• No results found

Analysis of self-resonant bent antennas

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of self-resonant bent antennas"

Copied!
179
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Analyses of Self-Resonant Bent Antennas

by

Mohammod Ali

B.Sc. (E lectrical & E lectron ic Engineering). B angladesh U niversity o f Engineering & Technology. Dhaka. 1987

M.A.Sc. (E lectrical &: C o m p u te r Engineering). U niversity o f V icto ria. 1994 -A. D isse rta tio n S u b m itted in P a rtial Fulfillm ent of th e

R eq u irem en ts for the Degree of D O C T O R O F PH IL O SO PH Y

in the D e p a rtm e n t of E lectrical C o m p u te r E ngineering

We acc e p t th is dissertatio n as conform ing to the required sta n d a rd

Dr. S.S. ^ ^ c h ly . S u p erv iso r (D ep t, of Elec. &: C om p. Eng.)

________________________________________ Dr. .1. B o m em ann. D e p a rtm e n ta l M ember (D ept, of Elec. & C om p. Eng.)

Dr. M. O koniewski. D e p a rtm e n ta l M ember (D ept, o f Elec. &; C om p. Eng.

Dr. S. D ost. O u tsid e M em b er (D ept, of M echanical E ngineering)

Dr. E .\'. .lull. E x tern al M em ber (D ept, of Elec. Eng.. U niversity o f B ritish C o lu m b ia)

(c)M oham m od .A.H. 1997 U niversity of \'ic to ria

All rights reserved. T h e sis m ay not be reproduced in whole or in p a rt, by photocopy or o th e r m eans, w ithout the perm ission o f th e a u th o r.

(2)

S u p e n ’isor: Dr. S. S. Stuchly

A b str a c t

T he prim ary' focus of this d is se rta tio n is on the analyses of self-reso n an t bent an ten n as. T he need for the a c c u ra te c h aracterizatio n of such a n te n n a s d u e to th e ir grow ing im p o rtan c e in present d ay w ireless com m unications is the m o tiv a tio n for this work. To this end. several self-resonant bent an ten n as are analyzed w hich includes an inverted-L a n te n n a (ILA ). a m ean d er-lin e dipole (M LD ) a n te n n a , a m ean d er-lin e bow -tie (M L B T ) a n te n n a , a d u al m e a n d e r anten n a, an d a p rinted m e a n d e r an ten n a.

.A. sim ple a n a ly tic a l m odel, based on the induced E M F m eth o d , is p resen ted to com p u te the in p u t im p ed ance o f th e ILA. F irst, a sinusoidal d is trib u tio n o f current on the a n ten n a , w ith zero current a t th e end is assum ed, and then a n expression for the in p u t im p ed an ce is derived u sin g the near-fields of the a n ten n a . T h e accuracy of th e form ulation is verified by c o m p arin g the results co m p u ted u sin g it w ith th a t from N EC [l] c o m p u ta tio n . Unlike th e an aly tical so lu tio n s available in th e lite ra tu re , o u r proposed so lu tio n is not re s tric te d to anten n as th a t are e lec trica lly sm all. In a d d itio n the new form ulation can be extended to tre a t o th e r a n te n n a s, such as the T -an te n n a . the folded unipole a n te n n a , an d the loop-loaded m onopole a n ten n a .

T he in p u t im p edan ce, ra d ia tio n p a tte rn , and gain of th e MLD a n d M L B T a n ten ­ nas are co m p u ted a n d co rrelated w ith th e ir p aram eters. Input im p ed an ces of b o th a n ten n as are c o m p u te d using N EC . Sim ple analy tical m odels are p re sen te d to com ­ pute the ra d ia tio n p a tte rn s of th e M LD and the M LB T a n ten n as. For each an ten n a, a sinusoidal d is trib u tio n of cu rren t is assum ed and closed-form ex p ressio n s for the ra d ia tio n fields are derived. T he re su lts com puted using the a n a ly tic a l m odels are verified by co m p arin g them w ith th e results from the N EC c o m p u ta tio n . Since in each m odel the ra d ia tio n p a tte rn of an an ten n a is expressed in te rm s o f ready to evaluate algebraic expressions, th e c o m p u ta tio n of such p a tte rn is fast a n d easy.

