• No results found

Blue stragglers

N/A
N/A
Protected

Academic year: 2021

Share "Blue stragglers"

Copied!
206
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted.

Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not serxt UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., nnaps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand comer and continuing from left to

right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black arxJ white photographic

prints are availat>le for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order

Bell & Howell Information and Learning

300 North Zeeb Road, Ann Arbor. Ml 48106-1346 USA

(2)
(3)

Blue Stragglers

by

J o h n A nd ers O u ellette B.Sc. Victoria 1991

A D issertation S ubm itted in P artial Fulfillment of the Requirem ents for the Degree of

Do c t o r o f P h i l o s o p h y

in th e D epartm ent of Physics and A stronom y

We accept this thesis as conforming to the required standard.

Dr. C. J. Pritchet, Supervisor (D epartm ent o f Physics Sc Astronom y)

r. J. B. Tatum ,

Dr. J. B. Tatum , D epartm ental M em ber (D epartm ent o f Physics Sc A stronom y)

________________________

Dr. D. A. VandenBerg, D epartm ental M em ber (D epartm ent o f Physics Sc Astronom y)

O utefde M embetj (D epartm ent o f C hem istry)

Dr. M Mateo, E x te rn a lE x a m in e r (U niversity o f Michigan, A n n Arbor)

© Jo h n A nders O uellette, 1999, U niversity o f V ictoria.

A ll rights reserved. T hesis m a y n o t be reproduced in whole o r in part, by photocopy o r o th er m eans, w ithout the p erm issio n o f the author.

(4)

Supervisor: D r. C . J . P r itc h e t

A b stract

B lue stragglers a re e n ig m a tic stars which a p p e a r to h av e u n d e rg o n e som e form of reju v en atio n, b rin g in g th e m near th e zero-age m a in seq u en ce o f th e cluster in w hich th e y resid e. T h e m ost likely e x p la n a tio n for th e ex isten ce o f these stars is th a t th e y h av e form ed recently, th ro u g h th e m e rg e r o f tw o sta rs, either th ro u g h a d ire c t ste lla r collision, or th ro u g h b in a ry m a ss-tran sfe r a n d coalescence. T h is th e sis p resen ts models o f th e re m n a n ts o f th e se p ro ­ cesses, and a com parison o f th e predictions o f th ese m odels w ith o bserved blue stragglers in several clu sters.

T h e predictions o f sm o o th e d p article h y d ro d y nam ic sim u latio n s o f collid­ ing stars have b een used to c re a te m odels a p p ro p ria te for in p u t in to a stellar evolution code. Since th e se m odels develop only th in , sh o rt-liv ed , convective envelopes, an g u lar m o m e n tu m loss via a m agnetically d riv e n s te lla r w ind is unlikely to be a viable m ech an ism for slowing th e rap id ly ro ta tin g b lu e stra g ­ glers p redicted by th e coUisional scenario. A ngular m o m e n tu m tra n s fe r to e ith e r a circum stellar disk (possibly coUisional ejec ta ) o r a n e a rb y co m p an ­ ion rem ain plausible m ech an ism s for explaining th e low ro ta tio n velocities observed for m ost blue strag g lers.

In addition to th ese m od els o f coUisional m ergers, sim pU stic m odels o f th e rem n an ts o f b in ary coalescence a n d m ass-transfer w ere also dev elo ped . T h e predictions of b o th sets o f m odels were com pared w ith th e o b serv ed blue straggler pop u latio n s o f six globular clusters (N G C 104, N G C 2419, N G C 5024, NGC 6809, N G C 7099). W hile m ost o f th e c lu s te rs ’ b lu e strag g lers a p p e a r to be weU m a tc h e d by th e predictions o f th e coUisional m erg ers, th e blue stragglers in th e c lu ste r w ith th e highest c e n tra l d en sity , N G C 7099, a p p e a r to be a h y b rid p o p u la tio n o f b o th coUisional a n d b in a ry m erg ers. T h e blue stragglers o f N G C 2419 — th e least dense o f th e c lu sters stu d ie d h ere —

(5)

m

are well m atch ed solely by th e predictions of th e coUisional m erg ers o f eq ual m ass stars. H ow ever, d u e to th e low density o f th is c lu ste r, it is likely th a t som e fraction o f th e se blue stragglers are being form ed v ia b in a ry m ergers a n d th a t th e sim ple m odels o f b in a ry mergers used h ere a re in a d e q u a te . Exarniners:a i d e r s :

Dr. C. J. Pritchet, Supervisor (D epartm ent o f Physics & A stro n om y)

r. J. b J Tatum , L

Dr. J. By Tatum, D epartm ental M em ber (Department o f Physics & A stronom y)

Dr. D. A. VandenBerg, D epartm ental Member (D epartm ent o f Physics &

Astronomy)

pmber (Department o f C hem istry)

our,/C?utstde

(6)

C o n te n ts

T it le i A b s tr a c t U C o n te n ts iv L ist o f T a b le s v i L ist o f F ig u r e s v ii A c k n o w le d g e m e n ts x D e d ic a t io n x ii 1 I n t r o d u c t io n 1 1.1 W h a t a re B lu e S tr a g g l e r s ? ... 1 1.2 Scope o f th is W o r k ... 8 2 B lu e S t r a g g le r s 9 2.1 O b se rv e d P ro p e rtie s o f B lue S t r a g g l e r s ... 10 2.1.1 O b se rv e d M a s s e s ... 10 2.1.2 B in a ry Blue S t r a g g l e r s ... 15 2.1.3 P u ls a tin g Blue S tr a g g le rs ... 20 2.1.4 R o ta tio n R a t e s ...21 2.1.5 C h em ical A b u n d a n c e s ... 22 2.2 F o rm a tio n M e c h a n is m s ...24 2.2.1 F oreg ro u n d C o n ta m i n a t io n ... 24

2.2.2 D elay ed S tar F o rm atio n ... 28 2.2.3 C h em ical M ixing an d N on-fcherm al P ressure S u p p o rt . 29

(7)

C O N T E N T S V 2.2.4 B inary M ass T r a n s f e r ...30 2.2.5 B inary C o a le s c e n c e ... 34 2.2.6 Stellar Collisions ... 36 3 D e v e lo p m e n t o f M o d e ls 4 0 3.1 R em n an ts o f S te lla r C o llis io n s ...40

3.1.1 P red ictio n s from H y d ro d y n a m ic S t r a t i f i c a t i o n ...42

3.1.2 Physical S tru c tu re o f M erg er R e m n a n ts ... 50

3.2 C o n stru ctio n o f In itia l M odels... 50

3.3 E vo lu tio n ary T racks ...57

3.3.1 Surface C o n v e c t i o n ... 58

3.3.2 Core C o n v ectio n ... 65

3.3.3 C onsequences o f C alcu la te d M ixing Scales...66

3.4 Fully-m ixed M o d e l s ...67

4 C o m p a r is o n w it h O b s e r v a t io n s 7 2 4.1 N G C 104 (47 T uc) ... 87

4.1.1 Are B lue Stragglers N o rm a l S ta rs? ... 87

4.1.2 O th er P ossibilities ... 107 4.1.3 D is c u s s io n ... 116 4.2 N G C 2 4 1 9 ... 120 4.3 N G C 5024 ... 125 4.4 N G C 6397 ... 132 4.5 N G C 6809 ... 138 4.6 N G C 7099 ... 139 4.7 S u m m ary a n d D is c u s s io n ... 149

4.7.1 U n c ertain ty in derived p o p u la tio n r a t i o s ... 149

4.7.2 R o ta tio n o f CoUisional M e r g e r s ...155

4.7.3 Blue S trag g lers as D y n a m ica l P r o b e s ... 158

5 C o n c lu s io n s 1 6 5 5.1 D irections for F u tu re S t u d y ... 168

G lo s s a r y 1 7 9

A p p e n d i x A 1 8 4

(8)

L ist o f T ab les

2.1 B lu e S trag g ler V ariability ... 17 3.1 L ist o f A ssu m ed C luster P a r a m e te r s ... 58 4.1 S elected C l u s t e r s ... 74 4.2 D ista n c e M od uli, R eddenings an d Shifts for S elected C lusters. 74 4.3 C lu ste r S tru c tu ra l an d D ynam ical P ro p e rtie s - I ...75 4.4 C lu ste r S tru c tu ra l an d D ynam ical P ro p e rtie s - II ... 75 4.5 47 T uc — S ta tis tic a l com parison w ith m odels ... 104 4.6 47 T uc — S ta tistic a l com parison w ith m odels using d a ta subset 110 4.7 47 T u c — S ta tistic a l com parison w ith m odels using re stric ted

p olygon ... 113 121 132 136 148 148 4.8 N G C 2419 — S tatistics for m ost likely p o p u la tio n ra tio s . . . 4.9 N G C 5024 — S tatistics for th e m ost likely p o p u la tio n ratios 4.10 N G C 6397 — S tatistics for th e m ost likely p o p u la tio n ratios 4.11 S u m m a ry o f blue straggler form ation r a t e s ... 4.12 S u m m a ry o f blue straggler p o p u l a t i o n s ...

