• No results found

Cardinal spline wavelet decomposition based on quasi-interpolation and local projection

N/A
N/A
Protected

Academic year: 2021

Share "Cardinal spline wavelet decomposition based on quasi-interpolation and local projection"

Copied!
98
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)Cardinal Spline Wavelet Decomposition based on Quasi-Interpolation and Local Projection. by Veronica Sitsofe Ahiati. Thesis presented in partial fulfilment of the requirements for the Degree of Master of Science at the University of Stellenbosch. Supervisor: Prof. Johan de Villiers Department of Mathematical Sciences Mathematics Division Stellenbosch University March 2009.

(2) Declaration. By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification.. -----------------------. -----------------------. Veronica Sitsofe Ahiati. Date. Copyright. c. 2008 Stellenbosch University. All rights reserved. i.

(3) Summary Wavelet decomposition techniques have grown over the last two decades into a powerful tool in signal analysis. Similarly, spline functions have enjoyed a sustained high popularity in the approximation of data. In this thesis, we study the cardinal B-spline wavelet construction procedure based on quasiinterpolation and local linear projection, before specialising to the cubic B-spline on a bounded interval. First, we present some fundamental results on cardinal B-splines, which are piecewise polynomials with uniformly spaced breakpoints at the dyadic points Z/2r , for r ∈ Z. We start our wavelet decomposition method with a quasi-interpolation operator Qm,r mapping, for every integer r, r r real-valued functions on R into Sm where Sm is the space of cardinal splines of order m, such. that the polynomial reproduction property Qm,r p = p, p ∈ πm−1 , r ∈ Z is satisfied. We then give the explicit construction of Qm,r . We next introduce, in Chapter 3, a local linear projection operator sequence {Pm,r : r ∈ Z}, with r+1 r Pm,r : Sm → Sm , r ∈ Z, in terms of a Laurent polynomial Λm solution of minimally length. which satisfies a certain Bezout identity based on the refinement mask symbol Am , which we give explicitly. With such a linear projection operator sequence, we define, in Chapter 4, the error space sequence r+1 Wmr = {f − Pm,r f : f ∈ Sm }. We then show by solving a certain Bezout identity that there 1 exists a finitely supported function ψm ∈ Sm such that, for every r ∈ Z, the integer shift. sequence {ψm (2 · −j)} spans the linear space Wmr . According to our definition, we then call ψm the mth order cardinal B-spline wavelet. The wavelet decomposition algorithm based on the quasi-interpolation operator Qm,r , the local linear projection operator Pm,r , and the wavelet ψm , is then based on finite sequences, and is shown to possess, for a given signal f , the essential property of yielding relatively small wavelet coefficients in regions where the support interval of ψm (2r · −j) overlaps with a C m -smooth region of f . Finally, in Chapter 5, we explicitly construct minimally supported cubic B-spline wavelets on a bounded interval [0, n]. We also develop a corresponding explicit decomposition algorithm for a signal f on a bounded interval. ii.

(4) Throughout Chapters 2 to 5, numerical examples are provided to graphically illustrate the theoretical results.. iii.

(5) Opsomming Dekomposisietegnieke gebaseer op golfies (“wavelets”) het oor die afgelope twee dekades ontwikkel in ’n kragtige stuk gereedskap in seinanalise. Soortgelyk geniet latfunksies ’n voortgesette ho¨e gewildheid in die benadering van data. In hierdie tesis bestudeer ons kardinale B-latfunksies, wat stuksgewyse polinome is met uniform gespasieerde knooppunte by die diadiese punte Z/2r , vir r ∈ Z. Ons begin ons golfie dekomposisiemetode met ’n kwasi-interpolasie operator Qm,r wat, vir elke heelgetal r, re¨elwaardige r r funksies op R in Sm afbeeld, waar Sm die ruimte van kardinale latfunksies van orde m aandui,. sodat die polinoom reproduksie eienskap Qm,r p = p, p ∈ πm−1 , r ∈ Z, bevredig word. Ons gee dan die eksplisiete konstruksie van Qm,r . Vervolgens, in Hoofstuk 3, stel ons bekend ’n lokale lineˆere projeksie operator ry {Pm,r : r ∈ Z}, r+1 r met Pm,r : Sm → Sm , r ∈ Z, in terme van ’n Laurent polinoom Λm oplossing van minimum. lengte wat ’n sekere Bezout identiteit gebaseer op die verfyningsmaskersimbool Am , wat eksplisiet gegee word. Met so ’n lineˆere projeksie operator ry definieer ons, in Hoofstuk 4, die foutruimte ry Wmr = r+1 {f − Pm,r f : f ∈ Sm }. Ons toon dan aan, deur ’n sekere Bezout identiteit op te los, dat 1 daar ’n eindig-ondersteunde funksie ψm ∈ Sm bestaan sodat, vir elke r ∈ Z, die heelgetal skuif. ry {ψm (2 · −j)} die lineˆere ruimte Wmr onderspan. Volgens ons definisie, noem ons ψm dan die mte orde kardinale B-golfie. Die golfie dekomposisie algoritme gebaseer op die kwasi-interpolasie operator Qm,r , sowel as die lokale lineˆere projeksie operator Pm,r , asook die golfie ψm , is dan gebaseer op eindige rye, en word getoon om, vir ’n gegewe sein f , die essensi¨ele eienskape te besit van om relatiewe klein golfie ko¨effisi¨ente te lewer in gebiede waar die steuninterval van ψm (2r · −j) oorvleuel met ’n C m -gladde gebied van f . Ten slotte, in Hoofstuk 5, konstrueer ons minimum-ondersteunde kubiese B-latfunksie golfies op ’n begrensde interval [0, n]. Ons ontwikkel ook ’n ooreenstemmende eksplisiete dekomposisie algoritme vir ’n sein f op ’n begrensde interval. Deurgaans in Hoofstukke 2 tot 5 word numeriese voorbeelde verskaf om die teoretiese resultate grafies te illustreer.. iv.

(6) Acknowledgments. To GOD be the GLORY. I express my profound gratitude to my supervisor, Prof. Johan de Villiers, for his tremendous help and providing many suggestions, guidance, comments and supervision at all stages of this thesis. Without the help of the Wavelet Research Group,my family, friends, colleagues, the family of Prof. Johan de Villiers and everyone at the Department of Mathematical Sciences, Mathematics Division, Stellenbosch University, my stay at Stellenbosch would not have been a successful one. I am very grateful for their support. My profound appreciation to DAAD, AIMS, and University of Stellenbosch for their financial support.. v.

(7) Contents Declaration. i. Summary. iii. Opsomming. iv. Acknowledgements. v. List of Symbols. ix. List of Figures. xi. List of Tables. xii. 1 Introduction. 1. 1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2. 1.2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3. 2 Cardinal Spline Quasi-Interpolation. 4. 2.1. Cardinal B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4. 2.2. Marsden’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7. 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant . . . . .. 9. 2.4. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19. 3 Local Linear Projection. 23. 3.1. The Fundamental Bezout Identity . . . . . . . . . . . . . . . . . . . . . . . . .. 23. 3.2. The Generating Polynomial Hm . . . . . . . . . . . . . . . . . . . . . . . . . .. 26. vi.

(8) 3.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 Cardinal Spline Wavelets. 32 35. 4.1. The Wavelet Bezout Identity . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35. 4.2. The Fundamental Decomposition Result . . . . . . . . . . . . . . . . . . . . .. 40. 4.3. Decomposition and Reconstruction Algorithms . . . . . . . . . . . . . . . . . .. 44. 4.4. Singularity Detection Property . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46. 4.5. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49. 5 Cubic Spline Wavelet Decomposition on a Bounded Interval. 54. 5.1. Finite-Dimensional Cubic Spline Refinement Spaces . . . . . . . . . . . . . . . .. 54. 5.2. Local Linear Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55. 5.3. The Fundamental Space Decomposition Result . . . . . . . . . . . . . . . . . .. 61. 5.4. Construction of a Wavelet Basis . . . . . . . . . . . . . . . . . . . . . . . . . .. 63. 5.5. The Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69. 5.6. Cubic Spline Quasi-Interpolation on a Bounded Interval . . . . . . . . . . . . .. 76. 5.7. Decomposition Algorithm on a Bounded Interval . . . . . . . . . . . . . . . . .. 78. 5.8. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79. Bibliography. 85. vii.

(9) List of Symbols N. the set of natural numbers. R. the set of real numbers. R+. the set of non-negative real numbers. Z. the set of integers. Z+. the set of non-negative integers. C. the set of complex numbers. πk. the linear space of polynomials of degree less than or equal to k, k ∈ Z+. M (Z). the space of bi-infinite real-valued sequences. M (R). the space of real-valued functions on R. M0 (Z). the space of sequences c ∈ M (Z) such that c is finitely supported, i.e. if c = {cj : j ∈ Z}, then there exits integers α and β, such that cj = 0, j ∈ / {α, . . . , β}. C(R). the set of continuous functions on R. C[a, b]. the set of continuous functions on [a, b]. C −1 (R). the space of piecewise continuous functions in M (R). C k (R). f ∈ M (R) : f (k) ∈ C(R), k ∈ N. C0k (R). C k (R) ∩ C0 (R). deg. the degree of a polynomial. δj,k δj n j. . ⌈x⌉ ⌊x⌋ xk+ P. j. the Kronecker symbol, δj,k = δ ,j∈Z j,0   n! , j = 0, 1, . . . , n, j!(n−j)!  0,.   1, k = j,. j, k ∈ Z.  0, k 6= j, j ∈ Z,. j 6= 0, 1, . . . , n,. the smallest integer greater than x the largest integer less than x   xk , x ≥ 0,  0,. x<0 P the sum j∈Z. viii. n ∈ Z+. with 0! = 1.

(10) p(e) p(o) ψ. P P the even part p = j p2j (·)2j of a (Laurent) polynomial p = j pj (·)j P P the odd part p = j p2j+1 (·)2j+1 of a (Laurent) polynomial p = j pj (·)j a wavelet. ix.

