• No results found

Output consistency and weak output consistency for continuous-time implicit systems

N/A
N/A
Protected

Academic year: 2021

Share "Output consistency and weak output consistency for continuous-time implicit systems"

Copied!
22
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Tilburg University

Output consistency and weak output consistency for continuous-time implicit systems

Geerts, A.H.W.

Publication date:

1993

Document Version

Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):

Geerts, A. H. W. (1993). Output consistency and weak output consistency for continuous-time implicit systems.

(Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal Take down policy

(2)

~s2s

1993

614

éw~F,"

I ÍIIIIIIIIII IIOII III IIII~lllllumm~~ ~~,,,..

(3)

OUTPUT CONSISTENCY AND WEAK OUTPUT CONSISTENCY FOR CONTINUOUS-TIME

IMPLICIT SYSTEMS

(4)
(5)

OUTPUT CONSISTENCY AND WEAK OUTPUT CONSISTENCY FOR CONTINUOUS-TIME IMPLICIT SYSTEMS

Ton Geerts '

Tilburg University, Dept. of Economics, P.O. Box 90153 NL-5000 LE Tilburg, the Netherlands

ABSTRACT

In a recent paper, the concept of consistency of initial conditions for general continuous-time implicit systems was recovered as a special case of so-called weak consistency, and it was demonstrated that "global" weak con-sistency is equivalent to impulse controllability. In this paper, both concepts are generalized for continuous-time implicit systems with a given output, and we derive necessary and sufFicient conditions for nglobal" output consistency as well as "global" weak output consistency. Elsewhere these results will be used for a complete treatment of consistency and relaxations of consistency for arbitrary higher order implicit systems. Moreover, our conditions reduce to the known ones for (weak) state consistency if the output and state variable are the same.

KEYWORDS

Continuous-time implicit systems, state consistency, weak state consis-tency, output consisconsis-tency, weak output consistency.

1

Introduction.

Recently [1], issues such as solvability and consistency were investigated in depth for linear systems of the form

Ei(t) - Ax(t) -F Bu(t), (1) with E, A E R~X", B E R~Xm, u(t) E Rm, x(i) E R" for all t E R} -[0, oo) and xo :- x(0-) E R", arbitrary. Following [2], a point xo E Rn is called

consistent if (1) has a classical solution x: Rt -~ R" with x(0}) - xo,

(6)

convolution ~ of distributions plays the role of multiplication). An impulsive-smooth distribution is any linear combination of an impulse and a impulsive-smooth distribution. An impulse or impulsive distribution is any linear combination of the unit element in Ci„ap, the Dirac distribution ó, and its (distributional) derivatives ó~il (i ~ 1). A s~nooth distribution corresponds to a function that is zero on (-00,0) and arbitrarily often differentiable on Rt(in the usual sense). Let C,m, Cp-;,,~p denote the subalgebras of smooth distributions and impulses, respectively. The distributional derivative u~'~ of u E C;,Rp equals êl'l~u. If u- ul~-u2 with ul E Cy-i,,,p and u2 E C,,,, , then u(Ot) uZ(0}) :-limtlo u2(t). If u E C,,,, , then u~'~ - v.-}-u(Ot)ó, where zi denotes the ordinary derivative of u. It holds that ó~'~ - bl'-'~ ~ ól'1(i ~ 1) with ótol :- ó, and by defining ó~-'~ H, the Heaviside "unit step" distribution, and ó~-~~

:-ó-~~'II ~ ó~-'~(j 1 1), we establish that ólit~l - ëlil ~ ól~l(á, j E Z) and thus

the inverse (w.r.t to convolution) of ó~i~, (ó~i~)-', equals ó~-i~(i E Z), ó-1 - ó. Then, instead of (1), we consider the distributional equation

ó~' ~~ Ex - Ax f Bu f Exoó, (2)

together with, for every pair (xo, u) E Rri x C,n,p (the m-vector version of

Cimp), the solution set [1, (2.2b)]

S(xo, u) -{x E C,;,,p ~[Eêl'~ - Aó] ~ x- Bu f Exoó}.

(3)

Definition 1.1[1, Definition 4.1].