(9)

L ist o f F ig u r e s

1.1 CMD o f N G C 6397 ... 1.2 CM D o f N G C 7099 ... 1.3 CMD o f N G C 6397, w ith tracks

2.1 log g — log T e // d iag ram for N G C 6397 ... 2.2 log g — log T e // d iag ram for 47 T u c ... 2.3 P red ictio n s o f th e B ahcall S oneira m odel for N G C 5024 2.4 P red ictio n s o f th e B ah call & S oneira m odel for N G C 6397 2.5 P red ictio n s o f th e B ahcall & S oneira m odel for N G C 7099

3 4 5 12 13 25 26 27 3.1 D ensity {p) a n d h y d ro d y n am ic en tro p y (A) profiles for p o ly ­

tropes 43

3.2 H ydrogen m a ss frac tio n profiles for poly tro p ic m ergers . . . . 44

3.3 D ensity (p) a n d h y d ro d y n am ic e n tro p y (>l) profiles for re a l s ta rs 48 3.4 H ydrogen m a ss frac tio n profiles for stellar m e r g e r s ...49

3.5 E v o lu tio n ary tra c k s for varying am o u n ts a n d d istrib u tio n s o f in jected e n e r g y ... 56

3.6 E v o lu tio n ary tra c k s for m etal-p o o r m erger r e m n a n t s ... 59

3.7 E v o lu tio n ary tra c k s for m etal-rich m erger r e m n a n t s ... 60

3.8 E v o lu tio n ary tra c k s for fully-m ixed m erger r e m n a n t s ... 70

3.9 E v o lu tio n ary tra c k s for fully-m ixed m erger r e m n a n t s ... 71

4.1 C o lo u r-m ag n itu d e d iag ram o f 47 Tuc (N G C 1 0 4 ) ...76

4.2 C o lo u r-m ag n itu d e diagram o f N G C 2 4 1 9 ...77 4.3 C o lo u r-m ag n itu d e diagram o f N G C 5024 ... 78 4.4 C o lo u r-m ag n itu d e diagram o f N G C 6397 ... 79 4.5 C o lo u r-m ag n itu d e diagram o f N G C 6809 ( B V ) ... 80 4.6 C o lo u r-m ag n itu d e diagram o f N G C 6809 ( V I ) ... 81 4.7 C o lo u r-m ag n itu d e diagram o f N G C 7099 ... 82 vu

(10)

L I S T OF F IG U R E S vüi

4.8 Fiduciéds o f m e ta l-p o o r clu sters ( B V ) ... 84

4.9 F id u cials o f m etéJ-p o o r clu sters ( V I ) ... 85

4.10 C M D o f 47 T uc, w ith evolu tio n ary tra c k s... 88

4.11 D e m o n stra tio n o f C u m u lativ e A g e ... 90

4.12 P h o to m e tric m ass d e term in a tio n s of blue stra g g le rs...92

4.13 P h o to m e tric m ass d e term in a tio n s of blue strag g lers, w ith er- ro rb a rs ...95

4.14 M ass d is trib u tio n o f b lu e stragglers in 47 T u c ...96

4.15 C M D o f fak e b lu e strag g lers draw n &om s ta n d a rd tra c k s . . . 97

4.16 D e m o n stra tio n o f ...99

4.17 D e m o n stra tio n o f A z w ith fake blue s t r a g g l e r s ...100

4.18 A z d is trib u tio n o f blue stragglers in 47 T u c ... 101

4.19 A z d is trib u tio n o f tu rn o ff m ergers in 47 T u c ...109

4.20 In d iv id u a l likelihoods for th e blue stragglers in 47 T u c ...112

4.21 Likelihoods for different pop u lation ra tio s in 47 T u c ... 114

4.22 R eal a n d fake b lu e strag g lers in 47 T u c ... 117

4.23 D is trib u tio n o f b lu e strag g ler masses in N G C 47 T u c ...118

4.24 Likelihoods for different pop u lation ra tio s in N G C 2419 . . . . 122

4.25 R eal a n d fake b lu e strag g lers in NGC 2 4 1 9 ...123

4.26 D is trib u tio n o f b lu e stra g g ler masses in N G C 2 4 1 9 ...126

4.27 R eal a n d fake b lu e strag g lers in NGC 5024 ... 127

4.28 In d iv id u a l likelihoods for blue stragglers in N G C 5024 ... 128

4.29 Likelihoods for different pop u latio n ra tio s in N G C 5024 . . . . 130

4.30 D is trib u tio n o f b lu e stra g g ler masses in N G C 5024 ... 131

4.31 R eal a n d fake b lu e strag g lers in NGC 6397 ... 133

4.32 In d iv id u a l likelihoods for blue stragglers in N G C 6397 ... 134

4.33 Likelihoods for different p o p u latio n ra tio s in N G C 6397 . . . . 135

4.34 D is trib u tio n o f b lu e stra g g ler masses in N G C 6397 ... 137

4.35 R eal a n d fake b lu e strag g lers in NGC 6809 ( B V ) ... 140

4.36 R eal a n d fake b lu e strag g lers in NGC 6809 ( V I ) ... 141

4.37 Likelihoods for different p o p u latio n ra tio s in N G C 6809 . . . . 142

4.38 D is trib u tio n o f blue stra g g ler masses in N G C 6809 ... 143

4.39 R eal a n d fake b lu e strag g lers in N GC 7099 ... 145

4.40 Likelihoods for different pop u latio n ra tio s in N G C 7099 . . . . 146

4.41 D is trib u tio n o f b lu e stra g g ler masses in N G C 7099 ... 147

4.42 U n c e rta in tie s in th e p o p u la tio n ratios for N G C 2 4 1 9 ...153

(11)

L IS T OF F IG U R E S ix

5.1 E v o lu tio n ary t r a c k s ...172 5.2 P e te rse n D iag ram s ...173 5.3 F irst set o f fak e blue stragglers ...185 5.4 Likelihoods fo r various population ratio s m a tc h in g first fake

d a t a s e t ... 186 5.5 Second set o f fake blue s t r a g g l e r s ... 188 5.6 Likelihoods fo r various population ratio s m atch in g second fake

(12)

A ck n o w led g em e n ts

W h a t e x a c tly does one put in th e A cknow ledgem ents section? Ideally, as far as I u n d e rs ta n d , it is the a p p ro p riate place to recognise those who have assisted, en co u rag ed , a n d sup p o rted me d u rin g th e w ritin g of this d issertatio n (and during all o f th e tim e leading up to th e c o n ta c t of the proverbial pen w ith th e eq u ally proverbial p ap er). This d is se rta tio n is already a b o u t 200 pages long, acknow ledging all those who hav e a ssisted me in some way in reaching this p o in t would bring th a t up to a b o u t 400 pages. A quick read th ro u g h th e A cknow ledgem ents in th e d isse rta tio n s o f p a st A stro-grads gave me a clearer p ic tu re - an d some tim e to reflect on th e people th a t actu ally w rote th o se pages. H ere goes.

It seems co m m o n practice to acknow ledge o n e ’s spouse last, allowing th e last w ords to give em phasis to th e en co u rag em en t a n d em otional su p p o rt given by th is sin g u larly im p o rtan t person. I c a n ’t do th a t. A ndrea is th e first th o u g h t in m y m in d a t the beginning of th e day, h er love and w arm th are m ore essential to m e th a n the rising of th e S u n . H er place is a t th e beginning. Her sparkling b lu e eyes have encouraged m e (a n d c a p tu re d m e), h er m usical voice has consoled m e (an d charm ed m e), h er presen ce has sup p o rted me (and sustained m e). She has given m e th e s tre n g th to co n tin u e, and to finish, this dissertatio n .

It has ta k e n m e far too long to get to th is p o in t, b u t Chris P ritc h e t, m y supervisor, has d e m o n strated an alm ost god like p a tie n ce while th is disser­ ta tio n was being w ritte n . I always left our ta lk s reg ard in g my w ork w ith a renew ed sense o f o ptim ism . His support (b o th financial and scientific) has

(13)

A C K N O W L E D G E M E N T S xi

been g re a tly a p p re c ia te d .

I have to th a n k D on V andenB erg for allow ing m e to u se his excellent stellar evolution co d e, w ith o u t which th e w ork in this d is se rta tio n w ould not have b een possible.