(11) List of Figures 2.1. Graph of the function N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5. 2.2. Graph of the function N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5. 2.3. Graph of the function N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6. 2.4. The function u2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16. 2.5. The function u3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17. 2.6. The function u4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17. 2.7. Graph of the function f2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20. 2.8. The functions f3 and f4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21. 2.9. The function Q2,3 f and the error function E2,3 f . . . . . . . . . . . . . . . . .. 21. 2.10 The function Q3,4 f and the error function E3,4 f . . . . . . . . . . . . . . . . .. 22. 2.11 The function Q4,4 f and the error function E4,4 f . . . . . . . . . . . . . . . . .. 22. 3.1. The functions P2,0 N2 (2·) and P2,0 N2 (2 · −1) . . . . . . . . . . . . . . . . . . .. 33. 3.2. The functions P3,0 N3 (2·) and P3,0 N3 (2 · −1) . . . . . . . . . . . . . . . . . . .. 34. 3.3. The functions P4,0 N4 (2·) and P4,0 N4 (2 · −1) . . . . . . . . . . . . . . . . . . .. 34. 4.1. Graph of the function ψ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39. 4.2. Graph of the functions ψ3 and ψ4 . . . . . . . . . . . . . . . . . . . . . . . . .. 39. 4.3. The signal f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50. 4.4. The function Q4,10 f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51. 4.5. The functions f9 and g9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51. 4.6. The functions f8 and g8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52. 4.7. The functions f7 and g7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52. x.

(12) 4.8. The functions f6 and g6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53. 4.9. The functions f5 and g5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53. 5.1. The sequence N60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68. 5.2. The sequence N61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68. 5.3. The sequence W60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69. 5.4. The signal f and approximation f10 = Q10 4 f . . . . . . . . . . . . . . . . . . .. 80. 5.5. The functions f 9 and g 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81. 5.6. The functions f 8 and g 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81. 5.7. The functions f 7 and g 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82. 5.8. The functions f 6 and g 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82. 5.9. The functions f 5 and g 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83. xi.

(13) List of Tables 2.1. The sequence {um,j : j = 0, 1, . . . , 2m − 1} for m = 2, 3, 4 . . . . . . . . . . .. 16. 3.1. The sequence hm,j for m = 2, 3, 4 . . . . . . . . . . . . . . . . . . . . . . . . .. 28. 3.2. The sequences {λm,j : j ∈ Z, m = 2, 3, 4}. . . . . . . . . . . . . . . . . . . . .. 33. xii.

(14) 1. Introduction The term wavelet was itself coined in 1982, [see [10]]. Wavelets are functions that satisfy certain mathematical requirements and are used in representing data or functions. Approximation using superposition of functions has existed since the early 1800’s, when Joseph Fourier discovered that he could superpose sines and cosines to represent other functions. For many decades, scientists have wanted more appropriate functions than the sines and cosines which comprise the basis of Fourier analysis, to approximate choppy signals. Wavelet analysis, in contrast to Fourier analysis, uses approximating functions that are localized in both time and frequency space. It is this unique characteristic that makes wavelets particularly useful, in approximating data with sharp discontinuities. The wavelet transform is a tool for carving up functions, or data into components of different frequency, as required in signal analysis. Over the last two decades, wavelet decomposition and reconstruction algorithms have been playing an increasingly important role in signal analysis application areas such as image processing, statistics and theoretical physics [see [3] and [7]]. Wavelet construction method based on multi-resolutional analysis, in which Fourier transform methods are employed, [see [19], [2], [22], [21]], usually require conditions like orthogonality and Riesz-stability. In particular, the so-called Chui-Wang bi-orthogonal cardinal spline wavelets [see [4]] provide a Riesz-stable basis for the square-(Lebesgue)-inetegrable functions on the real line. The decomposition algorithms based on these wavelets are infinite, albeit with exponential decay, so that truncation is necessary in practical applications. In recent work [see [11] [17]], a new class of cardinal spline wavelets was developed, where finite decomposition algorithms were obtained at the cost of giving up bi-orthogonality. Our approach to wavelet decomposition in this thesis is based on the concept of quasi-interpolation and local linear projection. We shall concentrate on the construction of cardinal B-spline wavelets, which are special in the sense that they can be formulated explicitly, are smooth, and computationally easy to work with. Motivated by the following statement made by Gilbert Strang in his forward to Charles Chui’s book [2], “ . . . when students come to ask advice about their thesis, the problem is always at the. 1.

(15) Section 1.1. Overview. 2. boundary” , and the fact that real life data always has to do with a finite amount of data, we study also in this thesis the construction of cubic spline wavelets on a bounded interval. These results seem likely to extend to hold for general mth order cardinal B-splines, and we intend to pursue this generalization in our future study.. 1.1. Overview. In Chapter 2, we introduce some fundamental results on mth order cardinal B-splines which are piecewise polynomials with uniformly spaced breakpoints at the dyadic points Z/2r , for r ∈ Z, and from which other cardinal spline functions of the same degree are obtained by linear combination of integer-shifts, that is, their integer-shifts form a basis for the cardinal spline space denoted r by Sm . We next explicitly construct a quasi-interpolant Qm,r which maps real valued functions r on R into the space Sm , for every r ∈ Z such that polynomials in πm−1 are reproduced. The. fundamental property of polynomial reproduction of quasi-interpolants allows a large range of constructions in a space containing polynomials [see [5], [15] and [9]]. In Chapter 3, we characterise a local linear projection in terms of a Laurent polynomial Λm solution to a certain Bezout identity. It is then shown how Λm can in fact be explicitly found. r+1 Next, in Chapter 4, we define the error space sequence Wmr = {f − Pm,r f : f ∈ Sm }, and we 1 show that there exists a finitely supported function ψm ∈ Sm such that the integer shift sequence. {ψm (2r · −j)} spans the linear space Wmr , for every r ∈ Z. Such a function is called a cardinal B-spline wavelet of order m. We proceed to develop a general theory of cardinal spline wavelet decomposition based on the quasi-interpolation operator, the projection operator and the wavelet, to decompose any signal f defined on R. Finally, in Chapter 5, we give an explicit formulation of the cubic spline wavelet construction and decomposition algorithm on a bounded interval based on the methods of Chapters 2 to 4. We show that a finite wavelet decomposition algorithm can in fact be obtained on a bounded interval without demanding any type of stability, e.g. Riesz-stability, or orthogonality, on our generating linear spaces. Our wavelet decomposition algorithm then uses only a finite data set. We therefore obtain a cardinal B-spline wavelet decomposition algorithm that is local, as opposed to previous boundary wavelet construction methods in work by Chui and De Villiers (see [6]) and Chui and.

(16) Section 1.2. Notation. 3. Quak (see [8]), obtained from bi-orthogonal wavelets, and in which the decomposition algorithm depends on all the full data set.. 1.2. Notation. In this thesis, the symbol R represents the real line, the symbol N denotes the set of natural numbers, whereas the symbol Z denotes the set of integers, and Z+ = {x ∈ Z : x ≥ 0}. We write ⌈x⌉ for the smallest integer greater than or equal to x, ⌊x⌋ for the largest integer less than or equal to x and C[a, b] for the set of continuous functions on a closed interval [a, b]. We write M (R) for the set of real-valued functions on R. For k ∈ Z+ , we denote by C k (R) the subspace of M (R) consisting of functions f such that the k th derivative f (k) is continuous on R, and where f (0) = f . We write C(R) for C (0) (R) and C −1 (R) for the space of piecewise continuous functions in M (R). For k ∈ Z+ , we write πk for the space of polynomials of degree less than or equal to k. A function f ∈ M (R) is called a finitely supported function if there exists a bounded interval [a, b] ⊂ R such that f (x) = 0, x ∈ / [a, b]. We write M0 (R) = {f ∈ M (R) : f is finitely supported}, C0 (R) = C(R) ∩ M0 (R), and, for k ∈ N, C0k (R) = C k (R) ∩ M0 (R). We write χ[0,1) (x) =.   1, x ∈ [0, 1). (1.1).  0, elsewhere.. The binomial coefficient is defined as      n! , j = 0, 1, . . . , n, n j!(n−j)! =  j 0, j= 6 0, 1, . . . , n,. j ∈ Z,. n ∈ Z+. (1.2). and with the convention 0! = 1.. For k ∈ Z+ , the truncated power function (·)k+ ∈ C k−1 (R) is defined by   x k , x ≥ 0 k x+ =  0, x < 0.. with 00 = 1.. (1.3).

(17) 2. Cardinal Spline Quasi-Interpolation 2.1. Cardinal B-Splines. r For m ∈ N, r ∈ Z, we consider the linear space Sm of cardinal splines of order m defined by. n r Sm = Sm (Z/2r ) = f ∈ C m−2 (R) : f |[ jr , j+1 ∈ πm−1 , r ) 2. 2. o j∈Z .. (2.1). r r+1 r We observe that the relation Sm ⊂ Sm , r ∈ Z holds, i.e. {Sm : r ∈ Z} is a nested sequence of 0 a linear spaces. We write Sm (Z) = Sm (Z/20 ).. Definition 2.1 For m ∈ N, we define the sequence {Nm : m ∈ N} of real-valued functions on R recursively by Nm (x) =. Z. 1. Nm−1 (x − t)dt,. m = 2, 3, · · · ,. x ∈ R,. (2.2). 0. where N1 (x) = χ[0,1) ,. x ∈ R,. (2.3). The function Nm is called the cardinal B-spline of order m. The following properties are proved in [1, Chapter 4]; see also [11, Theorem 1.1]. Theorem 2.2 For m ∈ N, and x ∈ R, the cardinal B-splines as defined by (2.2) and (2.3), have the following properties:   m X 1 j m m−1 (−1) (x − j)+ ; Nm (x) = (m − 1)! j=0 j Nm (· − j) ∈ Sm ,. Nm (x) = 0,. x∈ /. j ∈ Z;   [0, 1), m = 1,.  (0, m), m ≥ 2;. 1 [xNm−1 (x) + (m − x)Nm−1 (x − 1)] , (m − 1) Nm (x) > 0, x ∈ (0, m);. Nm (x) =. (2.4). 4. (2.5) (2.6) m ≥ 2;. (2.7) (2.8).

(18) Section 2.1. Cardinal B-Splines. 5. ′ Nm (x) = Nm−1 (x) − Nm−1 (x − 1),. Nm (x) = Nm (m − x),. m = 2, 3, · · · , if m ≥ 3;. m ≥ 2.. (2.9) (2.10). Graphs of the cardinal B-spline Nm for m = 2, 3, 4 are shown in Figures 2.1, 2.2 and 2.3 by means of (2.7) together with (2.3). 1. 0.8. 0.6. 0.4. 0.2. 0 -0.5. 0. 0.5. 1. 1.5. 2. 2.5. Figure 2.1: Graph of the function N2. 0.8. 0.7. 0.6. 0.5. 0.4. 0.3. 0.2. 0.1. 0 -0.5. 0. 0.5. 1. 1.5. 2. 2.5. Figure 2.2: Graph of the function N3. 3. 3.5.