A point xo E Rn is called consistent if

3 u E C; ,~ x E S(xo,u) nC,m : x(Ot) - xo.

A point ;co E R" is called zoeakly cousistent if 3 u E C; : S' ( xo, u) n C,;,, ~ 0. Proposition 1.2 [I, Thcorern 4.5].

(7)

Now it is the purpose of this paper to generalize the concepts in Definition 1.1 and the results in Proposition 1.2 for systems (2) with output equation

y - Cx, (4)

where C E RrXn . It will be shown elsewhere that these generalizations

are of great value for a thorough treatment of solvability, consistency and relaxations of consistency for higher order linear systems on R} of the form

Ak[dkx~dík] ~ Ak-1[dk-'x~dtk-'] -}. ... ~ Ali(t) -h Aox(i) - Bu(t), (5)

with, for all i - 0, 1, ..., k, A; E R'Xn, arbitrary, and B E R'xn` In the sequel we will frequently use some trivial observations. Lemma 1.3.

Let G C R" and M E R'X". Then M[M-1(G)] - G n im(M) and

M-'[M(G)] - G-~ker(M). If G1,2 C Rn and ker(M) C G1 and~or ker(M) C

G2, then M(G1 n G2) - M(G~) n M(Gz). If G1,2,3 C R" and GZ C G3, then

(G, f GZ) n G3 - G2 ~[G, n G3] (modular rule).

2

Output consistency and weak output

con-sistency.

Consider the implicit system E:

êl'~ ~ Ex - Ax f Bu -}- Exob, y- Cx, (6)

together with, for every pair (xo, u) E Rn x Cn,P, the solution set S(xo, u) (3).

Definition 2.1.

Consider E. A point xo E Rn is called output consistent if

3 u E C,n,3 x E S(xo,u) : y E C;,,, and y(O}) - C[x(O})] - Cxo. A point xo E R" is called weakly output consistent if

~ u E CS,n3 x E S(x0iu) : y E

Csm-It is obvious that the concepts in Definition 2.1 generalize those in

(8)

of (weak) state consistency. Now, let us denote the spaces of state consis-tent and weakly state consisconsis-tent points by I, - I,(E) and 1; - 1;(E), respectively. In addition, tlie spaces of output consistent and weakly output consistent points will be denoted by !o - lo(E) and ló - ló (E), respectively. Finally, we define

W1 - Wf(E) '- {xo E R" ~ 3 x E S(xp,O) nCp-;mp : y- O}; (7)

W~ is the space of points xo E Rn that are strongly controlled by free response

(in [8, Definition 3.1] a point xo is called strongly controllable if there exists an input u E Cp ;,,~p and a state trajectory x E S(xo, u) fl Cp-;,,,p such that

y- 0). The spaces 1„ 1; and W~ are characterized in [8, Section 3] and all

relevant information from (8] is suminariZed in Propositions 2.2 and 2.4. The spaces lo and ló then follow from our first main result, Theorem 2.7.

Proposition 2.2.

I, is the largest subspace G that satisfies G C A-1[E(G) f im(B)]. In

addition, I, - A-I[E(I,) ~ irn(B)]. Moreover, I; - 1, ~- ker(E).

Proposition 2.3.

!, ~ ker(A).

Proof. Assume that Axo - 0. Then x:- b't-'l ~ bxo - Hxo is smooth

(x(t) xo, constant, on Rt), x(Ot) xo, and x E S(xo, 0) since Sll~ ~ Ex

-8111 ~ êl-ll ~ Exo - Ax -h Exob.

Proposition 2.4.

W~ is the smallest subspace 1C that satisfies IC ~ E-1 [A(JC fl ker(C))]. In addition, W~ - E-1[A(W~flker(C))]. The algorithm Wo ker(E), W;fl

:-E-' (A(W; fl ker(C))] is such that Wo C W~ C~.. C Wn - W~.

1, and W~ are dual concepts [6], [9]. Let the system E~ be represented

by ó~'~ ~ Ex - Ax ~- Bu -F Exoó, and let F.~ denote the dual system ól~~ ~

E'w - A'w f E'woó,z - B'w. Then E(I,(E~)) - [W~(Ei)]1 [8, Theorem

3.12]. Similarly, if EZ denotes the system ó~l~ ~ Ex - Ax -h Exob, y- Cx, and EZ denotes its dual êl~l ~ E'w A'w f C'v ~ E'wob, then W~(E2)

-(E~(1'(~s))]1 - E-'[I'(~s)]l.