O f course, th e o th e r sta ff a n d faculty h ere in th e D e p a rtm e n t have also helped w ith th e ir w ords o f encouragem ent a n d advice: A nn G ow er, D avid H artw ick, R uss R o b b , Je re m y T atu m (who was actu a lly m y in te rim su p erv i­ sor w hen I first s ta r te d as a g ra d u a te s tu d e n t), a n d S tep h en so n Y ang. D avid B alam has alw ays h a d tim e a n d u n d e rstan d in g for th e g ra d u a te s tu d e n ts in th e d e p a rtm e n t; h e is to m an y a kind, w ell-respected uncle w ith a tw isted sense o f h u m o u r. C o lin Scarfe deserves acknow ledgem ent for h is p ro p h e tic al rem ark w hich he m a d e a little over th re e years ago: “...ta k e y o u r b e st guess a t how long you th in k it will ta k e you to finish a n d m u ltip ly t h a t by tt: th a t wiU be how long it will a c tu a lly tak e you to fin ish ....” 1 w ould h a v e preferred it if he h a d chosen a sm aller m a th e m atica l c o n sta n t.

M y tim e h e re o n th e fo u rth floor o f th e E llio tt building h a s overlap p ed w ith m an y g ra d u a te s tu d e n ts who have left m e w ith lastin g m em o ries: lu n ch tim e discussions a n d th e slow dow nw ards sp iral th e y in ev itab ly to o k ; sh o u ts of fru stra tio n echoing dow n th e halls durin g co m m u n al gam es o f m a ze , x tre k , xconq, x b la st, a n d q u ak e; cigars; Friday b e e r-tim e (a n d th e c o m m e n ts I re­ ceived w hen I e ith e r left early or d id n ’t go so t h a t I could be w ith m y sweetie a t hom e); video n ig h ts (it was an innocent m istake!).

(14)

To m y wife, A n d re a, a n d to o u r first child, whose arriv al we awcdt eagerly.

(15)

C h a p ter 1

I n tr o d u c tio n

1.1

What are Blue Stragglers?

A sim ple definition o f blue stragglers is th a t th e y are h o t, bright, m assive, m ain sequence s ta rs ex isting am o n g a p o p u latio n o f evolved stars.^ F igures 1.1 and 1.2 show c o lo u r-m ag n itu d e diagram s for th e globular clusters N G C 6397 (Kcduzny, 1997) a n d N G C 7099 (M30; G u h a th a k u r ta et a i, 1998). Ac­ cording to can o n ical th eo ry , th e m ost m assive, core hydrogen burn in g , m ain sequence stars in clu sters such as these are lo c a te d a t th e m ain sequence turnoff, while th e o th e r sequences (th e sub-giant b ra n c h , th e red giant b ran ch , a n d th e h o rizo n tal b ra n c h ) a re defined by th e ev o lu tio n o f stars a fte r th e y have left th e m ain sequence. T h e blue strag g ler sequence extends b eyond th e tu rn o ff to w here, in m uch younger clu sters, m ain-sequence s ta rs m ore m assive th a n th e c u rre n t tu rn o ff s ta rs would lie. F ig u re 1.3 shows th e sam e colour-m agnitude d ia g ra m as show n in F igure 1.1 w ith theo retical

evolution-^This definition is so m ew h at biased tow ard describing blue stragglers in clusters. Blue stragglers have been show n to exist in th e field o f th e G a lax y (H obbs & M athieu 1991; Glaspey, P ritch et Sc S te tso n 1994) w here it is not u nusual to find ‘norm al’ stars m atch in g th e sam e description.

(16)

C H A P T E R L I N T R O D U C T I O N 2

a ry track s for sta rs o f various m asses o verplotted. T h e fa c t t h a t b lu e s tra g ­ glers ap p ear to be m o re m assive th a n th e tu rn o ff sta rs (a n a p p e a ra n c e w hich is su p p o rte d by sp ectro sco p ic o b serv atio n s), is th e essence o f th e e n ig m a t h a t blue stragglers re p re se n t: if th e y a re m assive sta rs, th e n th e y sh ould have evolved away from th e m a in sequence long ago.

B u t does th e p resen ce o f blu e stragglers really in d ic a te a p ro b le m w ith s ta n d a rd stellcir th e o ry ? A fte r all, th e agreem ent o f c u rre n t ste lla r calcu la­ tions w ith observations o f sta rs in o u r own G alaxy (e.g. R en zin i & Fusi P ecci, 1988) d em o n strates th a t th e m odels a re qu ite a d e q u a te . O n th e o th e r h a n d , th e re are known om issions a n d sim plifications in th e s ta n d a rd th e o rie s, b u t none seem a d eq u a te to e x p lain how blue stragglers can a p p a re n tly re m a in on th e m ain sequence w hile th e th e bulk of th e stars in th e ir p a re n t c lu ste r h ap p ily evolve in a cc o rd a n ce w ith th e theo retical p red ictio n s.

If blue stragglers w ere fo rm ed a t th e sam e tim e as th e re s t o f th e sta rs in th e cluster, w ith th e sam e - a p p a re n tly high - m asses as th e y now possess, th e n th e y m ust in d ic a te a p ro b lem w ith ou r s ta n d a rd tr e a tm e n t o f s te lla r for­ m a tio n and evolution. C an o n ical stellar th eo ry a tte m p ts to m o d el s ta rs as gciseous spheres w hich a re in h y d ro sta tic a n d th e rm a l e q u ilib riu m ; th e ‘evo­ lu tio n ’ of a s ta r is a re s u lt o f th e continuous a d ju stm e n t o f th e (q u a si-sta tic ) equilibrium s tru c tu re o f th e s ta r in response to th e ch an g in g co n d itio n s in th e interior. D eviations fro m th is idealised s tru c tu re , d u e to , for e x am p le, ro ta tio n or th e p resen ce o f a close com panion s ta r, will re s u lt in th e s t a r ’s evolution d ep artin g fro m th e p re d ic te d course. In g en eral, how ever, d e p a r­ tu res significcint eno u g h to m odify th e lifetim e o f a s ta r sig n ifican tly will also resu lt in the s ta r h av in g o th e r, observable, peculiarities: for ex am p le,

(17)

ex-C H A P T E R 1. I N T R O D U ex-C T I O N — 2 — 0 -6 — 8 - 0 . 5 BS -MS TO F ie ld S t a r s

I #

. ; :

0.5 CB-V)„ 1.5

Figure 1.1: C o lo u r-m a g n itu d e diagram for th e g lo b u la r cluster N G C 6397 (K aluzny et al., 1997). T h e various e v o lu tio n a ry sequences are labelled as follows: BS - b lu e stra g g le rs, SOB - su b -g ia n t b ra n c h , R G B - red g ia n t branch, H B - h o riz o n ta l b ra n c h , MS T O - m a in seq u en ce turnoff.

(18)

C H A P T E R 1. I N T R O D U C T IO N - 4 r

r

Jr..' ' HB : . BS . SGB MS TO Field S t a r s

®

‘S : ' ■< ;■

0.5 1.5 ( B - V ) ,

Figure 1.2: C o lo u r-m ag n itu d e d iag ram for th e globular c lu ster N G C 7099 (M30; G u h a th a k u r ta et oZ., 1997). Sequences a re labelled as in F ig u re 1.1.

(19)

C H A P T E R L I N T R O D U C T I O N ± X - 2 r 4 -8 - 0 . 5 0.5 ( B - V ) , 1.5

F igure 1.3: C M D o f N G C 6397 w ith evolutionary tra c k s overlaid. T h e m asses in d icated are in so lar m asses.

(20)

C H A P T E R 1. I N T R O D U C T I O N 6

tre m e ro ta tio n , which could e x te n d th e lifetim e o f a sta r by a fa c to r o f tw o or m ore (C lem ent, 1994) by p ro v id in g a n o n -th e rm a l form o f p ressu re s u p p o r t, re d u c in g th e req u irem en ts for n u c lea r e n erg y generation, w ould also re s u lt in th e s ta r having a m u ch low er lu m in o sity a n d te m p e ra tu re th a n a sim ila r, n o n -ro ta tin g star.

N a tu re , perhaps bein g lo a th to follow th eo ry , provides sta rs for w h ich d ev iatio n s a t some level fro m th e a ssu m p tio n s im plicit in th e s ta n d a rd th e ­ ories a re th e norm ra th e r th a n th e e x ce p tio n . For instance: all sta rs r o ta te , m a n y s ta rs are m em bers o f b in a ry sy ste m s, a n d com position v a ria tio n s a re seen am o n g stars even w ith in c lu sters (w h ere we usually assu m e a ll s ta rs fo rm w ith th e sam e co m p o sitio n ). A n d y e t th e sta n d a rd m odels have p ro v e n to be q u ite successful in th e ir p re d ic tio n o f ste lla r evolution: d e p a rtu re s fro m th eo ry , d u e to th e afo rem en tio n ed processes a n d others, a re o b serv ed (e.g. V an d en B erg , Larson, & D e P ro p ris 1998), b u t a re genereilly sm all. T h e ob ­ vious in te rp re ta tio n o f th is is th a t, for th e m a jo rity of sta rs, can o nical s te lla r th e o ry is a n ad eq u ate a p p ro x im a tio n to reality.