(19) Section 2.1. Cardinal B-Splines. 6. 0.7. 0.6. 0.5. 0.4. 0.3. 0.2. 0.1. 0 -1. 0. 1. 2. 3. 4. 5. Figure 2.3: Graph of the function N4 The following result is proved in [16, Theorem 2.1]; see also [11, Theorem 1.2]. Theorem 2.3 For m ∈ N, the integer shift sequence {Nm (· − j) : j ∈ Z} of spline functions is a basis of Sm in the sense that, for each f ∈ Sm , there exists a unique sequence {cj } ⊂ R such that f=. X. cj N (· − j).. (2.11). j. The following refinement equation was proved in [1, Chapter 4]; see also [11, Theorem 1.4]. Theorem 2.4 For m ∈ N, Nm =. 1 2m−1. m   X m j=0. j. Nm (2 · −j).. If a sequence a ∈ M0 (Z) and a function φ ∈ M0 (R) with φ 6= 0 is such that X φ= aj φ(2 · −j),. (2.12). (2.13). j. then (a, φ) is called a refinement pair, the function φ is called the refinable function,the sequence. a is called the refinement mask and equation (2.13) is called the refinement equation. From Theorem 2.4, we have that, for a given integer m ∈ N, (am , Nm ) is a refinement pair with the sequence am = am,j ∈ M0 (Z) given by am,j.   m , = m−1 j 2 1. j ∈ Z.. (2.14).

(20) Section 2.2. Marsden’s Identity. 7. The polynomial Am defined by Am (z) =. m X. am,j z j =. j=0. 1 2m−1. (1 + z)m ,. z ∈ C,. (2.15). is called the cardinal B-spline refinement mask symbol of order m.. 2.2. Marsden’s Identity. Since (2.1) gives the inclusion πm−1 ⊂ Sm , we know from Theorem 2.3 that, if f ∈ πm−1 , there exists a unique sequence {cj } such that (2.11) holds. We proceed to establish a result by means of which this sequence {cj } can be explicitly calculated. We shall rely on the following so called Marsden’s identity, (see [16, p 65]), the proof of which we take from [11, Theorem 6.6]. Theorem 2.5 For m ∈ N, m ≥ 2, we have (x + t)m−1 =. X. Qm (j + t)Nm (x − j),. x, t ∈ R,. (2.16). j. where Qm is the polynomial of degree m − 1 defined by Qm (x) =. m−1 Y. (x + k),. x ∈ R.. (2.17). k=1. Proof. Our proof is by induction on the cardinal spline order m. Using (2.4), we obtain    x, x ∈ [0, 1),    (2.18) N2 (x) = 2 − x, x ∈ [1, 2),      0, elsewhere, according to which. N2 (j + 1) = δj ,. j ∈ Z.. (2.19). For a fixed t ∈ R, we define the polynomial p ∈ π1 by p(x) = x + t.. (2.20).

(21) Section 2.2. Marsden’s Identity. 8. Since π1 ∈ S2 , it follows from Theorem 2.3 that there exists a unique sequence c ∈ M (Z) such that p(x) =. X. cj N2 (x − j),. x ∈ R,. (2.21). j. and thus p(k + 1) =. X. cj N2 (k + 1 − j) =. j. X. cj δk,j = ck ,. k ∈ Z,. j. from equation (2.19). Hence p(x) =. X. p(j + 1)N2 (x − j),. x ∈ R,. j. and thus (x + t) =. X (j + 1 + t)N2 (x − j),. x, t ∈ R.. j. Therefore, the theorem holds for m = 2.. Suppose now that the theorem holds for a fixed integer m ≥ 2. Since (2.17) gives Qm+1 (x) = (x + m)Qm (x), and Qm+1 (x − 1) = xQm (x), we can use (2.7) and (2.17) to deduce that, for x ∈ R, X j. Qm+1 (j + t)Nm+1 (x − j) =. 1 X Qm+1 (j + t) [(x − j)Nm (x − j) m j. +(m + 1 + j − x)Nm (x − j − 1)] " 1 X = Qm+1 (j + t)(x − j)Nm (x − j) m j +. X. #. Qm+1 (j + t)(m + 1 + j − x)Nm (x − j − 1). j. " 1 X = Qm+1 (j + t)(x − j)Nm (x − j) m j +. X. #. Qm+1 (j + t − 1)(m + j − x)Nm (x − j). j. 1 X = [Qm+1 (j + t)(x − j) m j. +Qm+1 (j + t − 1)(m + j − x)] Nm (x − j).

(22) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant 1 X = Qm (j + t) [(j + t + m)(x − j) m j. 9. +(j + t)(m + j − x)] Nm (x − j) 1 X m(x + t)Qm (j + t)Nm (x − j) = m j X = (x + t) Qm (j + t)Nm (x − j) j. = (x + t)(x + t)m−1. = (x + t)m , from the inductive hypothesis, and thereby completing our proof.. . Corollary 2.6 For m ∈ N and n ≥ 2, we have xl =. X l! Q(m−1−l) (j)Nm (x − j), m (m − 1)! j. x ∈ R,. l = 0, 1, . . . , m − 1,. (2.22). Proof. Taking the lth derivative with respect to t of both sides of the identity (2.16) yields X (m − 1)! (l) (x + t)m−1−l = Qm (j + t)Nm (x − j), (m − 1 − l)! j. x ∈ R,. in which we set t = 0 to obtain (2.22).. l = 0, 1, . . . , m − 1, . The identity (2.22) can be use to explicitly calculate the coefficients {cj : j ∈ Z} in the cardinal B-spline series (2.11) for any polynomial f ∈ πm−1 .. 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. In our eventual wavelet decomposition algorithm, we shall require an approximation to map a r given signal f ∈ M (R) into the space Sm for an appropriate value of r. For this purpose, we r define, for m ≥ 2, an approximation operator Qm,r : M (R) → Sm , such that the polynomial. reproduction property Qm,r p = p,. p ∈ πm−1 ,. r ∈ Z,. (2.23).

(23) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 10. is satisfied. Such an operator is referred to as a quasi-interpolation operator. The construction method given below is from [17, Chapter 3]. Our first step towards the construction of Qm,r is to seek, for a parameter τ ∈ R, a function u = um,τ ∈ Sm with finite support such that X. p(j + τ )u(· − j) = p,. p ∈ πm−1 ,. τ ∈ R,. (2.24). j. where u=. X. uj Nm (· − j),. (2.25). j. and {uj : j ∈ Z} ∈ M0 (Z).. To explicitly construct the quasi-interpolation operator Qm,r , we first observe that the condition (2.24) holds for a fixed τ ∈ R if and only if X (j + τ )l u(x − j) = xl ,. x ∈ R,. l = 0, 1, . . . , m − 1.. (2.26). j. Substituting (2.25) into the left-hand-side of (2.26), we obtain, for l = 0, 1, . . . , m − 1, X. (j + τ )l u(x − j) =. j. X. (j + τ )l. j. =. X. (j + τ )l. X. uk−j Nm (x − k). k. ". X X k. uk Nm (x − j − k). k. j. =. X. #. (j + τ )l uk−j Nm (x − k).. j. (2.27). It follows from (2.27) and (2.22) that the condition (2.26) holds if and only if the sequence {uj : j ∈ Z} ∈ M0 (Z) in (2.25) is such that " # X X l! (j + τ )l uk−j − Q(m−1−l) (k) Nm (. − k) = 0, (m − 1)! j k. l = 0, 1, . . . , m − 1. (2.28). It follows from Theorem 2.3 that a sequence {uj : j ∈ Z} ∈ M0 (Z) satisfies (2.28) if and only if X. (j + τ )l uk−j =. j. l! Q(m−1−l) (k), (m − 1)!. l = 0, 1, . . . , m − 1.. (2.29). A necessary condition for (2.29) to hold is obtained by setting k = 0 in (2.29) to yield X j. (j + τ )l u−j =. l! Q(m−1−l) (0), (m − 1)!. l = 0, 1, . . . , m − 1,. (2.30).

(24) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 11. or, equivalently, X. (j − τ )l uj =. j. (−1)l l! (m−1−l) Q (0), (m − 1)!. l = 0, 1, . . . , m − 1.. (2.31). To get a minimally supported solution {uj : j ∈ Z} ∈ M0 (Z) of (2.31), we set j∈ / {0, 1, . . . , m − 1} ,. uj = 0,. (2.32). so that (2.31) becomes the m × m linear system m−1 X. (j − τ )l uj =. j=0. (−1)l l! (m−1−l) Q (0), (m − 1)!. l = 0, 1, . . . , m − 1.. (2.33). By defining .    A=  . where. 1. 1. .... 1. x0 .. .. x1 .. .. . . . xm−1 .. ... .. m−1 x0m−1 x1m−1 . . . xm−1. xj = xj,τ = j − τ,. .    ,  . j = 0, 1, . . . , m − 1;. (2.34). (2.35). u = [u0 , u1 , . . . , um−1 ]T ;. (2.36). b = [b0 , b1 , . . . , bm−1 ]T ;. (2.37). and. with bl =. (−1)l l! (m−1−l) Q (0), (m − 1)! m. l = 0, 1, . . . , m − 1;. (2.38). we obtain the matrix-vector formulation Au = b. (2.39). of the m × m linear system (2.33). To solve the linear system (2.33), we shall rely on the following result from [11, Proposition 7.1]..

(25) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 12. Proposition 2.7 For µ ∈ N, suppose {xj : j = 0, 1, . . . , µ} are µ + 1 distinct points in R, and suppose {dl : l = 0, 1, . . . , µ} ⊂ R. Then the (µ + 1) × (µ + 1) linear system µ X. xlj uj = dl ,. l = 0, 1, . . . , µ,. (2.40). j=0. has the unique solution µ X 1 (k) uj = Lj (0)dk , k! k=0. with. µ Y x − xk Lj (x) = , xj − xk j6=k=0. j = 0, 1, . . . , µ,. x ∈ R,. j = 0, 1, . . . , µ,. (2.41). (2.42). denoting the fundamental Lagrange polynomials of degree µ with respect to the point set {x0 , x1 , . . . , xµ }. Proof. Since it holds that j, ˜j = 0, 1, . . . , µ,.  Lj x˜j = δj,˜j ,. we can appeal to a standard uniqueness result in polynomial interpolation to deduce that µ X. xlj Lj (x) = xl ,. x ∈ R,. l = 0, 1, . . . , µ.. j=0. It follows from (2.41) and (2.43) that µ X j=0. xlj uj. µ X 1 (k) = Lj (0)dk k! j=0 k=0 # " µ µ X 1 X l (k) = x L (0) dk k! j=0 j j k=0 "  # µ k X d 1 (xl ) dk = k! dx k=0 µ X. xlj. x=0. µ X 1 l! = δl,k dk k! (l − k)! k=0 µ   X l δl,k dk = dl , = k k=0. which shows that the formula (2.41) satisfies (2.40).. (2.43).