The intersection of I, and W~ turns out to equal the space R;t,n - 7Z;~,~(E) of points that are instantaneously reachable from the origin [6] by smooth

output generating inputs in Cm:

(9)

Lemma 2.5 [8, Main Lemma 2.5].

Let xo E Rn, TL - ul ~Tl2i 7L1 E C~ impi u2 E Csm i x - xl fxy E.S(~Ot u)i xl E

Cp-imp~'r2 E C;n. 'I'hen b~'~ ~ Ex~ ~ E[xz(~})]b - Axi -~ Bul -1- Exob and

bl'~ ~ Ex2 - Axz f Buz f E[xz(Of)]ó.

Proposition 2.6.

1, n W~ - 7Zs~,o, I; n W f- ker(E) -~ R;~m.

The algorithm 7Zo :- I, n ker(E), R;t~ :- I, n E-'[A(1Z; n ker(C))] is such thatRoCRI C...CRn-R',~m.

Proof. First statement. Let u E Cm, x- x~ f xz E S(0, u), xl impulsive and

xz smooth, and y- Cx E C3m. If xo :- x(O}) - xz(0}), then, by Lemma

2.5, blil ~ E(x~) A(x~) f Exob,C(xi) 0, and also b~~l ~ Exz

-Axz ~- Bu -f Exofi . Hence, xo E 1, n W f. Conversely, let xo E 1, n W~. Then

there exist a control u E Cs,;, and a state trajectory xz E S(xo, u) n C,;,, such that b 1'1 ~ Exz - Axz ~ Bu f Exob and xz(Ot) - xo. In addition, for some

xi E S(xo, O) n CP-;mp, bll~ ~ Exl - Axl ~- Exob and Cxl - 0. Consequently,

with x:- -x, -Fxzibl'l ~ Ex - Ax f Bu,Cx E Cs„L and x(0}) - xz(0}) - xo. Thus, xo E R;~,n. Second statement. By Propositions 2.2, 2.4 and Lemma 1.3,

1; n W~ - [I, -~ ker(E)] n W~ - ker(E) f[I, n W f] - ker(E) ~ R;~,R. Third

statement. Obviously, by Proposition 2.4 and the foregoing, the algorithm

IC;:-1,n W;issuchthatl~oCIC~C"'C JCn-Rs~,o. WehavelZo-lCo

and Rl - 1, n E-1[A(!Co n ker(C))] C I, n E-'[A(Wo n ker(C))] - 1C1. On the other hand, if xo E IC1i i.e., if xo E I, and Exo - Ax with Ex - 0 and Ci - 0, then x E A-~[E(1,)] C I, (Proposition 2.2), and thus xo E

I, n E-'[A(1Co n ker(C))] - R~. Now, assume that R; - JC;. Then, as in

the above, ~Z;t~ C~;fl. Conversely, if xo E I, and Exo - A~,i E Wt and

Ci - 0, then ~ E I, n W; n ker(C) - IC; n ker(C) - R; n ker(C), and this

completes the proof by induction.

Theorem 2.7.

Consider E. It holds that lo - I, f[W~nker(C)], Ió - I,fW~ - I; ~-W~. Proof. First statement. Obviously, by definition, W~ n ker(C) C la and

(10)

Con-versely, let xo E Rn be weakly output consistent. Then there exist a smooth input u and a state trajectory x- x~ f x2 E S(xo, u), with xl impulsive and x2 smooth, such that Cxr - 0. As in the first half of the proof, it follows from Lemma 2.5 that [zo - x2(0})] E W~ and ~2(0}) E 1, . This completes the proof.

Note that Theorem 2.7 reduces to the last statement in Proposition 2.2 if C- I, since, then, W~ - ker(E) by (7) or Proposition 2.4.

Corollary 2.8.

