by additionofspecificligandse.g.tochangethecatalystelectronic propertieswhichisveryusefulformechanisticstudiesorcontrol- lingtheselectivity.Furthermore,onlyasmallamountofthecatalyst isrequiredandevencatalystsinsolubleincertainsolventscanstill beusedwhenimmobilized onasurface.Deactivation processes oftenencounteredinhomogeneoussystems,suchasdimerization andaggregationofthecatalyst,canbecircumvented.Inthelit- eraturemanydifferent systemsbased onimmobilizedcatalysts havebeendescribed:covalentattachmentofthecatalystbyusing e.g.aryldiazoniumsalts,4-aminopyridine[19–21],non-covalent attachmentofthecatalyst(drop-casting)[22,23]anddispersionof thecatalystinpolymerfilms[24–27].

In this work we will focus on one type of molecularcata- lysts,namelymetalloprotoporphyrins(MPPs)whichareasubgroup of the more general metalloporphyrins. Metalloporphyrins are complexesthatconsistofametalcenterwithinaheterocyclicmac- rocyclecomposedoffourpyrrolegroupsattachedtoeachother withmethinebridges.Protoporphyrinshavetwovinyl,twopro- pionicacidandfourmethylgroupsattachedtotheporphyrinring asshowninFig.1.Metalloprotoporphyrinsareanimportantpre- cursorforessentialmoleculesinbiologysuchastheheme-group inourredbloodcellsandchlorophyllsinplants(protoporphyrins withrespectivelyanFe2+andMg2+metalcenters).Furthermore ithasbeenshownthat (immobilized)metallo(proto)porphyrins aregoodcatalystsfore.g.theoxygenreductionreaction,hydrogen evolutionreaction,carbondioxidereductionandnitratereduction [28,10,16,29].SavéantandRobertandcoworkershaveconducted extensiveresearchonmolecularcatalystsforCO2 reductionand howtoinfluencetheselectivity[30,31].Theyrecentlyshowedthat COorHCOOHisproducedbychangingthemetalcenterofthecom- plex[32].Theselectivityissueisimportantfroma fundamental pointofviewandthereforealsothesubjectoftheoreticalstudies [33,34],inwhichithasbeenshownthatadifferentbindingmode ofCO2tothemetalcenterleadstoeitherCOorHCOOH.

Inthispaper,theselectivitytowardsformicacidisinvestigated experimentallywheretheroleofthemetalcenterisscrutinized bystudyingthepH effect,theconcomitanthydrogenevolution and thenature of the electroactivespecies (i.e., CO2 or HCO3) on different metalloprotoporphyrins immobilized on pyrolytic graphite.

Fig.1. Chemicalstructuremetalloprotoporphyrins.

2. Experimental

The electrochemical experiments were performedin a one- compartment three-electrode cell at room temperature and ambientpressure.Allglasswarewasfirstcleanedbyboilingina 1:1mixtureofconcentratedsulfuricandnitricacid.Beforeeach experimenttheglasswarewasboiledthreetimesinultrapurewater (MilliporeMilliQgradientA10system,18.2Mcm).Thelong-term electrolysisexperimentswerecarriedoutinatwo-compartment three-electrode cell(H-type cell), where theworking electrode (WE)andcounterelectrode(CE)compartmentswereseparatedby anafionmembrane(Nafion115).

TheWEwasapyrolyticgraphite(PG)discwithadiameterof 5mmor 10mm usedina hanging meniscusconfiguration.The largePGelectrodes wereusedfor HPLC measurementstogen- erate largeramounts ofproducts.The reportedcurrent density isnormalized bythegeometricsurface areaoftheWE.A plat- inumgauzeandareversiblehydrogenelectrode(RHE)inthesame electrolytewereusedasCEandreferenceelectrode(RE),respec- tively.Unlessmentionedotherwise, thepotentials inthispaper arereferredtothisreferenceelectrode.Priortoeachexperiment, theWEwaspolishedwithsandpaper(firstP600andthenP1000) andultrasonicatedforapproximately2–3mininwater.Blankcyclic voltammogramswererecordedatascanrateof500mVs−1until astablevoltammogramwasobtained(typicallyaround50cycles) toensureacleanPGsurface.Afterimmobilizationofporphyrinsa blankcyclicvoltammogramwasrecordedagaininordertoqualita- tivelyverifytheimmobilizationoftheporphyrin(asshowninFig.

S.1intheSI).Metalloprotoporphyrins(MPPs)wereimmobilizedon PGbydropcastingfroma0.01MboratesolutionofpH10inwhich theporphyrinwasdissolvedtoaconcentrationof0.5mM[35].

Electrolyte solutions were prepared with ultrapure water.

Pyrolyticgraphiteworkingelectrodeswerecutin-housefroma highpurity pyrolytic graphite plate(PY001009, GraphiteStore, USA).Highpuritychemicalswereused:perchloricacidandphos- phoricacid(MerckSuprapur),potassium phosphatemono- and dibasic (SigmaAldrich, TraceSelect), potassium phosphate trib- asic(SigmaAldrich,Reagentgrade),sodiumperchlorate (Sigma Aldrich,ACSreagent)andpotassiumbicarbonate(SigmaAldrich, tracemetalsbasis).AlltheporphyrinswerepurchasedfromFron- tierScientificandusedwithoutfurtherpurification.Beforeeach experimentthecellwasdeaeratedwithargon(Linde,Argon6.0 Scientific).ForCO2reduction,thecellwassaturatedwithCO2by

(3)

Fig.2. BulkpHoftheusedelectrolytesbeforeandafterCO2saturation.

purgingthecellwithCO2(Linde,Carbondioxide4.5)foratleast 20min.Hydrogen6.0Scientific(Linde)wasusedfortheRHEref- erence electrode. A -AutolabType III(MetrohmAutolab B.V.) wasusedfor voltammetricexperiments withsamplecollection andanIviumStatorCompactStat(IviumTechnologies)wasused toperformchronoamperometryandelectrochemicalimpedance spectroscopy.Experimentswerecarriedoutinunbufferedperchlo- ricacidofpH1and3andinavarietyofdifferentphosphatebuffer solutionsinthepHrangeof3–12(seeTableS.1intheSuppor- tingInformation).AlthoughtheactualpHwillbelowerwhenthe electrolyteissaturatedwithCO2,thedifferentelectrolyteswillbe referredtobytheirpHasmeasuredpriortoCO2saturation.Fig.2 showstherelationbetweenthepHbeforeandafterCO2saturation indicatingthatthepHafterCO2 saturationisapproximatelythe same(≈6.6)foralmostallneutralandalkalinephosphatebuffers.