(26) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 13. We see from (2.34) that A is the transpose of the (invertible) Vandermonde matrix with respect to the m distinct point set {x0 , x1 , . . . , xm−1 }, so that A is an invertible matrix. Hence (2.41) does indeed give the unique solution of the linear system (2.40).. . It follows from Proposition 2.7 that the unique solution {uj = um,j : j = 0, 1, . . . , m − 1} of the linear system (2.33) is given by um,j. m−1 X 1 (k) (m−1−k) = (0), (−1)k Lj (0)Qm (m − 1)! k=0. j = 0, 1, . . . , m − 1,. (2.44). where {Lj : j = 0, . . . , m −1} is the Lagrange fundamental polynomial sequence given by (2.42), (2.35). We now show that the sequence {um,j : j = 0, 1, . . . , m − 1} defined by (2.44) and (2.32) satisfies the condition (2.29). To this end, we use (2.31) to obtain, for l ∈ {0, 1, . . . , m − 1} and k ∈ Z, X. (j + τ )l um,k−j =. j. X. [k − (j − τ )]l um,j. j. =. l   XX l j. n=0. n. k n (−1)l−n (j − τ )l−n um,j. l   X X l n = (j − τ )l−n um,j k (−1)l−n n n=0 j   l X l (−1)l−n (l − n)! (m−1−l+n) Qm (0) = k n (−1)l−n (m − 1)! n n=0. =. l X n=0. l!k n (l − n)! (m−1−l+n) Q (0) n!(l − n)! (m − 1)! m l. (m−1−l+n). X Qm (0) n l! k (m − 1)! n=0 n!  n (m−1−l) l (0) X Qm l! = kn (m − 1)! n=0 n! =. =. l! Q(m−1−l) (k), (m − 1)! m (m−1−l). since deg (Qm ) = m − 1 implies that Qm satisfied.. ∈ πl and thereby showing that (2.29) is indeed.

(27) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 14. Suppose now that the Lagrange fundamental polynomials given by (2.42) are given by Lj (x) =. m−1 X. hj,k xk ,. x ∈ R,. j = 0, 1, . . . , m − 1,. (2.45). k=0. according to which (k). j, k = 0, . . . , m − 1,. Lj (0) = k!hj,k ,. (2.46). and, similarly, let Qm (x) =. m−1 X. qm,k xk ,. x ∈ R,. j = 0, 1, . . . , m − 1,. (2.47). k=0. so that Q(k) m (0) = k!qm,k ,. k = 0, 1, . . . , m − 1.. (2.48). Substituting (2.46) and (2.48) into (2.44) yields um,j =. m−1 X k=0. (−1)k  m−1 hj,k qm,m−1−k .. (2.49). k. Moreover, since {um,j : j = 0, 1, . . . , m −1} is the unique solution of the linear system (2.40), we deduce that the sequence {um,j } defined by (2.49) and (2.32) is a sequence of shortest possible length for which the condition (2.29) holds. We have therefore established the first part of the following result. Theorem 2.8 The function um (x) =. 2m−1 X. um,j Nm (x − j),. (2.50). j=0. where the sequence {um,j : j ∈ Z} ∈ M0 (Z) is given, for a fixed τ ∈ R, by (2.32) and (2.49), is the function of shortest possible support in Sm such that the polynomial reproduction property (2.24) holds. Moreover, um (x) = 0,. x∈ / (0, 2m − 1).. (2.51). Proof. It remains to prove the finite support property (2.51). Combining (2.25), (2.32) and (2.6), we conclude that (2.51) is indeed satisfied.. . We next construct an optimally local quasi-interpolation operator sequence {Qm,r : r ∈ Z} from the function u of Theorem 2.8 such that the polynomial reproduction property (2.23) is satisfied..

(28) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant For f ∈ M (R) and r ∈ Z, using (2.25) we deduce that, for x ∈ R, X j + τ  X j + τ  X m r f u (2 x − j) = f um,k Nm (2r x − j − k) r r 2 2 j j k X j + τ  X um,k−j Nm (2r x − k) = f r 2 j k "  # X X j+τ um,k−j f = Nm (2r x − k). r 2 j k · 2r. Suppose f ∈ πm−1 , and let g = f. . 15. (2.52). , i.e. f = g(2r ·), according to which g ∈ πm−1 . But then. (2.52) and Theorem 2.8 yield, for x ∈ R, " #  X X X j+τ r N (2 x − k) = g(j + τ )um (2r x − j) = g(2r ·) = f. um,k−j f m r 2 j j k. (2.53). The following result is an immediate consequence of (2.52) and (2.53). r Theorem 2.9 For τ ∈ R, the operator sequence {Qm,r : r ∈ Z}, where Qm,r : M (R) → Sm ,. r ∈ Z, as defined by Qm,r f =. " X X j. k. uj−k f. . j+τ 2r. #. Nm (2r · −j),. r ∈ Z,. f ∈ M (R),. (2.54). with the sequence {um,j : j ∈ Z} ∈ M0 (Z) defined as in Theorem 2.8, is an optimally local quasi-interpolation operator sequence such that the polynomial reproduction property (2.23) is satisfied. We have from (2.52) that the quasi-interpolation operator Qm,r , as defined by (2.54), has the equivalent formulation X j + τ  Qm,r f = f um (2r · −j), r 2 j. r ∈ Z,. f ∈ M (R),. (2.55). with the function um ∈ Sm as given in Theorem 2.8. From (2.51) and (2.55), it seems natural to choose the real number τ in the definition (2.54) of the operator Qm,r as τ = τ0 = m − 1,. (2.56).

(29) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 16. i.e. τ0 is the integer closest from the left to the midpoint of the interval (0, 2m − 1) in (2.52). By using the equations (2.17), (2.48), (2.56), (2.35), (2.42), (2.46), (2.47) and (2.51), we obtain the following table of values for the sequence {um j : j = 0, 1, . . . , 2m − 1} for the choice τ = m − 1, for m = 2, 3, 4. m. {um,j }. 2. {u2,0 , u2,1 } = {1, 0}. 3. {u3,0 , u3,1 , u3,2 } = { 41 , 1, − 14 }. 4. {u4,0 , u4,1 , u4,2 , u4,3 } = {− 16 , 43 , − 61 , 0}. Table 2.1: The sequence {um,j : j = 0, 1, . . . , 2m − 1} for m = 2, 3, 4 We obtain the graphs of the function um (x), for m = 2, 3, 4 in Figures 2.4, 2.5 and 2.6 by using the values of Table 2.1 in the definition (2.50). 1 u : m= 2. 0.8. 0.6. 0.4. 0.2. 0 -1. -0.5. 0. 0.5. 1. 1.5. Figure 2.4: The function u2. 2. 2.5. 3.

(30) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 0.8 u : m= 3 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -1. 0. 1. 2. 3. 4. 5. 6. Figure 2.5: The function u3. 0.9 u : m= 4 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -1. 0. 1. 2. 3. 4. Figure 2.6: The function u4. 5. 6. 7. 17.

(31) Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant. 18. Next, we show that if a given signal f ∈ M (R) is a polynomial in πm−1 on an interval, then this polynomial is locally preserved by Qm,r . Theorem 2.10 Suppose that, in Theorem 2.9, we choose τ = τ0 = m − 1 as in (2.56), and suppose that f ∈ M (R) is such that there exists a bounded interval [α, β] and a polynomial p ∈ πm−1 such that x ∈ [α, β].. (2.57). . (2.58). f (x) = p(x), Then (Qm,r f ) (x) = p(x), for every integer r such that.  τ0 + 1 τ0 x∈ α+ ,β − r , 2r 2. r > log2. 2τ0 + 1 . β−α. (2.59). Proof. Let r denote an integer such that the inequality (2.59) is satisfied. From (2.55) and the fact that u(x) = 0, x ∈ / (0, 2τ0 + 1), we have that ⌊2r x⌋. X. (Qm,r f )(x) =. f. j=⌈2r x−2τ −1⌉. . j + τ0 2r. . u(2r x − j),. x ∈ R,. (2.60). and thus ⌊2r β−τ0 ⌋. (Qm,r f )(x) =. X. j=⌈2r α−τ0 ⌉. f. . j + τ0 2r. . r. u(2 x − j),. .  τ0 + 1 τ0 x∈ α+ ,β − r . 2r 2. (2.61). Observe that α≤. j + τ0 ≤β 2r. for j = ⌈2r α − τ0 ⌉ , . . . , ⌊2r β − τ0 ⌋ .. The desired result (2.58) is then a consequence of (2.61), (2.62), (2.57) and (2.23).. (2.62) .

(32) Section 2.4. Example. 2.4. 19. Example. We illustrate Theorem 2.10 by choosing, for m = 2, 3, 4, the function fm ∈ M (R) as     1 1 1  , x ∈ [0, 1), + sin π x −  2 2 2       1 + (x − 1)m−1 , x ∈ [1, 2),    fm (x) = 2, x ∈ [2, 3),       1 + cos [π(x − 3)] , x ∈ [3, 4),      0, x∈ / [0, 4),. (2.63). which is shown for m = 2, 3, 4 in Figures 2.7 and 2.8. The inequality (2.59) is here given by. r ≥ log2 (2m − 1).. (2.64). Observe from (2.63) that fm (x) = p(x),. x ∈ [1, 2],. fm (x) = p˜(x),. x ∈ [2, 3],. where p ∈ πm−1 and p˜ ∈ π0 ⊂ πm−1 are given by p(x) = 1 + (x − 1)m−1 and p˜(x) = 2. It follows from (2.58) in Theorem 2.10 that    1 + (x − 1)m−1 , x ∈ 1 + (Qm,r fm )(x) =   2, x∈ 2+. Hence, if we choose.    3, m = 2,    r = 4, m = 3,     4, m = 4,. m ,2 2r. −. m−1 2r. m ,3 2r. −. m−1 2r.  . ,. (2.65). .. (2.66).