Consider E and its dual E': b~rl ~ E'w - A'w f C'v f E'wob, z- B'w. Then

ker(E) f R;~m(~) - [E'(7ó(~'))11, E(~;~m(E)) - [lo(E')ll, E-'[A(R;~,n(E) n ker(C))] - [E'(Io(~'))]1.

Proof. By Theorem 2.7, E'(Ió (E')) - E'(I,(E')) ~ E'(W~(E')). Hence

fE'(lo (~~))]1 [E~(Is(E'))]1 ~ [E'(W~(E'))ll W~(E) ~ E'[W1(~')]1

-W~(E) ~ E-'[E(f:(~))] - -W~(E) n[f,(E) -f- ker(E)] - ker(E) f 7Z~~~,(E), bY Lemtna 1.3 and Proposition 2.6. In addition, by the foregoing, E[R;~,n(E)]

-E[E'(!ó(~~))]1 - [(E')-'(E'(ló(~~)))]1 - [ló (E')]1 (Lemma 1.3). Next, we

have Io(E') 1,(E')}[W~(~,')rlker(B')] (Theorem2.7) and thus E'(lo(E'))

-E'(!,(E')) ~ E'[W1(E') fl ker(B')].

Hence, [E'(~a(E'))]1 - W~(E) fl E-~[E(~,(E)) -h im(B)] - E-'[A(W~(E) fl

ker(C))] fl E-r[E(1,(E)) ~- im(B)] (Proposition 2.4) - E-'{A(W~(E) fl

ker(C))fl(E(I,(E))fim(B)]} - E-'[A(W~(E)flker(C))f1A(1,(E))] (Propo-sition 2.2, Lemma 1.3) - E-~[A(WJ(E) fl I,(E) fl ker(C))] (Lemma 1.3, Proposition 2.3) - E-~[A(TZ;~m(E) fl ker(C))] (Proposition 2.6). This com-pletes the proof.

Corollary 2.9.

Every xo E Rn is output, consistent if and only if I, f[W~ rl ker(C)] - Rn. I;vi~ry :ri, E!~" is wca.kly oiil,put consistcnt if and only if 1, f W~ - R".

(11)

Lemma 2.10. LetGCR".

(a) Assume that G C E-'[A(G) f ini(B)] f ker(A). Then E(1,) f im(B) f

A(G) - !i' t~ ~it,~.( r) ~- i~tu(13) -}- A(,C) - li!'.

(b) 1, ~- L' - h"` q l;(l,) f ia~i,(B) -~ A(G) ~ irn(A).

(c) Assunx~ that, [(~AB] is of full row rank. If G C E-t[A(G) -F i~n(B)] -~

ker(A), then !, -~ G- Rn t~ im(E) -~ im(B) ~- A(G) - R~.

Proof. Part (a), ~: Trivial. Conversely, let E' denote the dual system of (2): St'1 ~ E'w - A'w -~ E'woó, z- B'w. Since A(G) C A[E-' [A(G) f

im(B)]], it follows that [A(G)]1 ~(A')-' [E'[[A(G)]1 fl ker(B')]]. According

to Proposition 2.4, the algorithm Wo :- ker(E'),W;~1 :- (E')-1[A'(W~ fl

ker(B'))] is such that Wo C W~ C.-. C Wi - W~(E'). We will show by

induction that, for every j - 0, 1, . .., I,

W~ fl ker(B') rl [A(G)]1 - 0, (9) if Wo fl ker(B') fl [A(G)]1 - 0. First, let wo E Wl, B'wo - 0 and wo E

[A(G)]l. Then E'wo - A'w with B'w - 0, E'uw - 0 for some w E R~.

Thus, also, w E (A')-'[E'[[A(G)]1 fl ker(B')]] C [A(G)]l, and hence w- 0. Consequently, E'w~ - 0 and thus w~ - 0. Next, let (9) be true for j E {0, ..., l-1 }, and let wo E W~ f~, B'wo - 0, wo E[A(G)] 1. Then there exists a w E W~ fl ker(B') such that E'wo - A'w. Hence w E [A(G)]1 and thus w- 0 and therefore wo - 0. We conclude that W~(E') fl ker(B') fl [A(G)]1 - 0 if

ker(E')flker(B')f1[A(G)]1 - 0. Part (b). By Proposition 2.3, 1,-~G - R" if

and only if A(I,) ~ A(G) - im(A). By Proposition 2.2 and Lemma 1.3, then,

I,~-G - Rn t~ [E(1,)}im(B)]fl im(A) f A(G) - im(A) q[E(I,) f im(B) f A(G)] fl irn(A) - irn(A) (Lemma 1.3) ~[E(I,) f im(B) ~ A(G)] ~ im(A).