Since th e sta n d a rd th e o rie s seem sufficient, it may be th a t th e e v o lu tio n o f blue stragglers, assu m in g th e y h av e m a in ta in e d th e sam e m ass o v e r th e course o f th eir lives, differs d ra m a tic a lly fro m th a t of n o rm a l sta rs. O n th e o th e r h a n d , if a process co u ld b e fo u n d to e x te n d th e life o f a s ta r by a larg e fa c to r (such as in te rn a l m ixing o r som e n o n -th erm al p ressu re s u p p o rt; W h eeler 1979, Saio &: W h eeler 1981), it is unlikely th a t a s ta r, being a ffe c te d by th is process, would follow th e n o rm a l co u rse o f evolution (th a t p re d ic te d b y th e sta n d a rd m odels): since blue stra g g lers a p p e a r to h ave m asses consis­ te n t w ith th eir location in th e co lo u r-m a g n itu d e diagram a n d a p p e a r to h av e

(21)

C H A P T E R 1. I N T R O D U C T I O N 7

n o rm a l in tern al s tru c tu re s (S ch o e n b e rn er & N ap iw o tzk i, 1994) th eir evolu­ tio n cannot d e v iate g re a tly fro m th a t o f a norm al s ta r. R ecalling th e ex am p le o f a rapidly ro ta tin g s ta r : d u e to its lowered te m p e ra tu re a n d lum inosity, it wül a p p e a r to b e a low er m ass s ta r th a n it actu ally is, po ssib ly p rev en tin g it from being identified as a b lu e strag g ler.

If blue stragglers do n o t differ fro m normed sta rs solely in th e ir evolution, th e n th eir fo rm atio n m u s t differ also. T his provides a seco n d answ er to th e q u estio n posed earlier: if b lu e strag g lers do no t form in th e sam e fashion as n o rm a l stars, th e n th e y do n o t necessarily in d icate a flaw in o u r theories o f steUcir evolution. If, fo r e x a m p le , blu e stragglers do evolve cis norm al s ta rs, a n d p erh ap s fo rm in th e sa m e m a im e r as norm al s ta rs, b u t fo rm ed la te r th a n th e o th e r stars in th e c lu ste r, th e n th e y would n a tu ra lly a p p e a r as m ain sequence stars e x te n d in g ab o v e th e tu rn o ff (those s ta r s form ing w ith a m ass less th a n th a t o f a tu rn o ff s ta r w ould likely blend in w ith th e less evolved, b u t n o rm al, cluster m ain seq u e n c e). In o th e r words, if o n e could, th ro u g h som e h y p o th e tic al m ech an ism , fo rm a n otherw ise n o rm al s ta r long after s ta rs o f th e sam e m ass h a d ev olv ed aw ay, th e s ta r could th e n evolve in th e ‘c o rre c t’ m a n n e r and still a p p e a r as a blue strag g ler.

Since canonical th e o ry is a p p a re n tly on sound fo o tin g , a n d processes by w hich the evolution o f b lu e strag g lers can be a lte re d do n o t present th e m ­ selves, it is likely th a t it is in th e ir fo rm atio n th a t b lu e strag g lers differ from n o rm a l stars. T h is is n o t to say t h a t th e processes w hich can a lte r th e evolu­ tio n o f a s ta r (such as r o ta tio n o r bincirity) are n o t a c tin g on blue stragglers — in fact, th e re is n o th in g to say t h a t these processes a re n o t m ore effective a m o n g blue strag g lers th a n n o rm a l s ta rs. T h ro u g h o u t th is work, I will be

(22)

C H A P T E R 1. I N T R O D U C T I O N 8

assum ing th e sta tu s quo: can o n ical th e o ry holds for b lu e stragglers as it ap ­ p aren tly does for n o rm al s ta rs, a n d th a t deviations from th e theory have no m ore an effect on blue stragglers th a n th e y a p p e a r to have on norm al stars.

1.2

Scope of this Work

T he m ain goal o f th is work is to develop and evolve m odels o f th e re m n a n ts of stellar collisions. Stellar collisions have been p ro p o sed as a possible for­ m ation m echan ism for blue strag g lers (Hills &: Day, 1976) a n d are very likely to occur in g lo b u lar clusters, especially if in te ra ctio n ra te s a re enhanced by the presence o f a p o p u latio n o f binaries (L eonard & F a h lm a n , 1991). T hese models, once d ev eloped, will b e co m p ared to th e o bserved populations o f blue stragglers in several globular c lu sters w ith pro m in en t b lu e straggler p o p u la­ tions.

C h a p te r 2 co n tain s a review o f blue stragglers, th e theories proposed for th e ir fo rm atio n a n d th e o b serv atio n s which have b e e n m ad e of th em . In C h ap ter 3 I will describe th e m odels o f stellar re m n a n ts, w hich will be used in C h a p te r 4 in a com parison w ith observed blue strag g lers.

E xecutive su m m a ry : B lue strag g lers are blue a n d tw in k ly an d , m uch like the little s ta r im m o rtalised in song, we w onder w h at th e y are.

(23)

C h a p ter 2

B lu e S tr a g g le r s

T h ere have been m an y m ech an ism s proposed for th e fo rm a tio n o f blue stra g ­ glers and, like an y o th e r th eo ry , th e ir success is g au g ed by th e ir a g re em e n t w ith observations. H ow ever, th e situ a tio n seem s so m ew h at to o co m p licated to allow for a single th e o ry to ex p lain all blue stragglers: no single m ech an ism is able to explain all o f th e o bserv ed properties o f blue strag g lers. E n v iro n ­ m en tal factors (e.g. s te lla r density, b inary fractio n a n d p erio d d is trib u tio n , th e presence of gas a n d d u s t) play a role in th e efficiency o f m o st o f th e proposed fo rm atio n m ech an ism s, so it is reasonable to re q u ire th a t a m ech­ anism be able to ex p lain th e observations o f blue strag g lers in its p re fe rre d environm ent.

In this C h a p te r, I will review th e observed p ro p e rtie s o f blue strag g lers outside th e co n tex t o f a n y o f th e proposed m echanism s; only a fte r th e o bser­ vations have been review ed will I describe th ese m ech an ism s in a n y d etail.

(24)

C H A P T E R 2. B L U E S T R A G G L E R S 10

2.1

Observed Properties of Blue Stragglers

2 .1 .1

O b serv ed M a s s e s

B ecause of th e ir lo c atio n o n th e co lo u r-m ag n itu d e d ia g ra m (C M D ^ ) - gen­ erally b rig h ter th a n th e p a re n t c lu ster’s m ain -seq u en ce tu rn o ff (M S T O ) (see Figures 1.1 a n d 1.2) - b lu e stragglers a re u su ally assu m e d to b e m assive s ta rs. However, th e m ass o f a s ta r is one o f th e m o st difficult p ro p e rtie s to determ ine: th e o n ly w ay to m easure th e m ass o f a s ta r w ith o u t re s o rt­ ing to assu m p tio n s a b o u t its lum inosity, or e v o lu tio n a ry s ta te , is th ro u g h its g rav ita tio n a l effect on n e a rb y o b je cts. For stcirs o th e r th a n th e S u n , th is is possible only in b in a ry sy ste m s. A lthough th e re a re blue strag g lers w hich a re com ponents o f b in a ry sy stem s (e.g. K alu zn y 1997, K alu zn y et al. 1996, Y an &: R eid 1996) none h av e b een stu d ied w ith th e in te n tio n o f o b ta in in g m ass estim ates. D e sp ite th is , th e re are o th e r, less d ire c t m e th o d s, w hich can b e used to e stim a te th e m ass of a blue strag gler.

Shara et al. (1997) a n d R odgers & R o b e rts (1995) a tte m p te d to d e te r­ m ine th e m ass o f blue stra g g lers in 47 T uc a n d N G C 6397, respectiv ely , by spectroscopically m e asu rin g th e ir surface g rav ities a n d te m p e ra tu re s . T h e m easu rem en ts o f S h a ra et al., w hich were m ore precise th a n th o se o f R odgers & R o b erts, showed th a t B SS-19 in 47 Tuc ( G u h a th a k u r ta et al. 1992) has a mass of 1.70 ± 0.40Ai®, ro u g h ly twice th e m ain -seq u en ce tu rn o ff m ass of th e cluster as inferred fro m isochrone fits to th e c lu ste r C M D . T h e re su lts of R odgers &: R o b erts sim ilarly showed th a t th e b lu e strag g lers in N G C 6397 a re , on average, m o re m assiv e th a n the c lu ster tu rn o ff s ta rs. U n fo rtu n ate ly ,

(25)

C H A P T E R 2. B L U E S T R A G G L E R S 11

th e m e th o d u sed in b o th studies req u ired t h a t th e absolute lu m in o sity o f th e stars b e know n, o r assu m ed .