(3)

I l l

are com p u ted using NEC. Sim ilarly as before the in p u t im pedance, ra d ia tio n p a t­ tern , a n d gain of th is an ten n a a re also correlated w ith its p aram eters. T h e in p u t im p edan ce and rad ia tio n p a tte rn o f a p la n a r printed m eander a n te n n a are in v esti­ g a ted using the Finite-D ifference T im e-D o m ain (F D T D ) technique. T he a n te n n a is m odeled on a dielectric s u b stra te b o th in the presence and absence o f a m etallic g round plane. C h aracteristics o f th e a n te n n a are exam ined as function of dielec­ tric co n stan t, an d su b strate thickness. New results of input im pedance, ra d ia tio n p a tte rn , and gain are presented w hich are v ital for the design of such an ten n as.

Several novel applications of self-reso n an t bent an ten n as are described. F irst, a w ide-band dual m eander-sleeve a n te n n a is designed, m anufactured, an d m easu red for ap p licatio n in d u al frequency v eh icu lar personal com m unication. T h e a n te n n a can o p e ra te sim ultaneously in th e 824-894 MHz and 1850-1990 .MHz b an d s o f th e PCS system . Second, an M LB T d ip o le is introduced as a feed for plane sheet reflectors. N um erical results c o m p u te d using NEC show th at the feed when used in front o f a plane sheet reflector, resu lts in superior rad iatio n c h aracteristics th a n a conventional dipole feed, nam ely, it reduces the reflector dim ension by 46% for the sam e front to back ratio, b e am w id th and gain. Finally, a com pact plane sheet reflector an ten n a is described th a t uses an M LBT m onopole feed. Since the a n te n n a uses a m onopole, a balun is not rec^uired. T his a n ten n a has a gain an d half-pow er b eam w id th of 8.4 dB i and 94^. respectively.

(4)

Exam iners:

Dr. S.S. Stuchly. S u p erv iso r (D ept, of Elec. & C om p. Eng.)

Dr. .1."B om em ann. D e p artm en ta l M ember (D ept, o f Elec. &: Com p. Eng.)

Dr. M. Okoniew ski. D e p artm en ta l M em ber (D ept, of Elec. & Com p. E n g .)

Dr. S. D ost. O u tsid e M em b er (D ept, of M echanical E ngineering)

Dr. E .\'. .lull. E x tern al M em ber (D ept, of Elec. Eng. U niversity of B ritish C olu m b ia)

(5)

C o n te n ts

A b str a c t ii C o n te n ts v List o f F ig u r e s x v ii List o f T a b le s x v iii A c k n o w le d g e m e n ts x ix D e d ic a tio n x x 1 I n tr o d u c tio n 1 1.1 M o tiv a tio n ... 1 1.2 C o n t r i b u t i o n s ... 4 1.3 O u t l i n e ... 5

2 D e fin itio n s o f A n te n n a P a ra m eters a n d L itera tu re R e v ie w 8 2.1 D efinition of P a r a m e t e r s ... 9

2.1.1 R a d ia tio n P a t t e r n ... 9

2.1.2 R a d ia tio n I n t e n s i t y ... 10

2.1.3 D ir e c tiv ity ... 11

(6)

2.1.5 E f f i c i e n c y ... 11 2.1.6 G ain an d H alf-Pow er B e a m w i d t h ... 12 2.1.7 B a n d w id th ... 12 2.1.8 Field R e g i o n s ... 13 2.1.9 P o la r i z a tio n ... 14 2.2 R eview o f L i t e r a t u r e ... 15 3 T h e In v e r te d -L A n te n n a 22 3.1 C u rre n t D i s t r i b u t i o n ...24 3.2 T h e Induced EM F M e th o d ...25 3.3 .A n a ly s is ...27 3.3.1 R e s u lts ... 32 3.4 D iscussion ... 38 4 T h e M ea n d e r -L in e D ip o le A n te n n a 42 4.1 In p u t I m p e d a n c e ...43 4.1.1 C o m p u ta tio n T e c h n iq u e ...43 4.1.2 R e s u lts ...44