Part (c), ~: Combine (a) and (b). The converse follows directly from (b) if

im(E) -í- irn(B) ~- im(A) - R'. This completes the proof.

Theorem 2.11.

Consider E and assume that [EAB] is of full row rank. Then

lo(E) - Rn t~ irit(E) f irri(B) f A[Wj fl ker(C)] - 1~~, (10) Ió (E) - Rn ~ im(E) -} im(B) ~ A[Wf] - R!. (11)

(12)

Now combiue Corollary 2.9 with Letnma 2.10 (c).

Corollary 2.12.

Consider E. Then E(W~)f1E(1,) 0~ R;~m ker(E)fll, q E(R;~,o) -0. If [E', A',C'] is of full row rank, then E(W~) fl E(1,) - 0 if and only if

~er(E) ~1 ker(C) fl A-'(E1,) - 0.

Proof. By Proposition 2.6 and Lemma 1.3, E(Wf) fl E(1,) E(W~ fl 1,)

-E(1Z;~m), and ker(E) fl 1, C 7Z;~m C I,. This yields the first claim. Next, let

E' denote the dual system of E. Then, from Theorem 2.11, Iá(E') - R~ if and only if im(E') -f im(C') f A'(W~(E')) - Rn. On the other hand, from Corollary 2.8, Ió (E') - R~ if and only if E(1Z;~,R) - 0. Combination of these statements with the above proves the second claim.

Example.

,

ObserveE:b'~[0

OJ L~zJ- LO OJ L~zJ}LOJu}LO OJ L~oz]ó

y-~ 1 0]~~z

J. Directly, xt - 0, ~z -L u f~olb - 0. For every xoz the smooth input u- -Hxoz yields, with xot - O,xz - K~o2,~z(0}) -~02 and hence l, - ker(E). In addition, ~z - -xotb is such that [ 0

J

E

xz

S(xo, 0), y - 0 for every xo - I~o'

J

E Rz. Thus, W~ - Rz. However,

L ~oz

W~ fl krr((") - krr(l;) and thus lo ~ ~Iz, 1„" - Ilz. Note that 1, - l; ~ Rzj Also, Rs~;, - 1, fl kcr(E); uotrr tliat the dual of E is ~: itself!

Remarks.

1. Observe that I, is not appearing in (10) -(11), and that Theorem 2.11 covers Proposition 1.2.

2. Combination of Proposition 2.6 with Corollary 2.8 yields R;~,n(E)

-I,(E) n[E'(lo(E'))]l. Thus, R;~,n(E) - -I,(E) fl ker(E) if lo(E') - R~. The

converse is not true, see the Example.

3. By Propositions 2.2 - 2.4, 2.6 and Lemma 1.3, E(W~) (1 A(I,) - E(WI) fl

[E(1,)Fim(B)]flim(A) E(W~)fl[E(1,)~im(B)], but also E(W~)f1A(1,) -A[W~ fl ker(C)] fl A(1,) fl im(E) - A(R;~n fl ker(C)) fl irn(E). Thus, if ker(E) fl ker(C) fl 1, - 0, then E(W~) fl [E(I,) -1- im(B)] - 0, by

Corol-lary 2.12. If, moreover, Io - Rn, then B-~[im(E)] - B-1[E(I,)], even if

im(E) ~ E(1,).

(13)

W~ C I;,,,fl - E-' [A(1;,,~P) ~}- im(B)] [8, Section 3]. Consequently, by Lemma

2.10 (c), [1, Corollary 3.6] and [8, Theoretn 3.2], I, f l;,,ip - Rn t~ im(E) f

im(B) -~ A(l;,ny) - R" t~ [sE - A, -B] is right invertible as a rational

ma-trix, provided that [EAB] is of full row rank.