It is possible to use th e surface g rav ities a n d te m p e ra tu re s m e a su re d by R odgers &: R o b e rts a n d S h ara et al. to e s tim a te th e masses o f blue s tra g ­ glers in a d ifferen t, d ista n ce in d ep en d en t, m e th o d . Figures 2.1 a n d 2.2 show log ÿ —log Tef f d ia g ra m s for N G C 6397 a n d 47 T uc, w ith th e m e asu re m e n ts o f R odgers & R o b e rts a n d S h ara et al. also p lo tte d . Since the surface g ra v itie s and te m p e ra tu re s a re deriv ed &om sp ectro sco p ic observations by co m p ariso n w ith m odel a tm o sp h e re s, th e re is no d ista n c e dep en d en ce (alth o u g h th e re is a reddening d e p en d e n c e on th e results o f S h a ra et al., b u t it is a sm all effect). R odgers & R o b e rts found masses for th e b lu e stragglers in N G C 6397 ra n g ­ ing from 0.62M© to 1.15A/©, which a re q u ite different th a n th e fairly n a rro w range o f m asses in fe rred from th e log g — log T * // diagram — this difference is pro b ab ly d u e in p a rt to th e poor p h o to m e try th e y used for th e lu m in o sity inform ation n ecessary for th e ir einalysis. T h e m ass Shara et al. fo u n d for BSS-19 agrees q u ite well w ith th e m ass fro m th e log g — log T e// d ia g ra m (~ 1.55M©) — it is also ra th e r en co u rag in g to n o te th a t th is m ass ag rees w ith th e p h o to m e tric m ass derived from th e C M D in Figure 2.2, a lth o u g h the appéirent e v o lu tio n a ry s ta te of th e b lu e stra g g ler is different in th e tw o diagram s.

S tro m g ren 4-colour p h o to m e try has also b e e n used (S trom & S tro m 1970, Bond & M cC o nn ell 1971, B ond & P e rry 1971) to show th a t blue stra g g lers have n o rm al su rfa ce gravities for th e ir lo c atio n s on th e C M D , su g g estin g th a t th e y m u st b e m ore m assive th a n th e s ta rs w hich are lower on th e m ain - sequence — in clu d in g th e clu ster tu rn o ff s ta rs .

(26)

C H A P T E R 2. B L U E S T R A G G L E R S 12 0 2 4 6 - 0.2 0 0.2 0.4 0.6 0.8 (B-V)o 3.5 4.5 l\o 1 4 0 1 -3 0 1 2 0 1 10 l - 0 0 o g o \ \ 0.70 3.7 3.9 3. 8 4.1 4 log T^ff

F ig u re 2.1; Top - C M D for th e blue stragglers in N G C 6397 from A lcaino

et a/.(1987) (filled circles) w hich were studied by R odgers & R oberts (1995).

T h e p h o to m etry for th e blue stragglers from A lcaino et al. is som ew hat noisy, so th e p h o to m etry show n from Lauzeral et a/.(1992), w hich is of m uch b e tte r quality, is shown for reference. T h e evolutionary tra c k s a re of a m etallicity a p p ro p riate for N G C 6397 ([F e/H ]= -2.14, [a /F e ]= 0 .3 ) a n d have th e sam e m asses as those show n in th e b o tto m diagram . B o tto m - logy — log T e// diagram for th e blue strag g lers stu d ied by R odgers & R o b erts. A ty p ical l-<r e rro r bar is shown in th e d iag ram for reference. T h e evolutionary tra c k s are labelled in u n its of solar m asses.

(27)

C H A P T E R 2. B L U E S T R A G G L E R S 13 0 2 oo 4 6 0 0.2 0 .4 0.6 0.8 1 3 .5 r-C£ O 4 .5 I 10 1 000 so 0 80 0 70 3 .6 3 .9 3 .8 3 .7 4 log T,

F igure 2.2: T op - C M D fo r the blue strag g lers in 47 T uc from G u h a th a k u r ta

et al. (1992). B SS-19 (filled circle) was th e blue s tra g g le r ta rg e te d by S h a ra

et al. (1997). T h e ev o lu tio n ary tra c k s a re o f a m e ta llic ity a p p ro p ria te fo r 47 Tuc ([F e /H ]= -0 .8 3 , [a /F 'e ]= 0 .3 ) a n d have th e sam e m asses as those show n in th e b o tto m d ia g ra m . B o tto m - log g — log T *// d ia g ra m for th e blue s tra g g le r stu d ied by S h a ra et al.. A typical \-<r e rro r b a r is show n in th e d iag ram for reference. T h e e v o lu tio n a ry tracks a re labelled in u n its o f solar m asses.

(28)

C H A P T E R 2. BLU E S T R A G G L E R S 14

A n in d icatio n of w h eth er or n o t b lu e stra g g lers are m ore massive th a n o th e r s ta rs in th e parent clu ster can b e fo u n d by com paring th e ir radial dis­ tr i b u tio n to th a t of o th e r c lu ster s ta rs. D u e to m ass segregation, the m o re m assiv e s ta rs, w hether th e y are single s ta r s o r tig h tly b o un d binaries, will te n d to se ttle to th e core o f a clu ster on a tim escale equal to th e relax atio n tim e o f th e clu ster. B lue stragglers a re fo u n d to be m ore centrally con­ c e n tr a te d th a n th e cluster giants a n d m ain -seq u en ce stars (e.g. Sarajedini & F o rre s te r 1995, G u h a th a k u rta et al. 1994, S arajed in i 1994, Ferraro et al. 1992, C ô té et al. 1991, N em ec & H arris 1987) a n d as centrally co n cen trated as c lu s te r binairies (M athieu & L a th a m 1986, E d m o n d s et al. 1996).

W ith several 10 m eter class telescopes available, or becom ing available so o n , it should be possible to m ake d ire c t m easu rem en ts o f th e masses of th o se blue stragglers th a t éire in b in a ry sy ste m s. Since o b tain in g sp ectro ­ scopic m easu rem en ts o f a b in ary blue s tra g g le r over its en tire o rb it - neces­ sa ry to d e te rm in e orbital p a ra m ete rs a n d , h en ce, its mass - w ould be tim e co n su m in g (on telescopes w hich a re in e x tre m e ly high d em an d ), mciss es­ tim a te s for single blue stragglers, such as th o se obtain ed by Shara et al. (1997), w ould m ake m ore efficient use o f telesco p e tim e. Also, d e term in a ­ tio n o f th e surface gravity a n d effective te m p e ra tu re of a large num ber o f b lu e stra g g lers in a cluster w ould be in v a lu a b le for studies of th e ir evolution since th e se m easurem ents could be c o m p a re d d irectly with stellar evolution calc u la tio n s, w ithout having to re so rt to u n c e rta in co lo ur-tem p eratu re a n d b o lo m e tric corrections (e.g. F igures 2.1 a n d 2.2).

(29)

C H A P T E R 2. B L U E S T R A G G L E R S 15

2.1.2

B in a ry B lu e S tragglers

B etw een ~ 15% (D u q u e n n o y & M ayor 1990, P a d g e t et al. 1997) a n d 50% (A bt 1979) o f th e s ta rs we see in th e sky a re actu a lly binaries. W h e th e r a sim ilar frequency o f b in a rity exists am ong th e sta rs in clu sters, p a rtic u la rly globular clusters ( G C ) , is still a m a tte r of som e d e b a te (e.g. C ôté et al. 1994, Yan & M ateo 1994, Y an &: R eid 1996, C ôté et al. 1996). A lth o u g h th e exact n a tu re o f th e c o n n ectio n betw een blue stragglers a n d binaries is u n clear, th e m ore successful m ech an ism s for th e p ro d u ctio n o f blue stragglers are d ep en d en t in a t le ast som e way on binaries, a n d should m ake predictions ab o u t th e bin ary p ro p e rtie s o f th e blue stragglers them selves.

Surveys for b in aries in clu sters have been done e ith e r p h o to m etrically or spectroscopically. P h o to m e tric surveys for binaries rely on th e chance alignm ent of th e p la n e o f th e o rb it o f a clu ster b in ary a n d th e line o f sight (i.e. inclin atio n i ~ 90°) for d e tec tio n . If such a n alignm ent occurs, th e n one com ponent of th e b in a ry will periodically eclipse th e o th e r, causing a change in th e com bined a p p a re n t b rig htn ess o f th e o b je ct. This m e th o d relies largely on serendipity: th e in c lin a tio n o f th e binary to th e line o f sight m u st b e such th a t eclipses will o c cu r, a n d observations of th e s ta r m u st b e done b o th in a n d out o f eclipse in o rd e r to d e te c t its bin ary n a tu re . Spectroscopic surveys rely on rad ial velocity v a ria tio n s. As th e two com ponents of th e b in a ry o rb it th e ir com m on cen tre o f g rav ity , th e sta rs will undergo velocity shifts which will be visible to a n ob serv er as shifts o f th e co m p on ents’ sp ec tra l lines. A lth o u g h this m e th o d also req u ires th a t th e inchnation be large, eclipses do n ot have to occur.