4.2 R a d ia tio n C h a ra c te ris tic s ... 49

4.2.1 F u n d a m e n ta ls ... 50 4.2.2 C urrent D i s t r i b u t i o n ...52 4.2.3 R ad iatio n P a t t e r n ...53 4.2.4 G a i n ...56 4.2.5 R e s u lts ... 56 4.3 D is c u s s i o n ...62 5 T h e M e a n d e r -L in e B o w -T ie A n te n n a 64 5.1 .A ntenna C o n f ig u r a tio n ... 66 5.2 In p u t I m p e d a n c e ...67

(7)

C O N T E X T S vii 5.3.1 C u rren t D i s t r i b u t i o n ...72 5.3.2 R ad iatio n P a t t e r n ...74 5.3.3 R e s u lts ... 78 5.4 D is c u s s io n ...S3 6 T h e D u a l M e a n d er A n te n n a 84 6.1 In p u t I m p e d a n c e ...85 6.2 R ad iatio n P a t t e r n ...88 6.3 D is c u s s io n ... 89 7 T h e P r in te d M ea n d er A n te n n a 92 7.1 .\n te n n a C o n f ig u r a tio n ...94 7.2 F D T D M o d e l i n g ... 94 7.3 R e s u l t s ... 96

7.3.1 .A.ntenna on a G rounded D ielectric S u b s t r a t e ... 97

7.3.2 .A.ntenna on a D ielectric H a lf - S p a c e ... 107 7.4 D is c u s s io n ... I l l 8 A p p lica tio n s 114 8.1 D ual meancier-Sleeve A n t e n n a ...115 8.1.1 I n tr o d u c tio n ... 115 8.1.2 Design C o n s i d e r a t i o n s ... 116 8.1.3 N um erical R esults ... 118 8.1.4 E xp erim en tal P r o c e d u r e ...120 8.1.5 E xp erim en tal R e s u l t s ...121 8.2 P la n e Sheet Reflector .A .n te n n a s ... 124 8.2.1 I n tr o d u c tio n ...124 8.2.2 M LB T D ipole Feed ... 127 8.2.3 M LB T M onopole F e e d ...134

(8)

8.3 D is c u s s io n ... 138 9 C o n c lu sio n s an d F u tu r e W ork 140 9.1 C o n c l u s io n s ...140 9.2 F u tu re W o r k ...143 B ib lio g ra p h y 145 A p p e n d ix A 154 A p p e n d ix B 157

(9)

IX

L ist o f F ig u r e s

2.1 Spherical c o o rd in a te sy ste m ... 9

2.2 (a) .A. zigzag, a n d (b) a m eander a n te n n a [7]... 17

2.3 Several m e an d e r a n te n n a s (a) N = 2 . (b) N = 4 . (c) N'=6 [S]...18

3.1 .A.n inverted-L m o n o p o le ... 23

3.2 An invert ed-L d i p o l e ...23

3.3 ( a)A tra n s m ittin g a n te n n a fed by a voltage source ( m a g n etic cu rren t ). and (b) an auxiliar." current d is trib u tio n ...25

3.4 T he input re a c ta n c e of an inverted-L a n ten n a as a fu n c tio n of k l = k-(h -I- L) w ith th e ra d iu s of the w ire («) as a p a ra m e te r: //= 40 m m . £ = 4 0 m m . a n d frequency range 100-1550 M Hz...33

3.5 T he input re sista n c e o f an inverted-L a n te n n a as a fu n c tio n of k l w ith the radius of th e w ire (a) as a p a ra m e te r: //=40 m m . £ = 4 0 m m . a n d frequency range 100-1550 M Hz...34