REFERENCES.

[1] '1'. Geerts, "Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case", Lin. Alg. Appl. 181, pp. 111-130, 1993.

[2] S.L. Campbell, Singular Systems of Differential Equations, Pit-man, San Francisco, vol. 1, 1980, voL 2, 1982.

[3] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1978. [4] G.C. Verghese, B.C. Levy ét, T. Kailath, "A generalized state-space for singular systems", lEF,E Trans. Aut. C.tr. AC-26, pp. 811-831, 1981.

[5] D. Cobb, "Descriptor variable systems and optimal state regulationn,

lEEE Trans. Aut. Ctr. AC-28, pp. 601-611, 1983.

[6] M.L.J. Hautus 8e L.M. Silverman, "System structure and singular control", Lin. Alg. Appl. 50, pp. 369-402, 1983.

[7] M.L.J. Hautus, "The formal Laplace transform for smooth linear sys-tems", Lecture Notes in Econ. Math. Syst. 131, pp. 29-46, 1976.

[8] T. Geerts, "Invariant subspaces and invertibility properties for singular systems: The general case", Lin. Alg. Appl. 183, pp 61-88, 1993.

[9] M. Malabre, "Generalized linear systems: Geometric and structural approaches", Lin. Alg. Appl. 122~123~124, pp. 591-621, 1989.

(14)

IN 1j92 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings

Privatisering van arbeidsongeschiktheidsregelingen Refereed by Prof.Dr. H. Verbon

533 J.C. Engwerda, L.G. van Willigenburg

LQ-control of sampled continuous-time systems Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran 8~ A.L. Rijkeboer

Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X t AMX-lA - Q.

Refereed by Prof.dr. J.M. Schumacher 535 Jacob C. Engwerda

The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs

Effectivity functions and associated claim game correspondences Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink

Validation of simulation models: mine-hunting case-study Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks Refereed by Prof.dr. S.H. Tijs 539 A. ~an Schaik

Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger

The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma

Internationale Joint Ventures Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen

Verification and validation of simulation models Refereed by Prof.dr.ir. C.A.T. Takkenberg

543 Gert Nieuwenhuis

(15)

11

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen

Multi-Product Cycling with Packaging in the Process Industry Refereed by Prof.dr. F.A. van der Duyn Schouten

545 J.C. Engwerda

Calculation of an approximate solution of the infinite time-varying LQ-problem

Refereed by Prof.dr. J.M. Schumacher 546 Raymond H.J.M. Gradus and Peter M. Kort

On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir

De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen

Refereed by Prof.dr. P.W. Moerland

548 Sylvester Eijffinger and Eric Schaling

Central bank independence: criteria and indices Refereed by Prof.dr. J.J. Sijben

549 Drs. A. Schmeits

Geintegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting

Refereed by Prof.dr. P.W. Moerland 550 Peter M. Kort

Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy

Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger

Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations

Refereed by Prof.dr. S.W. Douma 552 Ton Storcken and Harrie de Swart

Towards an axiomatization of orderings Refereed by Prof.dr. P.H.M. Ruys 553 J.H.J. Roemen

The derivation of a long term milk supply model from an optimization model

Refereed by Prof.dr. F.A. van der Duyn Schouten 554 Geert J. Almekinders and Sylvester C.W. Eijffinger

Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM~~-Returns

Refereed by Prof.dr. A.B.T.M. van Schaik

(16)

personeelsvoor-lli

556 Ton Geerts

Regularity and sin~ularity in linear-quadratic control subject to implicit continuous-time systems

Communicated by Prof.dr. J. Schumacher 557 Ton Geerts

Invariant subspaces and invertibility properties for singular

sys-tems: the general case

Communicated by Prof.dr. J. Schumacher 558 Ton Geerts

Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case

Communicated by Prof.dr. J. Schumacher

559 C. Fricker and M.R. Jaïbi

Monotonicity and stability of periodic polling models Communicated by Prof.dr.ir. O.J. Boxma

560 Ton Geerts

Free end-point linear-quadratic control subject to implicit conti-nuous-time systems: necessary and sufficient conditions for solvabil-ity