Aswewillseelater,therearedifferencesbetweentheseinitially neutralandalkalineelectrolytesintermsoffaradaicefficiencies and product distribution. Therefore for a better discrimination betweenthedifferentelectrolyteswerefer tothem bytheini- tialbulkpH.ForcorrectmeasurementsversustheRHEscale,the LuggincapillaryandtheRHEcompartmentwerealsofilledwith CO2 saturated electrolyte. Furthermore,under reduction condi- tions,especially whenH2 isevolved,thepHneartheelectrode (“localpH”)maydifferfromthepHinthebulk.Thismayaffectthe onsetpotentialforproductformationaswellasproductselectiv- ity.Asquitehighcurrentswereobtained,especiallyattheø10mm PGelectrode,ohmicdropcouldnotbeneglected.Hence,thesolu- tionresistancewasdeterminedbypotentiostaticelectrochemical impedancespectroscopy.Theobtainedvaluewasusedtocorrect thevoltammogramsaftertheelectrochemicaldatawascollected.

Forchronoamperometry(electrolysisexperiments)thepotentio- stat’sIRcompensationfunctionwasusedtocompensateforohmic dropduringmeasurement.DetailscanbefoundintheSupporting InformationSection2.

OnLineElectrochemicalMassSpectrometry(OLEMS)wasuti- lizedforthedetectionofvolatilereactionproducts.Atip,which is placedclose (≈10␮m)totheelectrode surface, continuously collects volatilereaction productsfrom theelectrode interface.

Thetiphasadiameterof0.5mmandconsistsofaporousteflon cylinder(averageporesize10–14␮m)inaKel-Fholderandiscon- nectedtoanEvoLutionmassspectrometer(EuropeanSpectrometry SystemsLtd.)byaPEEKcapillary[36].AQuadrupoleMassSpec- trometerPrismaQMS200(Pfeiffer)isbroughttovacuumwitha TMH-071Pturbomolecularpump(60ls−1,Pfeiffer)andaDuo2.5 rotaryvanepump(2.5m3h−1,Pfeiffer).Priortoexperiments,the tipwascleanedin0.2MK2Cr2O7 in2MH2SO4 andrinsedwith

ultrapurewater.ASEMvoltagebetween1200Vand2400Vwas usedforthedifferentmassfragments.Allmassfragmentsshoweda decayduringmeasurementwhichistheresultofslowequilibration ofthepressureinthesystem.Thiswascorrectedforbysubtracting adoubleexponentialfittodatapointswherenochangeinactivity isobservedfromthewholedataset.Themassfragmentsshownin thispaperareallbackgroundcorrectedinthismanner.

OnlineHighPerformanceLiquidChromatography(onlineHPLC) isthetechniqueemployedtoanalyzenon-volatilereactionprod- ucts.AsimilartiptotheoneforOLEMS,however,withoutaporous tefloncylinder,isplacedneartheelectrodesurface[37].Samples witha volumeof60␮lwerecollectedwitha fractioncollector (FRC-10A,Shimadzu)atarateof60␮lmin−1(LC-20ATpump,Shi- madzu).Sincethescanrateofthepotentialsweepduringsample collectionwas1mVs−1,eachsampleheldtheaveragedconcentra- tionofa60mVpotentialdifference.Thesampleswereanalyzed aftervoltammetrywithHPLC(ProminenceHPLC,Shimadzu).The sampleswereplacedinanauto-sampler(SIL-20A)whichinjects 20␮lofthesampleintothecolumn.AnAminexHPX87-H(Bio- Rad)columnwithaMicro-GuardCationHCartridge(Bio-Rad)in frontwereused.Theeluentwas5mMH2SO4andtheeluentflow rate0.6mlmin−1.Thecolumnand therefractiveindex detector (RID-10A)weremaintainedatatemperatureof35C.

The reported results were all reproduced at least twice andallelectrochemicalmeasurements(CV, OLEMS,onlineHPLC andChronoamperometry)showedqualitativelythesameresults (HCOOH trend,current densities,onset potentials, etc.).Froma quantitativepointofview,theresultssometimescouldbeslightly different,which is ascribedtoa differentPGsurface each time afterpolishingthePGelectrodeascanbeobservedfromtheblank voltammogramsrecordedpriortotheexperiments.Thisisalsothe reasonthatforthestandarderroranalysisintheHPLCresults,only theconcentrationanalysisofliquidphase istakenintoaccount (concentrationsareoftenlowandthebaselinenoisy,whichleads todifferentpeakareasfordifferentexperiments).

3. Resultsanddiscussion

3.1. ActivityofmetalloprotoporphyrinsinperchloricacidpH3

Foraproperattributionoftheeffectofthemetalcenteronthe activityorselectivityfor theelectrocatalyticCO2 reduction, the influenceofthebaresubstrate(PG)andtheporphyrinmacrocycle shouldfirstbeknown.Therefore,CO2reductiononpristinePGand onmetal-lessorfreebasePPimmobilizedonPG(denotedasPP- PG)wasinvestigated.WithonlineHPLCduringvoltammetryitwas confirmedthatnoformicacidorotherliquidproductsareproduced atanypotentialonpristinePGnoronPP-PG.On-LineElectrochem- icalMassSpectrometryshowedthattheonlyproductfromCO2

reductiononPGandPP-PGisH2 (seeFig.S.2intheSupporting Informationandalsoreference[38]).

Someoftheinvestigatedprotoporphyrinswithcertainmetal centersproducenoformicacidoramountslowerthanthedetec- tionlimit.TheseprotoporphyrinshaveaCr,Mn,CoorFecenter.