3.6 R eturn-loss verstis frequency c h arac te ristic s of an in v erted -L m onopole w ith the rad iu s o f th e wire, a as a p a ram eter. O th e r p a ra m e te rs of the an ten n a are /< = £ = 40 m m ... 35

(10)

3.7 R eturn-loss versus frequency c h arac te ristic s of an inverted-L m onopole. A ntenna 1: h = 20 a n d L = 60.3 m m . a = 0.1 m m . .A.ntenna 2: /? = £ = 40 m m . and a = 0.1 m m ...36 3.8 Input im p ed an ce of an inverted-L a n te n n a as a function of kh w ith

k L as the param eter; w ire rad iu s a = 0.0005A... 37

3.9 The in p u t im pedance o f an inverted-L a n ten n a as a function o f kl: h = £ = 40 m m , and a = 0.1m m . frequency ran g e 100-1875 .MHz. . . 39 3.10 C urrent d istrib u tio n o f a n inverted-L dipole as a function of the w ire

length (21)... 40

4.1 The geo m etry of an M LD a n te n n a : e\ = v ertical segm ent len g th . e> = h o riz o n ta l segm ent len g th , a n d £ = a n te n n a le n g th ...44 4.2 Shortening ra tio . S R a n d reso nan t resistance. Rrcs of an MLD a n ­

tenna p lo tte d as fu n ctio n o f .V w ith ^ as the p a ra m e te r. T he len g th and the ra d iu s of the w ire are c o n sta n t (len g th o f wire. £^.,r, = 32 cm. and ra d iu s of w ire, a = 0.325 m m )... 46 4.3 Input im p ed an ce of a m onopole m ean d er a n te n n a as a function of

an ten n a len gth w ith th e segm ent len g th , e as th e param eter: .V = 2.

a = 0.325 m m ... 47

4.4 Input im p ed an ce of a m onopole m ean d er a n te n n a as a function of an ten n a len g th w ith th e n u m b er of m ean d er sectio n s. .V as the p a­ ram eter: Lu_.,re = 16 cm . a = 0.325 m m . and £ = 8 c m 48 4.5 Input im p ed an ce of a m onopole m eand er a n te n n a as a function of

an ten na leng th w ith th e ra d iu s of the w ire, n as the p a ra m ete r:

Livire = 12.8 cm. -V = 4. an d £ = 6.4 cm ...49

4.6 (a) .A. m eander-line d ip o le a n te n n a : (b) in te g ra tio n p a th ... 50 4.7 R ad iatio n p a tte rn of a n M LD a n te n n a w ith £ as a p a ram eter (.V = 4). 57

(11)

L I S T O F F I G U R E S xi

4.8 0-poIarized pow er density p a tte rn of a m ean d er-lin e dipole a n te n n a wdth L = 0.5A (.V = 4): wire rad iu s a = 0.001 A... 58 4.9 ^-p o larized pow er density p a tte rn o f a m ean d er-lin e dipole a n te n n a

w ith L — 0.75A (.V = 4 )... .58 4.10 R elativ e pow er den sity and half-pow er beam w id th (H PB W ) o f the

M LD a n te n n a as a function of a n te n n a length ( N = 4 ) ... 59 4.11 o p o la r iz e d pow er density p a tte rn o f a m ean d er-lin e dipole a n te n n a

w ith a n ten n a len g th L as a p a ra m e te r (.V = 4 )... 61 4.12 o -p o larized pow er density p a tte rn o f a m ean d er-lin e dipole a n te n n a

w ith num ber o f m eanders (.V) as a p a ra m e te r (L = 0.25A)... 61 4.13 G a in of a m ean d er-lin e dipole a n te n n a as a fu n ctio n o f an ten na len g th

L w ith N as a p a ra m e te r... 62

5.1 A m ean d er-line bow -tie (M LB T) a n te n n a ...67 5.2 In p u t im p ed an ce of the m onopole M L B T a n te n n a w ith bow-tie an g le