Communicated by Prof.dr. J. Schumacher 561 Paul G.H. Mulder and Anton L. Hempenius

Expected Utility of Life Time in the Presence of a Chronic Noncom-municable Disease State

Communicated by Prof.dr. B.B. van der Genugten 562 Jan van der Leeuw

The covariance matrix of ARMA-errors in closed form Communicated by Dr. H.H. Tigelaar

563 J.P.C. Blanc and R.D. van der Mei

Optimization of polling systems with Bernoulli schedules Communicated by Prof.dr.ir. O.J. Boxma

564 B.B. van der Genugten

Density of the least squares estimator ín the multivariate linear model with arbitrarily normal variables

Communicated by Prof.dr. M.H.C. Paardekooper 565 René van den Brink, Robert P. Gilles

(17)

1V

567 Rob de Groof and Martin van Tuijl

Commercial integration and fiscal policy in interdependent, finan-cially integrated two-sector economies with real and nominal wage rigidity.

Communicated by Prof.dr. A.L. Bovenberg

568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts

The value of information in a fixed order quantity inventory system Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman

Begrotingsnormering en EMU

Communicated by Prof.dr. J.W. van der Dussen

570 A. van den Elzen, D. Talman

Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems

Communicated by Prof.dr. S.H. Tijs 571 Jack P.C. Kleijnen

Verification and validation of models

Communicated by Prof.dr. F.A. van der Duyn Schouten 572 Jack P.C. Kleijnen and Wíllem van Groenendaal

Two-stage versus sequential sample-size determination in regression

analysis of simulation experiments

573 Pieter K. Jagersma

Het management van multinationale ondernemingen: de concernstructuur

574 A.L. Hempenius

Explaining Changes in External Funds. Part One: Theory Communicated by Prof.Dr.Ir. A. Kapteyn

575 J.P.C. Blanc, R.D, van der Mei

Optimization of Polling Systems by Means of Gradient Methods and the Power-Series Algorithm

Communicated by Prof.dr.ir. O.J. Boxma

576 Herbert Hamers

A silent duel over a cake

Communicated by Prof.dr. S.H. Tijs

577 Gerard van der Laan, Dolf Talman, Hans Kremers

On the existence and computation of an equilibrium in an economy with constant returns to scale production

Communicated by Prof.dr. P.H.M. Ruys

(18)

V

579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts

Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems

Communicated by Prof.dr. F.A. van der Duyn Schouten 580 H.G. Barkema

The Impact of Top Management Compensation Structure on Strategy Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen

Aan de lijn of aan het lijntje: wordt slank produceren de mode? Communicated by Prof.dr. S.W. Douma

582 Willem Haemers

Distance Regularity and the Spectrum of Graphs Communicated by Prof.dr. M.H.C. Paardekooper

583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove

Strategic Marketing, Production, and Distribution Planning of an Integrated Manufacturing System

Communicated by Prof.dr. F.A, van der Duyn Schouten 584 J. Ashayeri, F.H.P. Driessen

Integration of Demand Management and Production Planning in a Batch Process Manufacturing System: Case Study

Communicated by Prof.dr. F.A. van der Duyn Schouten 585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt

Blending Modelling in a Process Manufacturing System Communicated by Prof.dr. F.A. van der Duyn Schouten 586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst

Application of Mixed Integer Programming to A Large Scale Logistics Problem

Communicated by Prof.dr. F.A. van der Duyn Schouten 587 P. Jean-Jacques Herings

(19)

V1

IN 1993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl

The Twin-Debt Problem in an Interdependent World Communicated by Prof.dr. Th. van de Klundert 589 Harry H. Tigelaar

A useful fourth moment matrix of a random vector Communicated by Prof.dr. B.B. van der Genugten 590 Niels G. Noorderhaven

Trust and transactions; transaction cost analysis with a differential

behavioral assumption

Communicated by Prof.dr. S.W. Douma

591 Henk Roest and Kitty Koelemeijer

Framing perceived service quality and related constructs A multilevel approach

Communicated by Prof.dr. Th.M.M. Verhallen 592 Jacob C. Engwerda

The Square Indefinite LQ-Problem: Existence of a Unique Solution Communicated by Prof.dr. J. Schumacher