(33) Section 2.4. Example. 20. then the inequality (2.64) is satisfied, and (2.65) gives,     x, x ∈ 5 , 16 , 4 8 (Q2,3 f2 )(x) =    2, x ∈ 9 , 23 , 4 8. (2.67).     1 + (x − 1)2 , x ∈ 19 , 15 , 16 8 (Q3,4 f3 )(x) =  23   2, x ∈ 35 , , 16 8     1 + (x − 1)3 , x ∈ 5 , 29 , 4 16 (Q4,4 f4 )(x) =  9 45   2, x ∈ 4 , 16 .. (2.68). (2.69). The results (2.67), (2.68) and (2.69) are illustrated in Figures 2.9 to 2.11, where we have used the values of Table 2.1, (2.55), (2.50), (2.7), (2.56), (2.63). We also give the graphs of the error functions Em,r = f − Qm,r f . 2.5 f : m= 2. 2. 1.5. 1. 0.5. 0 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. Figure 2.7: Graph of the function f2. 4. 4.5.

(34) Section 2.4. Example. 21. 2.5. 2.5 f : m= 3. f : m= 4. 2. 2. 1.5. 1.5. 1. 1. 0.5. 0.5. 0. 0 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. 4.5. 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. 4.5. Figure 2.8: The functions f3 and f4. 2.5. 0.02 q : m= 2. E : m= 2 0.015. 2 0.01. 0.005. 1.5. 0 1. -0.005. -0.01 0.5 -0.015. 0. -0.02 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. 4.5. 0. 0.5. 1. 1.5. 2. 2.5. Figure 2.9: The function Q2,3 f and the error function E2,3 f. 3. 3.5. 4. 4.5.

(35) Section 2.4. Example. 22. 2.5. 0.07 q : m= 3. E : m= 3 0.06. 2 0.05. 1.5. 0.04. 0.03 1 0.02. 0.5. 0.01. 0 0 -0.01. -0.5. -0.02 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. 4.5. 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. 4.5. Figure 2.10: The function Q3,4 f and the error function E3,4 f. 2.5. 0.035 q : m= 4. E : m= 4 0.03. 2 0.025 0.02 1.5 0.015 1. 0.01 0.005. 0.5 0 -0.005 0 -0.01 -0.5. -0.015 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. 4.5. 0. 0.5. 1. 1.5. 2. 2.5. Figure 2.11: The function Q4,4 f and the error function E4,4 f. 3. 3.5. 4. 4.5.

(36) 3. Local Linear Projection  For a given B-spline refinement pair a(m) , Nm and corresponding refinement space sequence. r {Sm : r ∈ Z, m ∈ N} as defined by (2.1), our wavelet construction method will depend on the r+1 r existence of an operator sequence {Pr : r ∈ Z} with Pr : Sm → Sm ,. r ∈ Z, for which the. reproduction property Pr f = f,. r f ∈ Sm ,. r ∈ Z,. (3.1). r holds, according to which Pr is then, for each r ∈ Z, a local linear projection on Sm .. The following result shows that such a projection operator sequence can be obtained by solving a Bezout identity.. 3.1. The Fundamental Bezout Identity. For a Laurent polynomial P defined by P (z) =. X. pj z j ,. z ∈ C\{0},. (3.2). j. we define the even part P (e) and the odd part P (o) respectively by P (e) (z) =. X. p2j z 2j. and P (o) (z) =. j. so that. X. p2j+1 z 2j+1 ,.  P (z) = P (z) + P (z)  , P (−z) = P (e) (z) − P (o) (z)  (e). and thus. P. z ∈ C\{0},. (3.3). j. (e). (z) =. P (o) (z) =. (o). P (z)+P (−z) 2 P (z)−P (−z) 2.  . ,. z ∈ C\{0},. z ∈ C\{0}.. (3.4). (3.5). . Theorem 3.1 For an integer m ≥ 2 and a sequence {λj : j ∈ M0 (Z)}, the local linear operator r+1 r sequence {Pr : r ∈ Z}, where Pr : Sm → Sm , as defined by # " X X X λ2j−k ck Nm (2r · −j) for f = cj Nm (2r+1 · −j), Pr f = j. j. k. 23. (3.6).

(37) Section 3.1. The Fundamental Bezout Identity. 24. satisfies the reproduction property (3.1) if and only if the Laurent polynomial Λ given by Λ(z) =. X. λj z j ,. z ∈ C\{0},. (3.7). j. satisfies the Bezout identity (1 + z)m Λ(z) + (1 − z)m Λ(−z) = 2m ,. z ∈ C\{0}.. (3.8). r Proof. Let r ∈ Z be fixed, and suppose f ∈ Sm , i.e. there exists a sequence c ∈ M (Z) such P that f = j cj Nm (2r · −j). From (2.12) and (2.14), we deduce that. X. f (x) =. cj. j. X. =. X k. cj. j. X. k. am,k−2j Nm (2r+1 x − k). k. ". X X. =. am,k Nm (2r+1 x − 2j − k). #. am,k−2j cj Nm (2r+1 x − k).. j. (3.9). For a sequence {λj : j ∈ Z} ∈ M0 (Z), it follows from (3.6) and (3.9) that !# " X X X Nm (2r x − j) am,k−2l cl λ2j−k (Pr f )(x) = j. l. k. ". X X X. =. j. am,k−2l λ2j−k. k. l. !. #. ck Nm (2r x − j).. (3.10). It follows from (3.9) and (3.10) that, for x ∈ R, ! # " X X X am,k−2l λ2j−k cl Nm (2r x − j) cj − f (x) − (Pr f )(x) = j. l. ". X X. =. j. Since also Theorem 2.3 implies. P. j. l. δj,l −. k. X. am,k−2l λ2j−k. k. !. #. ck Nm (2r x − j).. (3.11). cj N (· − j) = 0 if and only if cj = 0, j ∈ Z, we deduce from. (3.11) that the reproduction property (3.1) holds if and only if the sequence {λj : j ∈ Z} ∈ M0 (Z) satisfies the condition X k. am,k−2l λ2j−k = δj,l ,. j, l ∈ Z.. (3.12).

(38) Section 3.1. The Fundamental Bezout Identity. 25. It remains to show that the two conditions (3.12) and (3.8) are equivalent. To this end, we use (2.15) and (3.7) to deduce that, for j ∈ Z and z ∈ C\{0}, XX XX XX am,k−2l λ2j−k z 2l = am,2k−2l λ2j−2k z 2l−2k z 2k + am,2k−2l+1 λ2j−2k−1 z 2l−2k−1 z 2k+1 l. k. l. =. k. X. l. λ2j−2k. " X. am,2k−2l z 2l−2k z 2k. l. k. +. X. λ2j−2k−1. =. λ2j−2k. #. am,2k−2l+1 z 2l−2k−1 z 2k+1. " X. #. am,2l z −2l z 2k. l. k. +. " X l. k. X. X. k. #. λ2j−2k−1. " X. #. am,2l+1 z −(2l+1) z 2k+1. l. k. −1 = A(e) m (z ). ". −1 = A(e) m (z ). ". X. #. −1 λ2j−2k z 2k−2j z 2j + A(o) m (z ). k. X. #. λ2k z −2k z 2j + A(o) m (z−1 ). k. ". ". X. X. #. λ2j−2k−1 z 2k−2j+1 z 2j. k. #. λ2k+1 z −(2k+1) z 2j. k.   −1 (e) −1 (o) −1 (o) −1 = z 2j A(e) m (z )Λ (z ) + Am (z )Λ (z ) Am (z −1 ) + Am (−z −1 ) Λ(z −1 ) + Λ(−z −1 ) 2 2  −1 −1 −1 Am (z ) − Am (−z ) Λ(z ) − Λ(−z −1 ) + 2 2  1 2j  = z Am (z −1 )Λ(z −1 ) + Am (−z −1 )Λ(−z −1 ) , 2 = z. whereas. 2j. . X. δj,l z 2l = z 2j ,. j ∈ Z,. z ∈ C.. (3.13). (3.14). l. It follows from (3.13) and (3.14) that, for j ∈ Z and z ∈ C\{0}, we have # "   −1 −1 −1 −1 X X 2l 2j Am (z )Λ(z ) + Am (−z )Λ(−z ) am,k−2l λ2j−k − δj,l z = z − 1 . (3.15) 2 k l. According to (3.15), {λj : j ∈ Z} ∈ M0 (Z) is a sequence satisfying (3.12) if and only if the corresponding Laurent polynomial Λ defined by (3.7) satisfies the Bezout identity Am (z −1 )Λ(z −1 ) + Am (−z −1 )Λ(−z −1 ) = 2,. z ∈ C\{0},.

(39) Section 3.2. The Generating Polynomial Hm. 26. or, equivalently, Am (z)Λ(z) + Am (−z)Λ(−z) = 2,. z ∈ C\{0}.. (3.16). By substituting (2.15) into (3.16), we conclude that (3.16) is equivalent to (3.8), which then completes our proof.. . We proceed to find the Laurent polynomial Λ = Λm of shortest possible length satisfying the Bezout identity (3.8).. 3.2. The Generating Polynomial Hm. Based on results in [11] and [17], we first prove the following result with respect to a polynomial solution H of the Bezout identity (1 + z)m H(z) − (1 − z)m H(−z) = 2m z 2⌊ 2 m⌋−1 , 1. z ∈ C,. (3.17). with ⌊x⌋ denoting the largest integer less than or equal to x. Theorem 3.2 The recursion formulation H2 (z). = 1,. 2H2k (z) − 21−2k H2k (−1)(1 − z)2k , H2k+1 (z) = 1+z.            . ,. z ∈ C,. (3.18).        2 −2k 2k+1   2z H2k+1 (z) − 2 H2k+1 (−1)(1 − z)  H2k+2 (z) = ,  1+z. yields a sequence {Hm : m = 2, 3, . . . , } of polynomials such that deg (Hm ) = m − 2,. m = 2, 3, . . .. (3.19). and where H = Hm is the only polynomial in πm−1 satisfying the Bezout identity (3.17). Proof. Since the numerator in the second and third lines of (3.18) both vanish at z = −1, it follows inductively from (3.18) that {Hm : m = 2, 3, . . .} is indeed a sequence of polynomials such that (3.19) is satisfied..