Cl (degrees) as th e p a ra m ete r... 70 5.3 In p u t reactan ce of the monopole M L B T a n te n n a w ith num ber o f m e­

a n d e r sections (A') as the p a ra m e te r...70 5.4 In p u t resistan ce of the m onopole M LB T a n te n n a w ith num b er of

m e a n d e r section s (A*) as the p a ra m e te r... 71 5.5 (a) .An M LB T a n ten n a , and (b) in te g ra tio n p a th ... 72 5.6 ^-p o larized pow er density p a tte rn of an M LB T d ip o le w ith wire len g th

L^. as a p a ra m e te r (A* = 4 and a = 20°). Solid lines- an aly tica l re su lts. crosses-N EC resu lts... 79 5.7 o p o la r iz e d pow er density p a tte rn o f an M L B T dipole w ith w ire

le n g th as a p a ra m ete r (A' = 4. an d a = 20°). Solid lines- a n ­ a ly tic a l results. crosses-N EC re s u lts ...80

(12)

•5.8 R a d ia tio n p a tte rn o f an M LBT dipole a t resonance. Solid lines- a n ­

a ly tic a l results. crosses-N EC re su lts...81 •5.9 G ain o f an M L B T dipole as a function of a n te n n a length; .V = 4. . . 82

6.1 A d u a l m eander a n te n n a on a perfectly c o n d u ctin g infinite g ro u n d

p la n e ... 85 6.2 C o m p u te d input reactan ce of the d u al m ean d er a n te n n a as a fu n ctio n

of a n te n n a length w ith ?•> as a p a ra m e te r... 86 6.3 C o m p u te d input resistan ce of the d u a l m ean d er a n te n n a as a fu n ctio n

of a n te n n a length w ith co as a p a ra m e te r... 87 6.4 C o m p u te d \ 'S \ \ ’R frequency response o f th e d u a l m eander a n te n n a

as a function of frequency w ith eo as a p a ra m e te r... 87 6.5 El). E -plane p a tte rn of a dual m ean d er a n ten n a: e\ = c-> = 0.8 cm .

a = 1.25 mm. L = 6.4 cm . and .V = 4 ... 89

6.6 C o m p arin g the in p u t im pedances of a m ean d er a n d a dual m e an d e r a n te n n a . For b o th antennas L = 6.4 cm . a = 1.25 mm. .V = 4.

c, = e-y = 0.8 cm . an d for the d u al m ean d er alone w = 0.5 c m ... 90 6.7 C o m p u te d \'SV \'R frequency response of a d u al m e an d e r and a m e an d e r. 91

7.1 A p rin te d m eander a n te n n a ...95 7.2 A p rin te d dipole a n te n n a ... 96 7.3 T h e in p u t im pedances of a m ean d er d ipo le in a ir and a m e an d e r

d ip o le p rin ted on a grounded dielectric s u b stra te . T h e p a ra m ete rs of th e a n te n n a in a ir are: .V = 2. e = 12 m m . 2/ — 44 m m . and «’ = 4 m m . w hereas th a t of the printed are: e = 12 m m . 2/ = 44 m m . w = 4 m m . L< = 244 m m . tc, = 244 m m . G = 20 m m . = 2.1...99

(13)

L I S T O F F I G U R E S xiii

7.4 T h e in p u t im p ed an ce o f a printed m ean d er a n te n n a as a function of frequency w ith fr as a p aram eter. O th e r p a ra m e te rs are: .V = 2.

e = 12 m m . 21 = 44 m m . a- = 4 m m , = 244 m m . = 244 m m .

ts = 20 m m ...99

7.5 T h e in p u t im p ed an ce o f a printed m ean d er a n te n n a as a function of frequency w ith as a p aram eter. O th e r p a ra m e te rs .V = 2. e = 12 m m . 21 = 44 m m . a- = 4 mm. = 244 mm. iv^ = 244 m m . fr = 2.1. . 100 7.6 R eso n an t resistance. Rres (T^) of a p rin te d m ean d er d ip o le versus su b ­

s tr a te thickness. O th e r p a ra m ete rs of the a n te n n a are .V = 2.