WithOLEMS,nogaseousproductsotherthanH2areobservedon MnPP,InPP,CrPP,SnPPandGaPP(Fig.S.4).OnFePP,RhPPandCuPP smallamountsofCH4aredetectedandonNiPPsmallamountsof COandCH4aredetectedasshowninFig.S.5.CoPPwasrecently showntoproduceCOatpH3withhighfaradaicefficiencybutno formicacidwhichisinagreementwithourresults.Moreover,a loweramountofCOwasformedatpH1togetherwithmethane andasmallamountofformicacid[38].Comparingthecurvesin Fig.3,it canbeseenthat PP-PGhasalowercurrent compared tothepristinePG.TheotherMPPsshowhighercurrents,indicat- ingthatthemetalloprotoporphyrinsareactiveforthehydrogen

(4)

Fig.3. LinearsweepvoltammetryinCO2saturated0.001MHClO4+0.099MNaClO4. Scanrate:1mVs−1.

evolutionreaction(HER)orCO2reduction,whilePPpresumably blocksactivesitesforHERandCO2reductiononPG.Thisconfirms thatthemetalcenterisofimportanceforcatalysis.Thefluctuations intheCVatverynegativepotentialsaretheresultofH2 bubble formationandtheirdetachmentfromtheelectrodesurface.The currentspikesappearskewedinsomeofthelatervoltammograms becauseofthepost-measurementOhmicdropcorrection.

InadditiontotheMPPswhich arenotactiveforformicacid productionfromCO2,thereisasetofMPPswhichproducetrace amountsofformicacid,asshowninFig.4a.ThesearetheMPPswith Ni,Ga,PdorCumetalcenters.Theresultshavebeenreproducedand thestandarderrorsintheconcentrationareshowninthegraphsas well.OLEMSresultsagaindonotshowsignificantamountsofother CO2reductionproductsbesidesH2.

ThemostinterestingMPPsforthisstudyareSnPP,InPPandRhPP astheseareabletoproducesignificantamountsofformicacidfrom CO2asseeninFig.4b.AswiththeotherMPPstherearenosignif- icantamountsofreactionproductsotherthanH2 observedwith OLEMS.Alloftheseprotoporphyrinsshowthesametrendinformic acidconcentrationduringLinearSweepVoltammetry,withSnPP andRhPPhavingaslightlylessnegativeonsetpotentialforHCOOH formationthanInPP.InandSnmetalcenterswerealsoidentifiedto beactiveforCO2reductiontoformicacidonphtalocyanineswhich aresimilarmolecularcatalyststoporphyrins[39].Moreinterest- ingisthefactthatRhPPproducessignificantamountsofformic

Fig.5. CO2reductiononPGinRhPPcontainingelectrolytesandimmobilizedRhPP onPG.Electrolytesolution0.001MHClO4+0.099MNaClO4.Scanrate:1mVs−1.

acidfromCO2.IthasbeenreportedthatInandSnmetalelectrodes mainlyproduceHCOOH,whileRhmetalmostlyformsH2[40].Rh metalonlyshowsactivityforCO2reductionatelevatedpressures [41].Rhcomplexeshavebeenshowntobeactiveforhydrogena- tionofCO2 toformicacid,albeitthattheyoftendonotoperate inaqueousmediawithoutspecificligands[42–44].Muchresearch hasbeendoneonCO2hydrogenationtoformicacid,butelectrocat- alyticreductionofCO2toformicacidonRhporphyrinsorsimilarRh molecularcatalystshasnotbeeninvestigatedindepth.Olderwork existsonRhcomplexesdissolvedinnon-aqueousmedia[45,46]for whichformicacidproductionwasalsoobserved.

InFig.5,acomparisonismadebetweenimmobilizedRhPPon PGanddifferentamountsofRhPPintheelectrolytewithapristine PGelectrode.ThecurrentdensitiesandthetrendsinHCOOHcon- centrationaresimilar.However,atacertainpotentialtheformic acidconcentrationreachesamaximumandstartstodecreasefor RhPPinsolution,whiletheRhPP-PGelectrodecontinuestopro- duceformicacid.ThemaximumforRhPP-PGishigherandatmore negativepotentialscomparedtoRhPPinsolution.Anotherobser- vationisthatalargerconcentrationofRhPPinsolutionleadsto aloweramountofformic acidproduced. Thiscanbeexplained byinhibition of activesiteswithmore RhPPmolecules present in solution. These results show thesuperiority of immobilized

Fig.4.Formicacidproductiononmetalloprotoporphyrinsin0.001MHClO4+0.099MNaClO4.Scanrate:1mVs−1.

(5)

Fig.6.CO2reductiononformicacidproducingMPPsin(a)0.1MHClO4and(b)phosphatebufferofpH6.8.Scanrate:1mVs−1.

metalloprotoporphyrinswithrespecttometalloprotoporphyrins dissolvedintheaqueouselectrolyte.

3.2. Activityofmetalloprotoporphyrinsinotherelectrolytes

TheformicacidproducingMPPsfromthepreviousparagraph werestudiedfortheirpHdependenceisinvestigatedinorderto obtainmoremechanisticinsight.Theaimistodeducetheoriginof theactivityofRhPPforCO2reductiontoformicacidandidentify possibledifferencesbetweentheMPPsaswellastoidentifythe optimalconditionsforformicacidformation.

Inthe0.1MHClO4electrolyte,alloftheseMPPsproducesignif- icantlylessformicacidthaninpH=3HClO4electrolyteasshown inFig.6a.Interestingly,adifferencebetweenthethreeformicacid producingMPPsisobserved.InpH1InPPandRhPPstillproduce someHCOOHwhileSnPPonlyshowsnegligibleamountsofHCOOH.

ThecurrentgeneratedbytheInPPismuchsmallercomparedto thatoftheotherporphyrins.Thisisascribedtoa loweractivity forhydrogenevolution,whichalsoinfluencesthefaradaicefficien- ciesaswillbediscussedinafollowingsection.Moreover,theonset potentialsofthecurrentprofilesoftheMPPsarequitedifferent, inthatRhPPhastheleastnegativeonsetpotentialandInPPthe mostnegativeonsetpotential.Thisisprobablyassociatedwitha differenceinactivityfortheHERontheseMPPs.InpH6.8(0.1M

phosphatebuffer)comparableamountsofformicacidareformed asinpH3,asillustratedinFig.6b.