(30)

C H A P T E R 2. B L U E S T R A G G L E R S 16

stragglers. T h is ta b le co n stitu tes a ra th e r m ixed bag o f ob serv atio n s: all b u t tw o (L a th a m & M ilone 1996, S try k er & H riv n ak 1984) a r e p h o to m e tric surveys, m ost a re o f ra th e r short (3-5 n ig h ts o f observations) d u ra tio n , a n d all have different p h o to m e tric accuracy a t th e m a g n itu d e of th e blue strag g lers a n d , hence, differing degrees of sen sitiv ity to p h o to m etric v ariatio n s. T h e colum ns in th e tab le show the n u m b er o f blue stragglers m o n ito red Nb s

(according to th e a u th o rs, or the n u m b e r a p p ea rin g in th e su rv e y ’s C M D ), th e n u m b e r o f b in a ry blue stragglers* N^bt d e te c te d by th e survey, a n d th e n u m b er o f p u lsa tin g blue stragglers Npbt observed. T h e n u m b e r of m o n ito red blue stragglers is som ew hat a rb itra ry for som e clusters (th o s e m ark ed w ith a “ ’) due to c o n ta m in a tio n from foreground sta rs. T h e n u m b e rs p re sen te d in this ta b le a re by no m eans com plete: only a couple o f th e c lu sters have b e e n surveyed over close to th e ir entire a re a (e.g. w C en, M 67) a n d none o f th e surveys are necessarily com plete in th e ir d etectio n s o f variable blue strag g lers, due to th e d u ra tio n o f th e observations a n d /o r p h o to m e tric accuracy.

A ccording to th e num bers in T able 2.1, th e observed fractio n o f b lu e stragglers in g lo b u lar clusters which are b in a ry system s is fbin ~ 0.03. T h is, how ever, is n o t th e true fraction of b in a ry blue strag g lers: as m e n tio n e d above, a p h o to m e tric search for binaries is com pletely d e p e n d e n t u p o n th e chance alig n m en t o f th e binary o rb ital p lan e near to th e lin e of sight; th is m eans th a t th e se surveys are sensitive only to a sm all fra c tio n o f all b in a rie s. Also, because th e chance o f observing a n eclipse decreases as th e p e rio d o f th e b in ary in creases, th ese same surveys a re sensitive only to short p e rio d b inaries. B ecau se o f th ese biases, th e co rrectio n needed to e stim a te th e tr u e

*By ‘bin ary blue stragglers’ 1 mean ‘blue stragglers which are o n e com ponent o f a

(31)

C H A P T E R 2. B L U E S T R A G G L E R S 17

T ab le 2.1: B lu e S trag g ler V ariability

C lu ster •Nb5 R eference

G lo b u lar C lu sters

N G C 104(47 Tuc) 25 3 3 E dm onds et al. 1996

N G C 288 43 0 6 K alu zn y 1996

K alu zn y et al. 1998 N G C 5053 27 0 5 N em ec et al. 1995

N G C 5139(w Cen) 2 0 0 1 1 24 K alu zn y et al. 1996

K alu zn y et al. 1997 N G C 5272(M3) 30 1 3 N em ec & P a rk 1996 30 0 2 G u h a th a k u rta et al. 1994 N G C 5466 47 3 6 M ateo et al. 1990 N G C 5904(M5) 24 0 1 D rissen S h a ra 1998 N G C 6121(M4) 50 2 0 K aluzny et al. 1997c N G C 6366 27 0 0 Hcirris 1993 N G C 6397 49 0 2 K aluzny 1997

18 0 5 R u b en ste in & B ailyn 1996

NGC6838(M 71)* 1 0 0 0 Y an & M ateo 1994 R u p re c h t 106 35 0 3 K aluzn y et al. 1995 O p e n C lu sters N G C 188 14 0 K aluzn y Sc S h ara 1987 N G C 2420* 3 0 K aluzny Sc S h ara 1988 N G C 2682 1 0 6 0 L a th a m Sc M ilone 1996 6 1 2 G illiland et al. 1991 N G C 6802' 6 0 K aluzny Sc S h a ra 1988 N G C 6819' 2 0 1 K aluzny Sc S h a ra 1988

1 1 R o b b , C ard in al Sc O u e lle tte 1997

M e lo tte 6 6 6 0 K aluzny Sc S h ara 1988

B erkeley 39' 25 4 0 K aluzny et al. 1993

CoUinder 261' 40 1 0 0 M azu r et al. 1995

N G C 6791' 25 3 0 R ucinski et al. 1996

(32)

C H A P T E R 2. B L U E S T R A G G L E R S 18

fractio n o f b in a ry b lu e stragglers &om th e re s u lts o f p h o to m etric surveys is large. P e rh a p s a b e tte r indication o f th e tr u e b in a ry fractio n comes from spectroscopic su rv ey s, such as th a t o f L a th a m & M ilone (1996): o f th e 10 blue strag g lers th e y h av e m onitored, 6 h av e tu rn e d o u t to be binaries w ith

periods in th e ra n g e o f a few days to sev e ra l y ears. Since spectroscopic surveys do n o t re q u ire as close a n a lig n m e n t o f th e o rb ita l plane w ith th e line of sig h t, a n d since velocity veiriations o c c u r over th e e n tire orbit, n o t ju s t du rin g eclipses, th e size o f th e correction n e e d e d to e stim a te th e tru e fractio n o f b in ary b lue stra g g lers is sm aller.

T h e frac tio n o f b lu e stragglers in o p e n clu sters (O C s ) which are a p p a r­ e n tly in b in ary sy ste m s is /wn ~ 0.16 fro m all o f th e o p en cluster surveys n o ted in T able 2.1, o r fbin ~ 0.13 from o n ly th e p h o to m e tric surveys. C om ­ parison o f th e re su lts from globular c lu ste r su rv ey s a n d op en cluster surveys is m ore c o rrectly d o n e using only th e re s u lts o f th e p h o to m etric surveys in open clu sters, since no spectroscopic su rv e y s for b in a ry blue stragglers in globular clu sters h av e b een done, a n d th e biases in th e resu ltin g p h o to m etric vcilues for fbin sh o u ld b e roughly th e sam e . F ro m th e resu lts of th e p h o to ­ m etric surveys, fbin in o p en clusters is ro u g h ly four tim es th a t in globuleir clusters. A lth o u g h p a r t o f this difference co u ld b e d u e to incom pleteness in th e surveys th em selv es, th e change in fbin fro m low d e n sity open clusters to high d en sity g lo b u lar clu sters implies t h a t th e fo rm atio n m echanism (s) for blue strag g lers differs w ith th e local ste lla r e n v iro n m e n t a n d /o r cluster age.

For co m p ariso n , th e fraction o f s ta rs th a t a re eclipsing binaries in th e solar n eig h b o u rh o o d is ~ 0.003 (H u t et al. 1992). T h e fact th a t th e b in ary fractio n in g lo b u lar c lu sters is roughly te n tim e s th a t observed locally po ints

(33)

C H A P T E R 2. B L U E S T R A G G L E R S 19

to binaries a n d blue strag g lers having some close co n n ectio n .

O f those blue strag g lers w hich are observed to b e eclipsing binaries, roughly 50% are a ctu a lly W U rsae M ajoris ( W U M a ) s ta rs w hich are contact b inaries - bin ary stars in w hich th e two com ponents a re o rb itin g w ithin a com m on envelope m ad e o f m a te ria l c o n trib u ted from each s ta r.

Spectroscopic surveys for blue stragglers in clu sters are necessary to ob- tciin a b e tte r u n d e rsta n d in g o f th e b in ary n a tu re o f b lu e stragglers. Milone & L ath am (1994) have u n d e rta k e n such a survey in several open clusters. To d a te , results for only one c lu ster, M 67, have been p re sen te d , b u t th e y find th a t o f the te n blue strag g lers th e y have been m o n ito rin g , six are in binary system s - none o f w hich a re eclipsing binaries. O f th e se six binary system s th a t Milone & L a th a m have found, four are in eccen tric orb its.

S tryker &: H riv n ak (1984) o b ta in e d sp ectra for 7 b lu e stragglers in N G C 7789 a n d d e te c te d no ra d ia l velocity variations, on th e basis o f a com pari­ son betw een observed a n d ex p ec te d sc a tte r in th e d eriv ed velocities. T heir observations were sp re ad o u t over ~ 300 days, b u t only roughly a dozen s p e c tra were o b ta in e d p e r s ta r. W hile th eir resu lts a re not as sensitive to long period binaries as th o se o f M ilone & L atham (1994), S try k er & H rivnak should have easily d e te c te d sh o rte r period binaries d u e to th e ir much larger velocity am plitudes.