(40) Section 3.2. The Generating Polynomial Hm. 27. Next, we prove by induction on m that the polynomial Hm satisfies the Bezout identity (3.17). For m = 2, we see from first line of (3.18) that, for z ∈ C, we have (1 + z)2 H2 (z) − (1 − z)2 H2 (−z) = (1 + z)2 − (1 − z)2 = 4z, i.e. the polynomial H2 satisfies (3.17) for m = 2. Suppose next that, for a fixed integer k ∈ N, it holds that (1 + z)2k H2k (z) − (1 − z)2k H2k (−z) = 22k z 2k−1 ,. z ∈ C.. (3.20). Using the second line of (3.18), together with the inductive hypothesis (3.20), we obtain, for z ∈ C, (1 + z)2k+1 H2k+1 (z) − (1 − z)2k+1 H2k+1 (−z)   = (1 + z)2k 2H2k (z) − 21−2k H2k (−1)(1 − z)2k   −(1 − z)2k 2H2k (−z) − 21−2k H2k (−1)(1 + z)2k   = 2 (1 + z)2k H2k (z) − (1 − z)2k H2k (−z) = 22k+1 z 2k−1. (3.21). i.e. the polynomial H = H2k+1 satisfies the Bezout identity (3.17) for m = 2k + 1. Now we use the third line of (3.18), together with (3.21), to deduce, for z ∈ C, that (1 + z)2k+2 H2k+2 (z) − (1 − z)2k+2 H2k+2 (−z)   = (1 + z)2k+1 2z 2 H2k+1 (z) − 2−2k H2k+1 (−1)(1 − z)2k+1   −(1 − z)2k+1 2z 2 H2k+1 (−z) − 2−2k H2k+1 (−1)(1 + z)2k+1   = 2z 2 (1 + z)2k+1 H2k+1 (z) − (1 − z)2k+1 H2k+1 (−z) = 2z 2 (22k+1 z 2k−1 ) = 22k+2 z 2k+1 , i.e. the polynomial H = H2k+2 satisfies the Bezout identity (3.17) for m = 2k + 2, and thereby concluding our inductive proof of the fact that the polynomial H = Hm satisfies the Bezout identity (3.17) for every integer m ≥ 2. Finally, we prove that Hm is the only solution in πm−1 of the Bezout identity (3.17). ˜ m ∈ πm−1 satisfies Suppose H ˜ m (−z) = 2m z 2⌊ 2 m⌋−1 , ˜ m (z) − (1 − z)m H (1 + z)m H 1. z ∈ C.. (3.22).

(41) Section 3.2. The Generating Polynomial Hm. 28. Since also (1 + z)m Hm (z) − (1 − z)m Hm (−z) = 2m z 2⌊ 2 m⌋−1 , 1. z ∈ C,. it follows by subtracting (3.22) from (3.23) that h i h i m m ˜ ˜ (1 + z) Hm (z) − Hm (z) = (1 − z) Hm (−z) − Hm (−z) ,. z ∈ C.. (3.23). (3.24). Since the two polynomials (1 + z)m and (1 − z)m have no common factors, we deduce from (3.24) that there exists a polynomial J(z) such that ˜ m (z) = J(z)(1 − z)m , Hm (z) − H. z ∈ C.. (3.25). Suppose J 6= 0. Then (3.25) gives ˜ m ) = deg (J) + m ≥ m, m − 1 ≥ deg (Hm − H ˜ m , i.e. Hm is the only solution in a contradiction. Hence J = 0, so that (3.25) yields Hm = H πm−1 of the Bezout identity (3.17).. . Using (3.18), we calculate in Table 3.1 the sequence {hm,j : j ∈ Z}, where we denote by {hm,j : j = 0, 1, . . . , m − 2} the coefficients of the polynomial Hm , i.e. Hm (z) =. m−2 X. hm,j z j ,. z ∈ C.. (3.26). j=0. m. hm,j. 2. {h2,0 } = {1}. 3. {h3,0 , h3,1 } = { 32 , − 12 }. 4. {h4,0 , h4,1 , h4,2 } = {− 12 , 2, − 12 }. Table 3.1: The sequence hm,j for m = 2, 3, 4 Now let the polynomial Λm be defined by Λm (z) = z −2⌊ 2 m⌋+1 Hm (z), 1. z ∈ C\{0},. (3.27). which, together with (3.23), then yields, for z ∈ C\{0}, (1 + z)m Λm (z) − (1 − z)m Λm (−z) = z −2⌊ 2 m⌋+1 [(1 + z)m Hm (z) − (1 − z)m Hm (−z)] h i 1 1 = z −2⌊ 2 m⌋+1 2m z 2⌊ 2 m⌋−1 = 2m , 1. so that the following consequence of Theorem 3.2 can now be stated..

(42) Section 3.2. The Generating Polynomial Hm. 29. Corollary 3.3 For an integer m ≥ 2, the Laurent polynomial Λ = Λm , as defined by (3.27), with the polynomial Hm obtained recursively from (3.18), is a Laurent polynomial of shortest possible length satisfying the Bezout identity (3.8). Combining the results of Theorem 3.1 and Corollary 3.3, we immediately get the following result. Theorem 3.4 For an integer m ≥ 2, the sequence {λj : j ∈ Z} ∈ M0 (Z) defined by λj = λm,j ,. j ∈ Z,. (3.28). where X. λm,j z j = z −2⌊ 2 m⌋+1 Hm (z), 1. z ∈ C\{0},. (3.29). j. with Hm denoting the polynomial of degree m − 2 obtained recursively from (3.18), is a sequence r+1 r of shortest possible length such that the operator sequence {Pr : Sm → Sm , r ∈ Z}, as defined. by (3.6), satisfies the reproduction property (3.1). r+1 r Accordingly, we define, for any r ∈ Z, the projection operator Pm,r : Sm → Sm by # " X X X cj Nm (2r+1 · −j), λm,2j−k ck Nm (2r · −j) for f = Pm,r f = j. (3.30). j. k. with the sequence {λm,j : j ∈ Z} defined by (3.29), and for which it then holds that Pm,r f = f,. r f ∈ Sm .. (3.31). We shall also rely on the following properties of the polynomial Hm of Theorem 3.2. A polynomial P of degree n, as given by P (z) =. n X. pj z j ,. with pn 6= 0,. (3.32). j=0. is said to be symmetric polynomial if it holds that pn−j = pj ,. j = 0, 1, . . . , n.. Since it holds for z ∈ C that, from (3.32) and (3.33),   n n n X X X 1 n −j n n−j z p pj z = =z pj z = pn−j z j , z j=0 j=0 j=0. (3.33).

(43) Section 3.2. The Generating Polynomial Hm. 30. we see that the symmetry condition (3.33) has the equivalent formulation,   1 n z p = p(z), z ∈ C\{0}. z. (3.34). The following result holds. Proposition 3.5 For m ≥ 2, the polynomial Hm of Theorem 3.2 satisfies the following properties; (a) If m is even, then Hm is a symmetric polynomial; (b) Hm (0) 6= 0. Proof. (a) Suppose m = 2n for an integer n ∈ N, according to which it follows from (3.23) that (1 + z)2n H2n (z) − (1 − z)2n H2n (−z) = 22n z 2n−1 , By replacing z by . 1 1+ z. 1 z. z ∈ C.. (3.35). in (3.35), we obtain. 2n. 2n      1 1 1 − 1− = 22n z −2n+1 , H2n H2n − z z z. z∈C. and thus ˜ 2n (z) − (1 − z)2n H ˜ 2n (−z) = 22n z 2n−1 , (1 + z)2n H where ˜ 2n (z) = z H. 2n−2.   1 H2n , z. z ∈ C,. z ∈ C.. (3.36). (3.37). ˜ 2n is a polynomial, Since (3.19) gives deg (H2n ) = 2n − 2, it follows from (3.37) that H ˜ 2n ) = 2n − 2. But, as shown in the proof of Theorem 3.2, H = H2n is the with deg (H only polynomial in π2n−1 satisfying the Bezout identity (3.17), and thus, using also (3.37), we get ˜ 2n (z) = z H2n (z) = H. 2n−2.   1 H2n , z. and it follows that H2n is a symmetric polynomial.. z ∈ C\{0},.

(44) Section 3.2. The Generating Polynomial Hm. 31. (b) According to (3.19), the polynomial Hm can be formulated as Hm (z) =. m−2 X. hm,j z j ,. z ∈ C,. with hm,m−2 6= 0.. (3.38). j=0. If m = 2n for n ∈ N, then the symmetry result in (a) gives h2n,0 = h2n,2n−2 6= 0, from (3.38), and thus property (b) holds for even integers m. 3 If m = 3, we see from Table 3.1 that H3 (0) = 6= 0. Next, for m = 2n + 1, with n ≥ 2, 2 ˜ 2n+1 , with deg (H ˜ 2n+1 ) = suppose H2n+1 (0) = 0. But then there exists a polynomial H 2n − 2, such that ˜ 2n+1 (z), H2n+1 (z) = z H. z ∈ C.. (3.39). Since also (3.23) yields (1 + z)2n+1 H2n+1 (z) − (1 − z)2n+1 H2n+1 (−z) = 22n+1 z 2n−1 ,. z ∈ C,. (3.40). z ∈ C.. (3.41). we now substitute (3.39) into (3.40) to deduce that ˜ 2n+1 (z) + (1 − z)2n+1 H ˜ 2n+1 (−z) = 22n+1 z 2n−2 , (1 + z)2n+1 H. ˜ 2n+1 (0) = 0, and thus By setting z = 0 in (3.41), and recalling that n ≥ 2, we obtain 2H ˜˜ ˜˜ ˜ 2n+1 (0) = 0, i.e. there exists a polynomial H H 2n+1 , with deg (H2n+1 ) = 2n − 3, such that ˜˜ ˜ 2n+1 (z) = z H H 2n+1 (z),. z ∈ C.. (3.42). By substituting (3.42) into (3.41), we obtain i i h h ˜˜ ˜˜ 2n+1 2n−3 2n−1 z , (1 − z)2 H (1+z)2n−1 (1 + z)2 H 2n+1 (−z) = 2 2n+1 (z) −(1−z). z ∈ C. (3.43). Since also (3.23) gives (1 + z)2n−1 H2n−1 (z) − (1 − z)2n−1 H2n−1 (z) = 22n−1 z 2n−3 ,. z ∈ C,. we can now subtract (3.43) from (3.44) to obtain i h ˜˜ (1 + z)2n−1 4H2n−1 (z) − (1 + z)2 H 2n+1 (z) h i ˜˜ (−z) , = (1 − z)2n−1 4H2n−1 (−z) − (1 − z)2 H 2n+1. z ∈ C.. (3.44). (3.45).