Differentphosphatebuffersolutionswereusedforthestudyin electrolyteswithapHrangefrom3till12.Eventhoughthebulk pHwillbelowerwhentheelectrolyteissaturatedwithCO2,the differentelectrolyteswillbereferredtobytheirpHasmeasured priortoCO2saturation.Theformicacidproductionduringtheneg- ativepotentialsweeponthethreeHCOOH-producingMPPsinthe differentelectrolytesisshowninFigs.7a–9a.Thecurrentprofilesof RhPPshowaplateaubetween−0.9Vand−1.5V(seeinset)while InPPandSnPPshownosuchplateaucurrent(thisisalsovisible inFigs.4b and6b).OnRhPPtheformic acidconcentrationpro- fileshowsamaximumwhichappearstobeatpotentialswithin thisplateauregion.Moreover,theHCOOHconcentrationprofiles forRhPPareslightlyshiftedtowardspositivepotentialsforhigher pHwhereasthoseforInPPandSnPPdonotshowsuchapotential shift.Thisisbettervisiblewhentheconcentrationprofilesarenor- malizedbytheirmaximumconcentration(asshowninFig.S.6in theSI).InthesameFigs.7b–9bthehydrogenevolutioncurrenton thethreeMPPsisshowninthesameelectrolytes.Inthesevoltam- mogramsnocurrentplateauregionisobservedasforCO2reduction onRhPP,implyingthatthisplateaufeatureisspecificallyrelatedto CO2reduction.Moreover,thereisacleardistinctionbetweenthe currentprofilesinthedifferentphosphatebufferelectrolytesforall

Fig.7.CO2reduction(a)andhydrogenevolution(b)onRhPPinelectrolyteswithdifferentpHs.

(6)

Fig.8. CO2reduction(a)andhydrogenevolution(b)onInPPinelectrolyteswithdifferentpHs.

Fig.9. CO2reduction(a)andhydrogenevolution(b)onSnPPinelectrolyteswithdifferentpHs.

MPPs.Theonsetofhydrogenevolutionseemsstronglyrelatedto thepHofthephosphatebuffers.AthighpH(11.6)thereislessneg- ativeonsetofH2 evolutionandveryhighcurrents,whilelowpH (4and5.8)showsamorenegativeonsetpotentialforHERandthe currentsarelow.Ingeneral,thecurrentsaremuchhigherforRhPP comparedtoInPPandSnPP,indicatingthebetteractivityofRhPPfor theHER.ComparingthecurrentprofilesforCO2reductionandHER onallthreeMPPs,theHERissomewhatinhibitedbyCO2reduction asthereductiononsetisdelayedtomorenegativepotentialand thecurrentsaremuchlower.ForRhPPtheonsetoftheHERisclose to/withintheplateauregion.ThemaximumHCOOHproduction alsolieswithinthispotentialrangeandshiftstopositivepoten- tialswithhigherpH.AsthemaximumofHCOOHproductioncan beinterpretedtobetheresultofthecompetitionbetweenhydro- genevolutionandCO2 reduction,itseemsplausibletoassociate thecurrentplateauwiththiscompetition.Thefactthatthecurrent plateauisnotobservedforInPPandSnPPcouldbeduetothedecou- plingorweakcouplingbetweenCO2reductionandHERonthese materials.TheonsetpotentialoftheHERismorenegativeforSnPP andInPPcomparedtoRhPP.ThecompetitionofCO2reductionand HERisimportantforhighfaradaicefficienciestowardsHCOOHas willbediscussedinalatersection.

To investigate thepH effect more quantitatively, we define the onset potential for HCOOH and H2. The onset potential is

determinedbased ontheHCOOHconcentrationprofileandthe currentprofiles.Theonsetpotentialbasedontheconcentration isdefinedastheaveragepotentialofthepotentialswherethecon- centrationofHCOOHreaches0.01mM,0.03mMand0.05mM.The potentialscorrespondingtothesedifferentconcentrationsleadto asimilartrend.ThisisshowninFig.S.7intheSupportingInfor- mation.Similarly,theonsetpotentialbasedonthecurrentdensity isdefinedastheaverageofthepotentialscorrespondingtodif- ferentcurrentdensitieswithintherangeof0.25–1mAcm−2.The onsetpotentialsareconverted totheNHEscale,and thetrends forthe3MPPsareshowninFig.10.Thedatawithintheshaded areacorrespondtothephosphatebufferelectrolytes.Notethatthe analysisoftheonsetpotentialsisonlyperformedforabettercom- parisonbetweenthedifferentMPPsandnottoderiveunderlying mechanisticinformation.ThedifferenceinpHbeforeandafterCO2

saturationasmentionedintheexperimentalsection,willnotaffect theseresults,sincealltheMPPsaremeasuredinthesameelec- trolyte.Thebuffercapacityoftheelectrolytemayplayanimportant roleontheselectivityforCO2reduction[47,48].AsshowninFig.

S.10,ahigherbuffercapacityleadstohighercurrentsandaffectsthe catalyticactivityoftheporphyrintowardsformicacid.Therefore, theelectrolytepHisnottheonlyfactorinfluencingthecatalytic activityoftheimmobilizedporphyrinsTheonsetpotentialsatpH 1are quitedifferent,becausetheinfluenceof protonreduction

(7)

Fig.10.Onsetpotentialsbasedon(a)thecurrentforCO2-saturatedsolution,(b)theHCOOHconcentrationprofile,(c)themaximumconcentrationofHCOOHand(d)the currentoftheHER.