593 Jacob C. Engwerda

Output Deadbeat Control of Discrete-Time Multivariable Systems Communicated by Prof.dr. J. Schumacher

594 Chris Veld and Adri Verboven

An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices

Communicated by Prof.dr. P.W. Moerland 595 A.A. Jeunink en M.R. Kabir

De relatie tussen aandeelhoudersstructuur en beschermingsconstructies Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers

Quasi-symmetric designs related to the triangular graph Communicated by Prof.dr. M.H.C. Paardekooper

597 Noud Gruijters

De liberalisering van het internationale kapitaalverkeer in histo-risch-institutioneel perspectief

Communicated by Dr. H.G. van Gemert 598 John Gdrtzen en Remco Zwetheul

Weekend-effect en dag-van-de-week-effect op de Amsterdamse effecten-beurs?

Communicated by Prof.dr. P.W. Moerland

599 Philip Hans Franses and H. Peter Boswijk

(20)

V11

600 René Peeters

On the p-ranks of Latin Square Graphs

Communicated by Prof.dr. M.H.C. Paardekooper

601 Peter E.M. Borm, Ricardo Cao, Ignacio García-Jurado

Maximum Likelihood Equilibria of Random Games Communicated by Prof.dr. B.B. van der Genugten

602 Prof.dr. Robert Bannink

Size and timing of profits for insurance companies. Cost assignment

for products with multiple deliveries. Communicated by Prof.dr. W. van Hulst 603 M.J. Coster

An Algorithm on Addition Chains with Restricted Memory

Communicated by Prof.dr. M.H.C. Paardekooper

604 Ton Geerts

Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems

Communicated by Prof.dr. J.M. Schumacher 605 B.B. van der Genugten

Beat the Dealer in Holland Casino's Black Jack Communicated by Dr. P.E.M. Borm

606 Gert Nieuwenhuis

Uniform Limit Theorems for Marked Point Processes Communicated by Dr. M.R. Jaïbi

60~ Dr. G.P.L. van Roij

Effectisering op internationale financiële markten en enkele gevolgen voor banken

Communicated by Prof.dr. J. Sijben 608 R.A.M.G. Joosten, A.J.J. Talman

A simplicial variable dimension restart algorithm to find economic equilibria on the unit simplex using n(ntl) rays , Communicated by Prof.Dr. P.H.M. Ruys

609 Dr. A.J.W. van de Gevel

The Elimination of Technical Barriers to Trade in the European Community

Communicated by Prof.dr. H. Huizinga 610 Dr. A.J.W. van de Gevel

Effective Protection: a Survey

Communicated by Prof.dr. H. Huizinga

611 Jan van der Leeuw

(21)

V111

612 Tom P. Faith

Bertrand-Edgewerth Competition with Sequential Capacity Choice Communicated by Prof.Dr. S.W. Douma

613 Ton Geerts

The algebraic Riccati equation and singular optimal control: The discrete-time case

(22)

Referenties

GERELATEERDE DOCUMENTEN

Free end-point linear-quadratic control subject to implicit continuous-time systems: Necessary and sufficient conditions for solvability.. (Research

Indien er voor eenzelfde gebeurtenis meerdere radiokoolstofdateringen beschikbaar zijn, kunnen deze voorafgaand aan de kalibratie samengevoegd worden. Op deze manier tracht men

tions of the IEDs; (2) modality-specific preprocessing and tensorization steps, which lead to a third-order EEG spectrogram tensor varying over electrodes, time points, and

Used data includes both existing knowledge (literature, functional annotations, pathway information, etc.) and experimentally derived data (gene expression, protein

Diehl, an implementation of code generation for Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) is devel- oped that uses carefully designed

The first aspect is to show that auto generation of Implicit Runge-Kutta (IRK) methods with sensitivity generation can also be im- plemented very efficiently.. This greatly improves

\adjmulticols We have three mandatory arguments instead of one for multicols: the number of columns, the left margin delta and the right margin delta:.

If due to a limited number of break points (e.g., due to large ob- jects) the balanced columns ex- ceed the available vertical space, then balancing is canceled and a normal page