As will be discussed la te r, b in a rity am ong blue strag g lers, a n d th e prop­ erties of such binaries (e.g. p erio d , eccentricity), a re o b serv atio n s which can possibly be used to discern betw een different blue stra g g ler form ation m ech­ anism s. A dditionally, since it is possible th a t th e b in a ry properties of blue stragglers will change w ith en v iro n m en t, knowledge o f th e binary charac­

(34)

C H A P T E R 2. B L U E S T R A G G L E R S 20

teristics in, say, g lo b u lar c lu ster cores would also b e useful (e.g. E dm o n d s

et a /.,1999).

2 .1 .3

P u ls a tin g B lu e S tra g g lers

A n add itio n al p h en o m en o n w hich a p p e a rs to have som e co n n ectio n to blue stragglers is p u lsatio n . W ith in a fairly narrow , n e arly v e rtic a l b a n d in th e C M D , called th e in sta b ility strip, s ta rs a re p o ten tially u n s ta b le to pulsatio ns. .\m o n g th e lum inous gian ts, th e classical C epheids a n d W V Irginis stars p u lsate w ith p erio d s ranging from ~ 1 01 0 0 days; on th e h o riz o n ta l b ran ch

(th e location of th e low m ass, core h eliu m burning s ta r s ) , th e R R Lyrae stars p u lsate w ith p erio d s of ~ 0.5 days; n e a r th e m ain -seq u en ce, S S cuti an d SX Phœ nicis s ta rs p u ls a te w ith p erio d s of ~ 0.03 — 0.3 d ay s. T h e p u lsatin g blue stragglers belong to e ith e r th e S S cu ti or SX P h œ n ic is class o f p u lsatin g stars (collectively, th e se will be re fe rre d to as D w arf C ep h eid s or D C s ) .

From T able 2.1, th e fractio n o f b lu e stragglers th a t a re observed to be p u lsatin g is fpb, ~ 0 . 1 0 in globular clusters a n d fpb, ~ 0 . 0 2 in o p en clus­

te rs. O f those blue stragglers w hich a re actu ally lo c a te d in th e in sta b ility strip , ^ 30% are a c tu a lly o bserved to pulsate. A m ong s ta rs in th e solar neighbourhood w ith th e sam e s p e c tra l ty p e as th e D C s, ~ 30 — 50% a re ob­ served to p u lsate (B reg er 1979), w hile v irtu ally all o f th e g ia n t s ta rs lo cated in th e in stab ility s trip p u lsate. T h e fa c t th a t all o f th e m ain -seq u en ce stars located in th e in sta b ility strip do n o t pu lsate could be re la te d to som e phys­ ical process w hich stabilises th o se s ta rs against p u lsa tio n . A lte rn a tiv e ly , th e pulsational a m p litu d e o f th ese s ta rs m ig h t be to o low to have b e en d e te c te d in th e variability surveys.

(35)

C H A P T E R 2. B L U E S T R A G G L E R S 21

Solano & F e rn le y (1997) have show n th a t th e p u ls a tio n a m p litu d e a n d ro ta tio n velo city o f D C s a re re la te d in th a t those w ith low ro ta tio n velocities show a m u ch b ro a d e r d is trib u tio n o f pulsation a m p litu d e s th a n th o se w ith high ro ta tio n velocities: fast ro ta to rs show very sm all p u lsatio n a m p litu d e s ( < O.lOmag). I t is possible th a t th o se stars in th e in sta b ility s trip w hich do not a p p e a r to p u lsa te a re , in fa c t, fast ro ta to rs , a n d so have a sm all pulsation a m p litu d e . H ow ever, B reger (1979) p o in ts o u t th a t m a n y o f th e non -pu lsato rs in th e in sta b ility strip are sp ectro sco pically an o m alo u s A m stars, w hich a re u su ally slow ro ta to rs . K aluzny et al. (1997a) n o te th a t roughly 2 /3 o f th e p u lsatin g blue stragglers in th e ir sam p le for w C en have p u lsatio n al a m p litu d e s below 0 . 1 0 m ag.

2 .1 .4

R o ta t io n R a te s

T h e ro ta tio n ra te s o f n o rm a l m ain-sequence sta rs, like o u r Sun, a re o b serv ed to be ro u gh ly c o rre la te d w ith sp e c tra l type: th e av erag e ro ta tio n velo city o f early ty p e s ta rs (O a n d B) in th e solar neighbourhood is Vrot ~ 2 0 0 k m /s ; for

m id -sp ectral ty p e s (A to early F ) th e average ro ta tio n velocity d ro p s stea d ily w ith spectreil ty p e dow n to Vrot ~ 70 k m /s a t sp e c tra l ty p e F2; below s p e c tra l ty p e F , th e a v erag e ro ta tio n velocity drops rap id ly below Vrot ~ 10 k m /s . Since b lue stra g g lers have s p e c tra l ty p e s in th e ran g e o f A to early F , we w ould expect th e m to b e fairly ra p id ly ro ta tin g , w ith th e av erag e ro ta tio n velocity in the ran g e o f ~ 1 0 0 — 180 k m /s . H owever, m e asu re d ro ta tio n velocities for blue stragglers ty p ic a lly fall below th is.

P e te rso n et al. (1984) find th a t th e ro ta tio n velocities o f blue strag g lers in M67 (N G C 2682) v a ry from 10 k m /s to 120 k m /s , w ith s p e c tra l ty p e s

(36)

C H A P T E R 2. B L U E S T R A G G L E R S 22

from B8 to A8. Also, for a sam ple of field blue strag g lers, G lasp ey et al.

(1994) found ro ta tio n velocities consistently below 100 k m /s . O f course, w hen a ro ta tio n velocity is d eterm in ed for a s ta r, w h a t is a ctu a lly m easured is VVotsini - th e p ro je c tio n o f th e tru e ro ta tio n velocity. For th e field stars, ro ta tio n velocities have b een ob tain ed for a large en o u g h sam p le for each sp ec tra l ty p e th a t a s ta tis tic a l correction can be a p p lie d to e stim a te th e tru e ro ta tio n velocity (t = 90°). A pplying a similcir so rt o f correction to th e average ro ta tio n velocity o f blue stragglers shows th a t th e y a re slightly slower th a n n o rm al ro ta to rs (M ath y s 1991). O f course, a com p lete survey — m easuring ro ta tio n velocities o f a large sam ple o f blue stragglers in different environm ents — w ould b e useful in this in sta n ce , especially since ro tatio n m ay be one way to d iscrim in a te betw een possible fo rm atio n m echanism s for blue stragglers.

The only re p o rte d o b serv atio n of the ro ta tio n velocity of a blue straggler in a globular clu ster (S h a ra et al. 1997) is V s in i = 155 ± 55 k m /s for BSS- 19 in 47 Tuc (G u h a th a k u rta et al. 1992). T h is is hig h , b u t n o t necessarily unusual for its sp e c tra l ty p e (A 7V ), nor is it ro ta tin g n e ar to its e stim ate d break-up velocity o f ~ 410 k m /s .

2 .1 .5

C h em ica l A b u n d a n ces

M athys (1991) an aly sed tw o o f th e M67 blue strag g lers, F153 a n d F185, in d etail. O ne of th e tw o s ta rs stu d ied , F153, was classified as a n A m star^ while th e o th e r s ta r, F 185, was not stric tly classified as a n A m s ta r, b u t

^The Am phenom enon is a chem ical peculiarity am ong som e A sta rs causing them to be u n d erab u n d an t in som e elem ents (e.g. Ca, Sc, Si), relative to iron, while norm al (or ‘so lar') in others. T h e driving m echanism is th o u g h t to be diffusion.

(37)

C H A P T E R 2. B L U E S T R A G G L E R S 23

had som e o f th e sam e peculiarities as F153. M ath y s fo u n d th a t th e tw o stars had nearly id e n tic al, roughly solar, abundances in m o st e lem en ts, ex cep t th a t F 153 was e x tre m ely u n d e ra b u n d a n t in calcium a n d sca n d iu m while F185 was u n d e ra b u n d an t in calcium , b u t no t in scandium . A n a d d itio n a l peculiarity of these stars is t h a t , while th e ab u n d an ce o f n itro g en is ro u g hly solar, the to ta l a b u n d an c e o f carb o n , nitrogen an d oxygen is low er th a n solar. A dding to th e growing list o f chem ical peculiarities o f th e se s ta rs , th e y have 0 / N and C /N ratio s sim ilar to M67 giants which have b ro u g h t n u clear processed m aterial to th e ir surface (th e ‘first dredge-up’).