isdominanthere.AscanbeseeninFig.10a,theonsetpotential showsalineardependenceonpHforallMPPs.ThepHdependence (slope)isnotthesameforthethreeMPPs.Theonsetpotentialof SnPPshiftswith53±2mVpH−1whileforInPPandRhPPtheyshift with36±5 and35±4mVpH−1.Aslopeof 59mVpH−1 onthe NHEpotentialscalewouldindicatea concertedproton–electron transfermechanism[49].ItisdifficulttosayifSnPPfollowsacon- certedproton–electron transfermechanism solelybased onthe analysisoftheonsetpotentials.However,theresultsindicatethat thereisprobablyadifferenceinmechanismbetweenSnPPonone handand RhPPand InPPontheotherhand.Anotherdistinction betweenSnPPandRhPPorInPPisthefactthatatpH11.6only smallamountsofHCOOHareformedonSnPP,whilereasonable amountsofHCOOHareproducedonInPPandRhPP.ForRhPPsim- ilarpHdependencesareobservedfortheonsetofHCOOHandfor H2 formation(Fig.10aandd),indicatingthattheCO2 reduction toHCOOHonRhPPiscoupledtotheconcomitantHER,asalready suggestedbefore.InPPandSnPPdonotexhibitaclearlinearpH dependenceforHER(seeFig.10d),whichsuggeststhatthetrend observedinFig.10aisrelatedtotheCO2reductionratherthanto theHER.OnInPPandSnPP,CO2reductionandHERarenotstrongly coupled,asconcludedbefore.OnRhPPthepotentialsofmaximum HCOOHproduction(Fig.10c)showasimilarslopetothatofthe onsetpotentialsofHCOOH(Fig.10b)confirmingtheearlierobser- vationofapotentialshiftoftheconcentrationprofileswithpH,in contrasttoInPPandSnPPwhereasimilarslopeisonlyobserved

fortheHCOOHmaximaandonsetpotentialofthecurrent(Figs.10a andc).Furthermore,theonsetpotentialsofRhPParealwaysatmore positivepotentialscomparedtothoseofInPPandSnPP.Thisdiffer- enceinonsetpotentialsconfirmsthatRhPPismoreactiveforthe HER.

3.3. Faradaicefficiencies

ForafurthercomparisonoftheactivitybetweentheMPPs,the faradaicefficienciesweredeterminedduring2helectrolysisina two-compartmentcell.Thefaradaicefficienciesforformicacidin HClO4,pH3forallthethreeMPPsatdifferentpotentialsareshown asfunctionoftimeinFig.11.ForRhPPandSnPPthefaradaiceffi- cienciesalwaysdecaywithtimetovaluesof≈1–2%.Interestingly InPPseemstoreachasteadystatevalueof≈10–15%.Thisindicates thattheimmobilizedporphyrinsonPGarenotverystableordeac- tivateratherquickly,especiallyRhPP-PGandSnPP-PG.Improving theperformanceoftheimmobilizedporphyrinsisbeyondthescope ofthispaper.However,webelievethatthedeactivationisrelated tothecatalystinsteadofdepositionofpoisoningspeciesonthe surfaceorblockageoftheactivesitesbyintermediates.Asshown inFig.S.9theblankvoltammogramoftheimmobilizedporphyrin onPGiscomparedwiththeblankvoltammogramafterCO2reduc- tionorHER.Itcanbeseenthattheporphyrin-specificredoxpeaks havedisappearedandthebackgroundcurrenthaschanged.There- forewe believe thatthe decreasein activityis associated with

(8)

Fig.11.Faradaicefficienciesin0.001MHClO4+0.099MNaClO4ondifferentMPPs asfunctionoftime.

deactivationoftheporphyrinstructureordetachmentofthepor- phyrinfromPG.Itis assumedthat thevery negativepotentials ultimatelyaredestructivefortheimmobilizedporphyrins.RhPP showslowerfaradaicefficienciescomparedtoSnPPwhichinturnis lowercomparedtoInPP.Thefaradaicefficienciesdeterminedafter 10mininHClO4pH=3areplottedagainsttheappliedpotentialsin Fig.13a.Thepotentialwherethehighestfaradaicefficienciesare obtainedinpH3isaroundE=−1.3VforRhPP,aroundE=−1.9V forInPP,andapproximatelyE=−1.5VforSnPP.Thistrenddepends

ontheelectrolyte,ascanbeseeninFig.12b,wherethesameis depictedforaphosphatebufferofpH5.8.Whenonlyexperiments atanappliedpotentialofE=−1.5Vareconsidered,theinfluence ofthepHcanberevealedasseen inFig.S.8intheSI. Theini- tialfaradaicefficiencyofthedifferentMPPsasa functionofpH isshowninFig.13.ThefaradaicefficiencyofInPPatpH9.6seems tobeoptimalandreachesavaluecloseto70%.

3.4. Electroactivespecies

ThefactthateveninquitealkalineelectrolytesHCOOHispro- duced,couldindicatethatnot(only)CO2istheelectroactivespecies butforinstancebicarbonateisinvolvedintheformationofformate.

IntheliteratureonelectrocatalyticCO2reductiontherehasbeen controversyabouttherealelectroactivespeciesduringCO2reduc- tionatdifferentpHandatdifferentcatalysts.OftendissolvedCO2 hasbeenidentifiedastheelectroactivespecies[50,51],butthere arealsosystemswherebicarbonatehasbeensuggestedtobethe keyreactantspecificallyfortheformationofformicacid/formate [52–56].

ToprobetheroleofHCO3,westudieddifferentconcentrations ofKHCO3aselectrolytewithandwithoutCO2saturation.InFig.14a itisshownthatahigherconcentrationofKHCO3leadstoalarger amountofHCOOHformedonRhPPwhennoCO2isspargedthrough thesolution.IftheelectrolyteissaturatedwithCO2anevenlarger amountofHCOOHisproduced.ThisisobservedforInPPandSnPP aswell,asshowninFig.14b.TheHCOOHconcentrationonInPPand SnPPisincreasedbyafactorofmorethan10whenCO2ispurged throughthesolution.TheseresultsgiveafirstimpressionthatCO2 shouldbethedominantelectroactivespecies,however,itisstill notconclusiveenoughtoruleoutHCO3asreactivespecies.OLEMS experimentsinKHCO3 withandwithoutCO2bubblingshownin Fig.15,indicatethatCO2doeshaveaninfluenceastheH2evolution andCO2consumptionaredelayed.EvenwithoutCO2 saturation, theCO2masssignaldecreasesduringthenegativepotentialsweep implyingthattheoriginoftheformedHCOOHistheKHCO3elec- trolyteitself.However,duringthenegativepotentialsweepthepH inthevicinityoftheworkingelectrodeincreasesasaresultofthe reactionsshowninEqs.(1)and(2).ThishigherlocalpHcouldlead toalocalconversionofCO2toHCO3 (Eq.(3)),whichmayinfluence thedirectbicarbonatereductionmechanismtoformate.Inprevi- ousstudies,directbicarbonatereductionhasbeensuggestedon palladium,leadandcopperelectrodes[53–56].Theexperiments performedinthisstudyonlyprovidequalitativeinformationabout theinfluenceofCO2 andHCO3.Thesimultaneousmeasurement ofthelocalconcentrationsofformate,CO2andbicarbonatedur- ing voltammetryis crucial in order to shedmore light on this debate.