(45) Section 3.3. Example. 32. Since the two polynomials (1 + z)2n−1 and (1 − z)2n−1 have no common factors, and since ˜˜ deg (H2n−1 ) = deg (H 2n+1 ) = 2n − 3, it follows from (3.45) that there exists a constant c such that ˜˜ 2n−1 4H2n−1 (z) − (1 + z)2 H , 2n+1 (z) = c(1 − z). z ∈ C.. (3.46). By setting z = −1 in (3.46), it follows that c = 23−2n H2n−1 (−1), which we can now substitute into (3.46) to obtain ˜˜ 3−2n H2n−1 (−1)(1 − z)2n−1 , 4H2n−1 (z) = (1 + z)2 H 2n+1 (z) + 2. z ∈ C.. (3.47). Now substitute (3.47) into the third line of (3.18) with k = n − 1 to deduce that 1 2−2n (8z 2 − 1)H2n−1 (−1)(1 − z)2n−1 ˜˜ 4H2n (z) = z 2 (1 + z)H (z) + , 2n+1 2 1+z. z ∈ C\{0}. (3.48). ˜˜ Since both H2n and H 2n+1 are polynomials, we deduce from (3.48) that we must have H2n−1 (−1) = 0.. (3.49). Substituting (3.49) into (3.48) yield ˜˜ H2n (z) = 2z 2 (1 + z)H 2n+1 (z),. z ∈ C,. and thus ˜˜ 2n − 2 = deg (H2n ) = 3 + deg (H 2n+1 ) = 3 + (2n − 3) = 2n, a contradiction. Hence H2n+1 (0) 6= 0, and thereby completing our proof of (b).. 3.3. . Example. Using Theorem 3.2, Corollary 3.3 and equations (3.28) and (3.29), we explicitly calculate the sequence λ = λm ∈ M0 (Z) for m = 2, 3, 4, 5 in Table 3.2. By choosing, respectively, cj = δj and cj = δj−1 , j ∈ Z in (3.30), together with Table P 3.2, we compute the functions Pm,0 Nm (2·) = j λm,2j Nm (· − j) and Pm,0 Nm (2 · −1) = P j λm,2j−1 Nm (· − j) for m = 2, 3, 4. The resulting graphs are shown in Figures 3.1 to 3.3..

(46) Section 3.3. Example. 33. m. λm,j. 2. {λ2,−1 } = {1}. 3. {λ3,0 , λ3,−1 } = {− 12 , 23 }. 4. {λ4,−1 , λ4,−2 , λ4,−3 } = {− 12 , 2, − 21 }. Table 3.2: The sequences {λm,j : j ∈ Z, m = 2, 3, 4}.. 1. 1. 0.8 0.5. 0.6 0 0.4. -0.5 0.2. -1. 0 -1. -0.5. 0. 0.5. 1. 1.5. 2. 2.5. 3. -1. -0.5. 0. 0.5. 1. Figure 3.1: The functions P2,0 N2 (2·) and P2,0 N2 (2 · −1). 1.5. 2. 2.5. 3.

(47) Section 3.3. Example. 34. 0. 1.2. -0.05 1 -0.1 0.8 -0.15. -0.2. 0.6. -0.25 0.4 -0.3 0.2 -0.35. -0.4. 0 -1. 0. 1. 2. 3. 4. -1. 0. 1. 2. 3. 4. Figure 3.2: The functions P3,0 N3 (2·) and P3,0 N3 (2 · −1). 1.4. 0 -0.05. 1.2 -0.1 1. -0.15 -0.2. 0.8 -0.25 0.6 -0.3 -0.35. 0.4. -0.4 0.2 -0.45 0. -0.5 -2. -1. 0. 1. 2. 3. 4. -2. -1. 0. 1. 2. Figure 3.3: The functions P4,0 N4 (2·) and P4,0 N4 (2 · −1). 3. 4. 5.

(48) 4. Cardinal Spline Wavelets With the local linear projection sequence operator {Pm,r : r ∈ Z} as in Theorem 3.4, we now define the linear space sequence {Wmr : r ∈ Z} by . r+1 Wmr = f − Pm,r f : f ∈ Sm ,. r ∈ Z.. (4.1). r+1 r r r+1 Since Pm,r : Sm → Sm , and Sm ⊂ Sm , we observe from (4.1) that r+1 Wmr ⊂ Sm ,. r ∈ Z.. (4.2). r+1 r Hence, if for a given r ∈ Z we have f ∈ Sm , then f = g + h, where g = Pm,r f ∈ Sm and. h = f − Pm,r f ∈ Wmr . 1 A function ψm ∈ Sm which is such that ) ( X cj ψm (2r · −j) : c ∈ M (Z) , Wmr =. r ∈ Z,. (4.3). j. is called the mth order cardinal B-spline wavelet generated by the local linear projection sequence {Pm,r : r ∈ Z}.. 4.1. The Wavelet Bezout Identity. To find a wavelet ψm , we first prove the following result. Proposition 4.1 The linear space sequence {Wmr : r ∈ Z} defined by (4.1) satisfies . r+1 Wmr = f ∈ Sm : Pm,r f = 0 ,. r ∈ Z.. (4.4). Proof. Let r ∈ Z be fixed and suppose that f ∈ Wmr . Then, according to (4.1), there exists a r+1 such that f = g − Pm,r g. From the reproduction property (3.31), the linearity function g ∈ Sm r , we have of Pm,r , and the fact that Pm,r g ∈ Sm 2 Pm,r f = Pm,r g − Pm,r g = Pm,r g − Pm,r g = 0, r+1 : Pm,r g = 0}. i.e. f ∈ {g ∈ Sm. 35. (4.5).

(49) Section 4.1. The Wavelet Bezout Identity. 36. r+1 Suppose f ∈ Sm is such that Pm,r f = 0. Then. f = f − 0 = f − Pm,r f,. (4.6). r+1 so that, from (4.4), we have the inclusion Wmr ⊂ {f ∈ Sm : Pm,r = 0}, and thereby completing. our proof.. . Using Proposition 4.1, we can now obtain the following characterization of all finitely supported functions ψ ∈ Wm0 . Note first from (4.2) that, if ψ ∈ Wm0 ∩ M0 (R), there exists a sequence {γj : j ∈ Z} ∈ M0 (Z) such that ψ=. X. γj Nm (2 · −j),. (4.7). j. and for which we define its corresponding Laurent polynomial symbol by Γ(z) =. X. γj z j ,. z ∈ C\{0}.. (4.8). j. Our result is as follows. 1 Theorem 4.2 For a sequence {γj : j ∈ Z} ∈ M0 (Z), let the cardinal spline ψ ∈ Sm be defined. by (4.7). Then ψ belongs to the space 1 Wm0 = {f − Pm,0 f : f ∈ Sm }. (4.9). if and only if the symbol Γ defined by (4.8) is given by Γ(z) = K(z)Hm (−z),. z ∈ C\{0},. (4.10). where Hm is the polynomial of degree m − 2 defined in Theorem 3.2, and with K denoting an arbitrary even Laurent polynomial, i.e. K(−z) = K(z),. z ∈ C\{0}.. (4.11). Proof. From (3.30) and (4.7), we have Pm,0 ψ =. " X X j. k. #. λm,2j−k γk Nm (· − j),. (4.12).

(50) Section 4.1. The Wavelet Bezout Identity. 37. from which, together with Proposition 4.1 and Theorem 2.3, we see that the cardinal spline ψ in (4.7) belongs to Wm0 if and only if the sequence {γj : j ∈ Z} ∈ M0 (Z) is chosen such that X. λm,2j−k γk = 0.. (4.13). k. Using the fact that Λm (z) = C\{0}, " X X j. k. #. λm,2j−k γk z 2j =. P. j. λm,j z j , z ∈ C\{0}, together with (4.8), we obtain, for z ∈. " X X j. =. +. ". X X j. k. #. λm,2j−2k−1 γ2k+1 z 2j. k. λm,2j−2k z 2j−2k γ2k z 2k. k. ". " X X j. #. X X j. =. λm,2j−2k γ2k z 2j +. k. ". X X j. #. #. λm,2j−2k−1 z 2j−2k−1 γ2k+1 z 2k+1. k. #. λm,2j z 2j γ2k z 2k +. " X X j. #. λm,2j+1 z 2j+1 γ2k+1 z 2k+1. k. (e) (o) (o) = Λ(e) m (z)Γ (z) + Λm (z)Γ (z). Λm (z) + Λm (−z) Γ(z) + Γ(−z) Λm (z) − Λm (−z) Γ(z) − Γ(−z) + 2 2 2 2 1 [Λm (z)Γ(z) + Λm (−z)Γ(−z)] , = 2 =. from which it follows that a sequence {γj : j ∈ Z} satisfies the condition (4.13) if and only if the corresponding Laurent polynomial Γ, as given by (4.8), satisfies the Bezout identity Λm (z)Γ(z) = −Λm (−z)Γ(−z),. z ∈ C\{0}. (4.14). Since also Λm is given by the formula (3.27), it follows that (4.14) is equivalent to the Bezout identity Hm (z)Γ(z) = Hm (−z)Γ(−z),. z ∈ C\{0}.. (4.15). Now observe from (3.23), together with Proposition (3.5), that the polynomials Hm (z) and Hm (−z) have no common factors, so that we can deduce from (4.15) that there exists a Laurent polynomial K(z) such that (4.10) holds. Also, by substituting (4.10) into (4.15), we obtain Hm (z)K(z)Hm (−z) = Hm (−z)K(−z)Hm (z),. z ∈ C\{0},.

(51) Section 4.1. The Wavelet Bezout Identity. 38. from which it follows that (4.11) holds, and thereby completing our proof.. . The following result can now be deduced from Theorem 4.2. 1 Theorem 4.3 The function ψm ∈ Sm defined by. ψm (x) =. m−2 X. (−1)j hm,j Nm (2x − j),. (4.16). j=0. where. m−2 X. hm,j z j = Hm (z),. z ∈ C,. (4.17). j=0. with Hm denoting the polynomial of Theorem 3.2, is a minimally-supported non-trivial function in the space Wm0 defined by (4.9), with ψm (x) = 0,. x∈ / (0, m − 1).. (4.18). Proof. Since a polynomial K(z) of minimally degree satisfying (4.11) is given by K(z) = 1, z ∈ C, we deduce from (4.10) that Γ(z) = Γm (z) = Hm (−z),. z ∈ C,. (4.19). is a polynomial of least possible degree as described by (4.10) and (4.11) in Theorem 4.2. Writing Γm (z) =. m−2 X. γm,j z j ,. z ∈ C,. (4.20). j=0. it follows from (4.19), (4.17) and (4.20) that γm,j = (−1)j hm,j ,. j ∈ Z.. (4.21). It follows from Theorem 4.2, together with (4.7), (4.20) and (4.21) that the function ψm defined by (4.16) is indeed a minimally supported non-trivial function in Wm . The finite support property of (4.18) is a direct consequence of (4.16) and (2.6). Using (4.16) and Table 3.1, we obtain the spline-wavelets ψ2 (x) = N2 (2x), 3 1 ψ3 (x) = N3 (2x) + N3 (2x − 1), 2 2 1 1 ψ4 (x) = − N4 (2x) − 2N4 (2x − 1) − N4 (2x − 2), 2 2. .