In a d d itio n to those peculiarities observed by M a th y s (1991), P ritc h e t &: G laspey (1991) a n d H obbs & M athieu (1991) fo u n d th a t blu e stragglers are u n d e ra b u n d a n t in lith iu m , suggesting th a t som e form o f m ixing o f th e surface layers o f th e se sta rs has occurred. T h e d ep letio n o f lith iu m can be used as a n in d ic a to r o f m ixing for these stars b ecause, for n o rm a l, quiescently evolving stars in th e sam e te m p e ra tu re ran g e éis th e blue stragg lers stu d ied, th e lith iu m a b u n d a n c e is ex p ected to be en h an ced , o r d e p le te d only slightly, by th e effects o f diffusion (B oesgaard, 1987) — th e sam e holds for A m stars. However, lith iu m is destroyed a t te m p e ratu res g re a te r th a n ~ 2.5 x 10®K, so an observed d e p letio n o f lith iu m can be explained b y th e m ixing o f m aterial from th e in te rio r to th e surface o f th e sta r. Since th e d red g e-u p o f nuclear processed m a te ria l du rin g th e ascent of th e gian t b ra n c h re su lts in 0 / N and C /N ratio s w hich are lower th a n those o f m ain-sequence s ta rs , th e g ia n t like com position ra tio s observed by M athys a n d th e o b serv ed lith iu m depletion are strong in d ic a to rs o f som e very deep m ixing o ccu rrin g d u rin g th e blue straggler fo rm atio n process. As concluded by P r itc h e t & G laspey, all for­

(38)

C H A P T E R 2. B L U E S T R A G G L E R S 24

m a tio n m echanism s w hich do n o t involve som e sort o f m ixing o f m a te ria l to th e su rface o f th e blue stra g g le rs can be ru le d o u t by th ese o b serv atio n s — a t least for th e M67 blue stra g g lers.

V ery little is know n a b o u t th e surface ab u n d an ces of a n y o f blue s tra g ­ glers o th e r th a n th o se in M 67 a n d a few field blue stra g g lers (e.g. H obbs &: M a th ie u 1991, G lasp ey et al. 1994 ). S im ilar studies of b lu e strag g lers in g lo b u lar clusters have y et to b e done, a lth o u g h a low reso lu tio n sp ectro sco p ic s tu d y o f six blue strag g lers in u> C en by D a C osta, N orris & V illu m sen (1986) fo u n d no evidence for ch em ical p ecu liarities.

2.2

Formation Mechanisms

S everal possible fo rm atio n m ech an ism s for b lue stragglers h av e b e e n p ro p o sed since th e y were n o te d by S an d ag e (1953) in th e globular c lu s te r M3 a n d b y Jo h n so n & Sandage (1955) in th e op en c lu ste r M67. T h is sec tio n will o u tlin e th e pro p o sed m echanism s a n d th e evidence for and a g ain st e a c h o f th e m .

2 .2 .1

F oreground C o n ta m in a tio n

P e rh a p s th e sim plest e x p la n a tio n for blue stragglers, a t le a st th o se in clus­ te rs , is th a t they a re n o t physically asso ciated w ith th e c lu s te r a t all, b u t a re m erely objects in th e foreground; such o bjects could easily fall in to th e region on th e CM D w h ere b lu e strag g lers a re observed if th e y hav e th e co r­ re c t colour. A lthough su ch c o n ta m in a tio n o f th e blue stra g g ler region does o c cu r, especially for th o se c lu sters w hich lie near th e g a lac tic p la n e, m a n y blue stragglers can b e show n to be likely clu ster m em b ers on th e basis o f p ro p e r m otion or ra d ia l v elo city studies (e.g. G irard et al. 1989, M ilone &

(39)

C H A P T E R 2. B L U E S T R A G G L E R S 25

1=333 b = 7 9 .8

2 2 ^

B - V

F ig u re 2.3: E x a m p le o f foreground c o n ta m in a tio n for N G C 5024 (1=333, b = 7 9 .8 ) using th e B a h call &: Soneira (1984) m o d el. T h e d is trib u tio n of m odel ‘foreground s t a r s ’ {open squares) were fo u n d by finding th e p re d ic ted num ber of s ta rs, u sin g B ah c a ll &: Soneira m odel, w ith in sm all (0.1 x 0.5) colour- m ag n itu d e b in s a n d th e n random ly d is trib u tin g th e a p p ro p ria te num ber of p o in ts w ith in e ach b in . T h e field size w hich was o b serv ed is 12' x 13'; th e o bserved C M D for N G C 5024 is p lo tted w ith filled circles (R ey et al., 1998).

(40)

C H A P T E R 2. B L U E S T R A G G L E R S 26

1=338.2 b = - 1 2

/

B - V

F ig u re 2.4: Sam e as F ig u re 2.3, e x c e p t for N G C 6397 (1=338.2,b = -1 2 ). T h e field size is 13' x 13' (K aluzny, 1997).

(41)

C H A P T E R 2. B L U E S T R A G G L E R S 27 1 = 2 7 .2 b = - 4 6 . 8 14 16 10 20 22 B - V Figure 2.5: S am e as F ig u re 2.3, e x ce p t for N G C 7099 (1=27.2, b = -4 6 .8 ). Field size is 5.1 sq u are arc-m in u tes (G u h a th k u rta et al., 1998).

(42)

C H A P T E R 2. B L U E S T R A G G L E R S 28

L ath am 1994). F or clu sters a t h igh galactic la titu d e s , th e prob ab ility o f con­ tam in a tio n by b rig h t, blue, fo reg ro u n d o b je cts c a n a c c o u n t for only a sm all fractio n o f o b serv ed blue strag g lers.

T he R ah call Ss S oneira m o d el o f th e G alax y c a n b e used to p red ict th e nu m b er o f s ta rs p e r sq u are a rc -m in u te as a fu n c tio n o f G alactic la titu d e a n d longitude. In essence, th e m o d el assum es scale le n g th s a n d stellar densities for the G alactic d isk , bulge, a n d halo , a n d assigns a p p ro p ria te lum inosity a n d colour functions to each co m p o n en t: in te g ra tin g a lo n g th e line o f sight gives th e num bers a n d a p p a re n t m a g n itu d e s o f s ta rs. F ig u re s 2.3,2 4, a n d 2.5 show th e CMDs for N G C 5024 (R ey et a/., 1998), N G C 6397 (K aluzny, 1997), a n d N G C 7099 ( G u h a th k u rta et al., 1998), respectively, w ith th e p red icted d istri­ b u tio n of fo reg ro u n d sta rs also p lo tte d . W hile th e B a h c a ll & Soneira m odel over-predicts th e n u m b e r o f s ta rs a t sm all ( |6| < 20°) G alactic la titu d e s, th e

predictions a re rea so n a b le for h ig h er la titu d e s. F o r th e th re e clusters show n here, th e n u m b e r o f fo reg ro u n d s ta rs p re d ic ted in th e blue straggler region is obviously sm aller th a n th e o bserved n u m b e r o f s ta r s , suggesting th a t th e blue stragglers o b serv ed in th e se clusters a re n o t fo reg ro u n d stars.

2 .2 .2

D e la y e d S ta r F orm ation

Since blue strag g lers a re a p p a re n tly younger th a n th e re s t of th e stars in th e ir p a re n t clu sters, o n e obvious e x p lan a tio n is th a t th e y form ed m ore re c en tly th a n th e re st of th e s ta rs in th e clu ster. If th is m echzm ism is actin g in a cluster, th e n th e b lu e strag g lers should be, e x c e p t for th e ir anom alous age, presu m ab ly n o rm a l s ta rs: th e y should possess n o rm a l ab u n d an ces, b in a ry p ro p erties, ro ta tio n ra te s , etc..

Referenties

GERELATEERDE DOCUMENTEN

The planning system (and its instruments) is therefore placed on this middle level. The politico-juridical rules determine how resources, the lowest scale, may be

' nto account. These include reduced consplC lrt y of vulnerable road users, Increased fue l usage, environmenta l con c erns, more frequently burned-out bulbs, and

We tested whether political orientation and/or extremism predicted the emotional tone, including anger, sadness, and anxiety, of the language in Twitter tweets (Study 1) and publicity

It predicts that tap asynchronies do not differ between the left and right hands if they were exposed to different delays, because the effects of lag adaptation for the left and

In this file, we provide an example of an edition with right-to-left text and left-to-right notes, using X E L A TEX.. • The ‘hebrew’ environment allows us to write

Kortom, er wordt verwacht dat het belang om een aantrekkelijke en competitieve vestigingsplaats voor internationaal kapitaal te zijn in stedelijk beleid zal toenemen door (1)

Additionally, the research of Kannan (2017) showed also there is a missing field in the literature about the influence of personal devices on the relationship between brand

As the CSPFTZ is mainly focused on opening up service sectors like the financial services and the transportation sector, the reform of the administrative system, and the