2H++2e→H2 (1)

2H2O+2e→H2+2OH (2)

CO2+OH→HCO3 (3)

4. Conclusions

Inthisstudyweinvestigatedtheinfluenceofthemetalcen- terofmetalloprotoporphyrinsfortheelectrocatalyticreductionof CO2towardsformicacid.WefoundthatSn,InandRhmetalcen- tersareabletoproducesignificantamountsofHCOOHwhileNi, Ga,PdandCumetalcentersonlyshowtraceamountsofHCOOH.

MetalloprotoporphyrinswithCr,Mn,CoorFecentersdonotpro- ducemeasurableamountsofHCOOH.Moreover,immobilizingthe MPPsonPGshows increasedactivityand stabilitycomparedto homogeneouscatalysiswiththecomplexinsolution.

(9)

Fig.12. Faradaicefficienciesdeterminedatt=10min,asfunctionofpotentialin(a)0.001MHClO4+0.099MNaClO4and(b)phosphatebufferofpH5.8.

Fig.13.Faradaicefficienciesdeterminedatt=10min,atE=−1.5VasfunctionofpH.

Thehydrogenevolutionreactionplaysanimportantroleinthe differenceinactivitytowardsHCOOHformationonRhPP,InPPand SnPP.RhPPisthemostactiveforHERandInPPtheleastactive.

Consequently,InPPshowshighfaradaicefficiencytowardsHCOOH

formationfromCO2andRhPPlowfaradaicefficiency.SnPPliesin betweenwithmoderateactivityforHERand faradaicefficiency towardsHCOOH.Allcatalystsdeactivatewithtime,however,the deactivation of InPP seems to be less compared to RhPP and SnPP.

AllthreeHCOOH-producingMPPsshowapHdependencefor CO2reductionaswellasforHER.AtverylowpH,theprotonreduc- tionisdominantwhichresultsinlittleornoHCOOHformed.Atvery alkalinepHs,theHERalsoseemstobedominant,leadingtopoor selectivitytowardsHCOOH.TheoptimalpHisaround9.6forInPP andbetween7and10forSnPP.Theidealsituation(highestfaradaic efficiencies)isdifferentforthethreeMPPsintermsofelectrolyte solutionandappliedpotential.Thebestperformanceobservedin thisstudyisforInPPinpH9.6electrolytewherefaradaicefficiencies of≈70%wereobtained.

This workhighlights some important properties of metallo- protoporphyrinsforelectrocatalyticCO2reductiontoformicacid.

However,thereisnoconsensusyetabouttheelectroactivespecies for the formation of formic acid. Quantitative measurement of HCO3,CO2andHCOOHconcentrationsduringvoltammetrywould benecessary inthis respect.For a detailed investigationof the mechanism,thesupportoftheoreticalcalculationssuchasinRef.

[34]isalsodesirable.

Fig.14.CO2/HCO3reductioninKHCO3onthedifferentMPPs.Scanrate:1mVs−1.

(10)

Fig.15. H2andCO2signalsduringCO2/HCO3reductionin0.5MKHCO3.Scanrate:1mVs−1.

Acknowledgement

J.S.acknowledgestheawardofagrantfromtheChineseSchol- arshipCouncil.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2017.02.

046.

References

[1] I.Dincer,Environmentalimpactsofenergy,EnergyPolicy27(1999)845–854.

[2]R.K.Pachauri,L.A.Meyer(Eds.),ClimateChange2014:SynthesisReport.

ContributionofWorkingGroupsI,IIandIIItotheFifthAssessmentReportof theIntergovernmentalPanelonClimateChange,IPCC,Geneva,Switzerland, 2014.

[3]S.Bachu,CO2storageingeologicalmedia:role,means,statusandbarriersto deployment,Prog.EnergyCombust.Sci.34(2008)254–273.

[4]S.I.Plasynski,J.T.Litynski,H.G.McIlvried,R.D.Srivastava,Progressandnew developmentsincarboncaptureandstorage,Crit.Rev.PlantSci.28(2009) 123–138.

[5]M.Aresta,A.Dibenedetto,Thecontributionoftheutilizationoptionto reducingtheCO2atmosphericloading:researchneededtoovercomeexisting barriersforafullexploitationofthepotentialoftheCO2use,Catal.Today98 (2004)455–462.

[6]N.S.Spinner,J.A.Vega,W.E.Mustain,Recentprogressintheelectrochemical conversionandutilizationofCO2,Catal.Sci.Technol.2(2012)19–28.

[7]N.L.Panwar,S.C.Kaushik,S.Kothari,Roleofrenewableenergysourcesin environmentalprotection:areview,Renew.Sustain.EnergyRev.15(2011) 1513–1524.

[8]H.Lund,Renewableenergystrategiesforsustainabledevelopment,Energy32 (2007)912–919.

[9]R.Ba ˜nos,F.Manzano-Agugliaro,F.G.Montoya,A.Alcayde,C.Gil,J.Gómez, Optimizationmethodsappliedtorenewableandsustainableenergy:a review,Renew.Sustain.EnergyRev.15(2011)1753–1766.

[10]A.Lü,Y.Fang,M.Zhu,S.Huang,Z.Ou,K.M.Kadish,Dioxygenreduction catalyzedbysubstitutedirontetraphenylporphyrinsinacidicmedia,J.

Porphyr.Phthalocyanines16(2012)310–315.

[11]C.Costentin,S.Drouet,M.Robert,J.-M.Savant,Alocalprotonsourceenhances CO2electroreductiontoCObyamolecularFecatalyst,Science338(6103) (2012)90–94.