(52) Section 4.1. The Wavelet Bezout Identity. 39. 1. 0.8. 0.6. 0.4. 0.2. 0 -0.5. 0. 0.5. 1. 1.5. Figure 4.1: Graph of the function ψ2. 1.4. 0. -0.2. 1.2. -0.4 1 -0.6 0.8 -0.8 0.6 -1 0.4 -1.2. 0.2. 0 -0.5. -1.4. 0. 0.5. 1. 1.5. 2. 2.5. -1.6 -0.5. 0. 0.5. 1. Figure 4.2: Graph of the functions ψ3 and ψ4. 1.5. 2. 2.5. 3. 3.5.

(53) Section 4.2. The Fundamental Decomposition Result. 40. of which the graphs are shown in Figures 4.1 and 4.2. We proceed to show that the function ψm of Theorem 4.3 satisfies the property (4.3), according to which we will then have shown that ψm is indeed a wavelet.. 4.2. The Fundamental Decomposition Result. Our fundamental decomposition result is as follows. Theorem 4.4 For an integer m ≥ 2, let the function ψm ∈ Wm0 be defined as in Theorem 4.3. P r+1 Then, for r ∈ Z, it holds for any function f = j cj Nm (2r+1 · −j) ∈ Sm that f =. " X X j. +. #. hm,2j−k+2⌊ 1 m⌋−1 ck Nm (2r · −j) 2. k. 1 2m−1. " X X j. (−1)k. k. where X. j. hm,j z =. j. . m−2 X.  # m   ck ψm (2r · −j), 2j − k + 2 12 m − 1. hm,j z j = Hm (z),. z ∈ C,. (4.22). (4.23). j=0. with Hm denoting the polynomial of Theorem 3.2. Remark. Observe from (4.22) that, for k ∈ Z, by choosing f = Nm (2r+1 · −k), i.e. f = P r+1 · −l) with cl = δl,k , we obtain the decomposition result l cl Nm (2 Nm (2r+1 · −k) =. X. hm,2j−k+2⌊ 1 m⌋−1 Nm (2r · −j) 2. j.   m (−1)k X 1  + m−1 ψm (2r · −j), 2j − k + 2 2 m − 1 2 j. k ∈ Z.. Proof of Theorem 4.4. Let r ∈ Z be fixed and suppose f =. P. j. (4.24). cj Nm (2r+1 ·−j) for a sequence. c ∈ M (Z). Using (3.30) and the refinement equation (2.12) for cardinal B-splines, we obtain,.

(54) Section 4.2. The Fundamental Decomposition Result. 41. with the sequence {am,j : j ∈ Z} ∈ M0 (Z) defined by (2.14), X. (f − Pm,r f )(x) =. cj Nm (2r+1 x − j) −. j. =. j. X. cj Nm (2r+1 x − j) −. X. cj Nm (2r+1 x − j) −. j. = =. cj Nm (2. x − j) −. j. X X. =. j. δj,k −. k. X. k. ". ". #. am,l Nm (2r+1 x − 2j − l). l. X. λm,2l−k ck. k. ". l. X. am,l−2j Nm (2r+1 x − l). l. XX X j. ". λm,2j−k ck. X X l. r+1. λm,2j−k ck. k. XX j. j. X. XX. #. X. l. j. #. λm,2l−k ck am,j−2l Nm (2r+1 x − j). k. λm,2l−k am,j−2l. am,j−2l Nm (2r+1 x − j). !. #. ck Nm (2r+1 x − j).. (4.25). Let {ωj : j ∈ Z} denote a sequence in M0 (Z). Then, using (4.16), we have " # # " X XX X X γm,l Nm (2r+1 x − 2j − l) ω2j−k ck ω2j−k ck ψm (2r x − j) = j. j. k. l. k. XX. =. j. k. XX. =. ω2j−k ck. l. ω2l−k ck. X X X. =. j. k. X. #. γm,l−2j Nm (2r+1 x − l). l. X. γm,j−2l Nm (2r+1 x − j). j. k. ". ". γm,j−2l ω2l−k. l. !. #. ck Nm (2r+1 x − j). (4.26). It follows from (4.25) and (4.26) that {ωj : j ∈ Z} ∈ M0 (Z) is such that # " X X ω2j−k ck ψm (2r x − j), x ∈ R, (f − Pm,r f )(x) = j. if and only if " X X j. k. δj,k −. X. am,j−2l λm,2l−k −. l. (4.27). k. X l. γm,j−2l ω2l−k. !. #. ck Nm (2r+1 x − j) = 0,. x ∈ R, (4.28). which holds if and only if the sequence {ωj : j ∈ Z} ∈ M0 (Z) satisfies the condition X l. am,j−2l λm,2l−k +. X. γm,j−2l ω2l−k = δj,k ,. j, k ∈ Z.. l. We proceed to show that the condition (4.29) is equivalent to a pair of Bezout identities.. (4.29).

(55) Section 4.2. The Fundamental Decomposition Result. 42. With the Laurent polynomial Ω defined by Ω(z) =. X. ωj z j ,. z ∈ C\{0},. (4.30). j. we use (3.7) and (4.30) to deduce that, for j ∈ Z and z ∈ C\{0}, we have # " X X X am,j−2l λm,2l−k + γm,j−2l ω2l−k z k k. l. =. l. X X l. =. ". λm,2l−k (z ). k. X X. −1 k. λm,k (z ). k. l. = zj. −1 2l−k. ". X. !. am,j−2l z 2l−j. l. #. 2l. am,j−2l z + 2l. X X. ω2l−k (z ) −1 k. ωk (z ). k. l. Λm (z −1 ) +. −1 2l−k. k. l. am,j−2l z +. !. " X X. X. γm,j−2l z 2l−j. l. !. !. #. γm,j−2l z 2l. γm,j−2l z l #. Ω(z −1 ) .. (4.31). Since also X. δj,k z k = z j ,. z ∈ C,. k. we deduce from (4.31) that the condition (4.29) is satisfied if and only if " # " # X X am,j−2l z 2l−j Λm (z −1 ) + γm,j−2l z 2l−j Ω(z −1 ) = 1, z ∈ C\{0}, l. j ∈ Z, (4.32). l. or equivalently, " # " # X X j−2l am γm,j−2l z j−2l Ω(z) = 1, Λm (z) + j−2l z l. z ∈ C\{0},. j ∈ Z.. (4.33). l. But (4.33) holds for every j ∈ Z if and only if it holds for all even j and for all odd j. Hence, using (2.15), we find that (4.33) is equivalent to the pair of Bezout identities  (e) (e) Am (z)Λm (z) + Γm (z)Ω(z) = 1  z ∈ C\{0}, (o) (o) Am (z)Λm (z) + Γm (z)Ω(z) = 1 . (4.34). i.e.,.  [Am (z) + Am (−z)] Λm (z) + [Γm (z) + Γm (−z)] Ω(z) = 2  z ∈ C\{0}, [Am (z) − Am (−z)] Λm (z) + [Γm (z) − Γm (−z)] Ω(z) = 2 . (4.35).

(56) Section 4.2. The Fundamental Decomposition Result. 43. which holds if and only if  = 2  z ∈ C\{0}. Am (−z)Λm (z) + Γm (−z)Ω(z) = 0  Am (z)Λm (z) + Γm (z)Ω(z). (4.36). By using (2.15), (3.27) and (4.19), we find that Ω is a Laurent polynomial satisfying (4.36) if and only if the pair of Bezout identities  1 z −2⌊ 2 m⌋+1 (1 + z)m Hm (z) + 2m−1 Hm (−z)Ω(z) = 2m  h i z ∈ C\{0} −2⌊ 12 m⌋+1 1 m z (1 − z) + Ω(z) Hm (z) = 0  2m−1. (4.37). are satisfied.. The second line in (4.37) is satisfied if and only if the Laurent polynomial Ω is chosen as Ω(z) = Ωm (z) = −. 1 2m−1. z −2⌊ 2 m⌋+1 (1 − z)m , 1. z ∈ C\{0}.. (4.38). Substituting (4.38) into the left hand side of the first equation in (4.37) yields the expression z −2⌊ 2 m⌋+1 [(1 + z)m Hm (z) − (1 − z)m Hm (−z)] , 1. z ∈ C\{0},. (4.39). which together with the Bezout identity (3.17), shows that the choice (4.38) of Ω also satisfies the first equation in (4.37). Therefore, the pair of Bezout identities (4.37) are satisfied by a Laurent polynomial Ω if and only if Ω is given by (4.38), according to which also, from (4.30), we have for z ∈ C\{0} that X j. ωj z. j.   m j z (−1) = − m−1 z j 2 j   X 1 m j−2⌊ 12 m⌋+1 = − m−1 z (−1)j j 2 j   m 1 X j 1  (−1) zj , = m−1 j + 2 2 m − 1 2 j 1. −2⌊ 12 m⌋+1. X. j. and thus the sequence {ωj : j ∈ Z} ∈ M0 (Z) satisfies the condition (4.29) if and only if   m (−1)j   ωj = ωm,j = m−1 , j ∈ Z. (4.40) j + 2 12 m − 1 2. By combining (3.39), (3.30), (4.27) and (4.40), we see that (4.22) does indeed hold.. .

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Bovenzijde dakconstructie oostelijk en westelijk deel, zicht naar noordoosten. Bovenzijde dakconstructie oostelijk en westelijk deel, zicht

Ap3 39-52 Sandy loam to loamy sand (S in Belgian textural classes); dark brown to brown 10YR4/3 (moist); 5 to 10 % medium and coarse rounded and subrounded gravel; weak fine

Daar kan afgelei word dat daar nie altyd in elke skool ʼn kundige Skeppende Kunste- onderwyser is wat ten opsigte van al vier strome voldoende opgelei en toegerus is

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Using features extracted from the respective decomposi- tions, some time domain and non-linear measures, and after having complemented all these features with a smoothed version,

Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis.. This article has been downloaded

In Section 3 , I illustrated how the Partial Proposition Analysis captures the projec- tion patterns of the UP under different embedding predicates, given two assump- tions: (i)