[12]S.-i.Yamazaki,Y.Yamada,S.Takeda,M.Goto,T.Ioroi,Z.Siromaa,K.Yasuda, Effectsofp-substituentsonelectrochemicalCOoxidationbyRh

porphyrin-basedcatalysts,Phys.Chem.Chem.Phys.12(2010)8968–8976.

[13]A.Ghosh,Acomparisonofortho,meta,andparasubstituenteffectsin tetraphenylporphyrins:insightsintothenatureoftheporphyrin-phenyl electronicinteraction,J.Mol.Struct.(Theochem)388(1996)359–363.

[14]M.E.Vol’pin,I.S.Kolomnikov,Reactionsofcarbondioxidewithtransition metalcompounds,PureAppl.Chem.33(4)(1973)567–582.

[15]E.E.Benson,C.P.Kubiak,A.J.Sathrum,J.M.Smieja,Electrocatalyticand homogeneousapproachestoconversionofCO2toliquidfuels,Chem.Soc.

Rev.38(2009)89–99.

[16]J.L.Inglis,B.J.MacLean,M.T.Pryce,J.G.Vos,Electrocatalyticpathwaystowards sustainablefuelproductionfromwaterandCO2,Coord.Chem.Rev.256 (2012)2571–2600.

[17]R.W.Murray,Chemicallymodifiedelectrodes,Acc.Chem.Res.13(1980) 135–141.

[18]W.A.Herrmann,C.W.Kohlpaintner,Water-solubleligands,metalcomplexes, andcatalysts:synergismofhomogeneousandheterogeneouscatalysis, Angew.Chem.Int.Ed.Engl.32(1993)1524–1544.

[19]A.Yes¸ilda˘g,D.Ekinci,Covalentattachmentofpyridine-typemoleculesto glassycarbonsurfacesbyelectrochemicalreductionofinsitugenerated diazoniumsalts.Formationofrutheniumcomplexesonligand-modified surfaces,Electrochim.Acta55(2010)7000–7009.

[20]T.Atoguchi,A.Aramata,A.Kazusaka,M.Enyo,

Cobalt(II)-tetraphenylporphyrin-pyridinecomplexfixedonaglassycarbon electrodeanditsprominentcatalyticactivityforreductionofcarbondioxide, J.Chem.Soc.,Chem.Commun.(1991)156–157.

[21]T.Atoguchi,A.Aramata,A.Kazusaka,M.Enyo,ElectrocatalyticactivityofColl TPP-pyridinecomplexmodifiedcarbonelectrodeforCO2reduction,J.

Electroanal.Chem.318(1991)309–320.

[22]T.Yoshida,K.Kamato,M.Tsukamoto,T.Iida,D.Schlettwein,M.Kaneko,D.

Wohrle,SelectiveelectrocatalysisforCO2reductionintheaqueousphase usingcobaltphthalocyanine/poly-4-vinylpyridinemodifiedelectrodes,J.

Electroanal.Chem.385(1995)209–225.

[23]T.deGroot,ElectrochemistryofImmobilizedHemesandHemeProteins(PhD thesis),EindhovenUniversityofTechnology,2007.

[24]A.Deronzier,J.-C.Moute,Functionalizedpolypyrroles.Newmolecular materialsforelectrocatalysisandrelatedapplications,Acc.Chem.Res.22 (1989)249–255.

[25]J.Roncali,Electrogeneratedfunctionalconjugatedpolymersasadvanced electrodematerials,J.Mater.Chem.9(1999)1875–1893.

[26]A.Bettelheim,B.A.White,S.A.Raybuck,R.W.Murray,Electrochemical polymerizationofamino-,pyrrole-,andhydroxy-substituted tetraphenylporphyrin,Inorg.Chem.26(1987)1009–1017.

[27]A.Giraudeau,D.Schaming,J.Hao,R.Farha,M.Goldmann,L.Ruhlmann,A simplewayfortheelectropolymerizationofporphyrins,J.Electroanal.Chem.

638(2010)70–75.

[28] R.Boulatov,Metalloporphyrincatalystsforoxygenreduction,in:M.T.M.

Koper(Ed.),FuelCellCatalysis.ASurfaceScienceApproach,JohnWiley&

Sons,Inc.,NewYork,2009,pp.637–693,Chapter18.

[29]J.Shen,Y.Y.Birdja,M.T.M.Koper,Electrocatalyticnitratereductionbyacobalt protoporphyrinimmobilizedonapyrolyticgraphiteelectrode,Langmuir31 (30)(2015)8495–8501.

[30]C.Costentin,M.Robert,J.-M.Savant,Currentissuesinmolecularcatalysis illustratedbyironporphyrinsascatalystsoftheCO2-to-COelectrochemical conversion,Acc.Chem.Res.48(2015)2996–3006.

[31]A.Maurin,M.Robert,Noncovalentimmobilizationofamoleculariron-based electrocatalystoncarbonelectrodesforselective,efficientCO2-to-CO conversioninwater,J.Am.Chem.Soc.138(2016)2492–2495.

(11)

[32]L.Chen,Z.Guo,X.-G.Wei,C.Gallenkamp,J.Bonin,E.Anxolabhre-Mallart, K.-C.Lau,T.-C.Lau,M.Robert,Molecularcatalysisoftheelectrochemicaland photochemicalreductionofCO2withearth-abundantmetalcomplexes.

SelectiveproductionofCOvsHCOOHbyswitchingofthemetalcenter,J.Am.

Chem.Soc.137(34)(2015)10918–10921.

[33]J.Shen,M.J.Kolb,A.J.Göttle,M.T.M.Koper,DFTstudyonthemechanismof theelectrochemicalreductionofCO2catalyzedbycobaltporphyrins,J.Phys.

Chem.C120(29)(2016)15714–15721.

[34]J.S.Yoo,R.Christensen,T.Vegge,J.K.Norskov,F.Studt,Theoreticalinsightinto thetrendsthatguidetheelectrochemicalreductionofcarbondioxideto formicacid,ChemSusChem9(4)(2016)358–363.

[35]M.T.deGroot,M.T.M.Koper,Redoxtransitionsofchromium,manganese, iron,cobaltandnickelprotoporphyrinsinaqueoussolution,Phys.Chem.

Chem.Phys.10(2008)1023–1031.

[36]A.H.Wonders,T.H.M.Housmans,V.Rosca,M.T.M.Koper,On-linemass spectrometrysystemformeasurementsatsingle-crystalelectrodesin hangingmeniscusconfiguration,J.Appl.Electrochem.36(2006)1215–1221.

[37]Y.Kwon,M.T.M.Koper,CombiningvoltammetrywithHPLC:applicationto electro-oxidationofglycerol,Anal.Chem.82(2010)5420–5424.

[38]J.Shen,R.Kortlever,R.Kas,Y.Y.Birdja,O.Diaz-Morales,Y.Kwon,I.

Ledezma-Yanez,K.J.P.Schouten,G.Mul,M.T.M.Koper,Electrocatalytic reductionofcarbondioxidetocarbonmonoxideandmethaneatan immobilizedcobaltprotoporphyrin,Nat.Commun.6(2015)8177.

[39]N.Furuya,K.Matsui,Electroreductionofcarbondioxideongas-diffusion electrodesmodifiedbymetalphthalocyanines,J.Electroanal.Chem.271 (1989)181–191.

[40]M.Azuma,K.Hashimoto,M.Hiramoto,M.Watanabe,T.Sakata,

Electrochemicalreductionofcarbondioxideonvariousmetalelectrodesin low-temperatureaqueousKHCO3media,J.Electrochem.Soc.137(6)(1990) 1772–1778.

[41]Y.Hori,ModernAspectsofElectrochemistry,vol.42,Springer,NewYork, 2008.

[42]F.Gassner,W.Leitner,Hydrogenationofcarbondioxidetoformicacidusing water-solublerhodiumcatalysts,J.Chem.Soc.,Chem.Commun.19(1993) 1465.

[43]J.-C.Tsai,K.M.Nicholas,Rhodium-catalyzedhydrogenationofcarbondioxide toformicacid,J.Am.Chem.Soc.114(1992)5117–5124.

[44]F.Hutschka,A.Dedieu,M.Eichberger,R.Fornika,W.Leitner,Mechanistic aspectsoftherhodium-catalyzedhydrogenationofCO2toformicacidsa theoreticalandkineticstudy,J.Am.Chem.Soc.119(1997)

4432–4443.

[45]S.Slater,J.H.Wagenknecht,ElectrochemicalreductionofCO2catalyzedby Rh(diphos)2Cl,J.Am.Chem.Soc.106(1984)5368–5370.

[46]C.M.Bolinger,N.Story,B.P.Sullivan,T.J.Meyer,Electrocatalyticreductionof carbondioxideby2,2-bipyridinecomplexesofrhodiumandiridium,Inorg.

Chem.27(1988)4582–4587.

[47]R.Kas,R.Kortlever,H.Yilmaz,M.T.M.Koper,G.Mul,Manipulatingthe hydrocarbonselectivityofcoppernanoparticlesinCO2electroreductionby processconditions,ChemElectroChem2(3)(2015)354–358.

[48]A.S.Varela,M.Kroschel,T.Reier,P.Strasser,ControllingtheselectivityofCO2

electroreductiononcopper:theeffectoftheelectrolyteconcentrationand theimportanceoflocalpH,Catal.Today260(2016)8–13.

[49]M.T.M.Koper,Theoryofmultipleproton–electrontransferreactionsandits implicationsforelectrocatalysis,Chem.Sci.4(2013)2710–2723.

[50]P.vanRysselberghe,G.J.Alkire,J.M.McGee,Polarographicreductionofcarbon dioxide.III.Descriptionandinterpretationofthewaves,J.Am.Chem.Soc.68 (1946)2050–2055.

[51]T.E.Teeter,P.VanRysselberghe,Reductionofcarbondioxideonmercury cathodes,J.Chem.Phys.22(1954)759–760.

[52]M.Spichiger-Ulmann,J.Augustynski,Remarkableenhancementoftherateof cathodicreductionofhydrocarbonateanionsatpalladiuminthepresenceof caesiumcations,Helv.Chim.Acta69(1986)632–634.

[53]M.Spichiger-Ulmann,J.Augustynski,Electrochemicalreductionof bicarbonateionsatabrightpalladiumcathode,J.Chem.Soc.FaradayTrans.

81(1985)713–716.

[54]E.A.Kolyadko,B.I.Podlovchenko,S.Lu,Reductionofcarbondioxideon mercurycathodes,J.Electroanal.Chem.373(1994)185–187.

[55]B.Innocent,D.Pasquier,F.Ropital,F.Hahn,J.-M.Leger,K.B.Kokoh,FTIR spectroscopystudyofthereductionofcarbondioxideonleadelectrodein aqueousmedium,Appl.Catal.B:Environ.94(2010)219–224.

[56]R.Kortlever,K.H.Tan,Y.Kwon,M.T.M.Koper,Electrochemicalcarbondioxide andbicarbonatereductiononcopperinweaklyalkalinemedia,J.SolidState Electrochem.17(2013)1843–1849.

Referenties

GERELATEERDE DOCUMENTEN

In het huidige studie werd namelijk de aandachtbias niet door negatief affect versterkt wat zou kunnen worden verklaart door het feit dat alle deelnemers tijdens het onderzoek in een

9: No correlations were observed between music DFA (top to bottom: rhythm, pitch, loudness, and mean rhythm, pitch, and loudness) and scaling behavior of elicited cortical activity

The HEPA industry group and HEWP occupation group were found to have longer average weighted distances from the Sydney City Centre: 19 and 20km, respectively

lijk van grote oppervlakten te schat­ ten zodat deze methode aileen voor kleine oppervlakten in aanmerking komt en plaatsel ijk in aanvulling op de methode Tansley

Van de drie bestaande clustervormen kan de cluster met levering van warmte, elektriciteit en CO 2 door een facilitair bedrijf aan tuinbouwbedrijven naar verwachting het

1 Systematic Quantitative Literature Review Chapter 3, Section 3.2 Synthesized lists of activity and determinant variables 2 Data gathering protocol, informed by the study scope

In this study, apart from the documentation of food items selected, we have little information on the most commonly consumed “cooked” fast foods and street foods in terms of

There- fore the aim of this study is to investigate the correlation be- tween the levels of physical activity and motor proficiency in a group of adolescents, thus Senior