e = 12 m m . 21 = 44 m m . a - 4 m m . £.< = 244 m m . a\, = 244 m m .

fr = 2 .1 ... 101 7.7 R eso n an t resistan ce. Rres (R) of a p rin te d m ean d er d ip o le versus sub­

s tr a te thickness. O th e r p a ra m ete rs of the a n te n n a are .V = 2.

e = 12 m m . 21 = 44 m m . a- = 4 m m . £^ = 244 m m . = 244 m m . Cr = 4 .0 ... 102 7.8 .r(/-plane p a tte rn o f a printed m ean d er an ten n a. P a ra m e te rs of the

a n te n n a are .V = 2. e = 12 mm . 21 — 44 mm. ir = 4 m m . £^ = 244 m m . a\, = 244 m m . 0 = 20 mm. a n d Cp = 1.0...103 7.9 //z-p lan e p a tte rn o f a printed m ean d er an ten n a. P a ra m e te rs of the

a n te n n a are .V = 2. e = 12 m m . 21 = 44 mm . ir = 4 m m . = 244

m m . u's = 244 m m . £, = 20 mm. a n d fp = 1.0...104 7.10 T //-plane p a tte rn o f a p rinted m ean d er an ten n a a t resonance (1.618

G H z). P a ra m e te rs o f th e an ten n a are: .V = 2. e = 12 m m . 21 = 44 m m . «• = 4 m m . £^ = 372 m m . u\, = 372 m m . 0 = 30 m m . and fp = 2 .1 ... 105

(14)

7.11 //c-plane p a tte rn of a printed m e an d e r a n te n n a at resonance ( 1.618 GH z). P a ra m e te rs of the a n te n n a are: .V = 2. e = 12 m m . 2/ = 44 m m . IV = 4 m m . = 372 m m . = 372 m m . = 30 m m . and

= 2 .1 106

7.12 .r;/-plane p a tte rn of a printed m e an d e r a n te n n a at resonance (1.73 G H z). P a ra m e ters of the a n te n n a are .V = 2. c = 12 m m . 21 = 44 m m . tc = 4 m m . I., = 372 m m . = 372 m m . ri = 40 m m . and Cr = 2.1... 106 7.13 yc-piane p a tte rn of a printed m e a n d e r a n te n n a an ten n a a t resonance

(1.73 G H z). P a ram eters of the a n te n n a are .V = 2. c = 12 mm .

21 = 44 m m . u- = 4 m m . = 372 m m . = 372 mm. = 40 mm. and = 2.1... 107 7.14 R esonant resistance. Rres (0.) o f a printed m eander dipole on a di­

electric half-space versus s u b s tra te thickness, O th er p aram eters of the a n te n n a are .V = 2. e = 12 m m . 21 = 44 mm. w = 4 mm .

Ls = 244 m m . = 244 mm ... = 2 .1 ... 108 7.15 .ry-plane p a tte rn of a printed m e an d e r dipole on a dielectric half­

space. P a ra m e ters of the a n te n n a are .V = 2. c = 12 m m . 21 = 44 m m . y = 4 m m . = 372 m m . = 372 m m . 0 = 20 m m . and Cr = 2.1...109 7.16 yz-plane p a tte rn of a printed m e an d e r dipole on a dielectric half­

space. P a ra m e ters of the a n te n n a are .V = 2. c = 12 m m . 21 = 44 m m . u- = 4 m m . = 372 m m . y« = 372 m m . t, = 20 m m . and

Cr = 2 . 1 ... 110

7.17 .ry-plane p a tte rn of a printed m e an d e r dipole on a dielectric half­ space. P a ra m e ters of the a n te n n a are .V = 2. c = 12 m m . 21 = 44 m m . y = 4 m m . = 372 m m . = 372 m m . 0 = 4: m m . an d = 2.1.110

(15)

L I S T OF FI G UR ES xv

7.18 yr-plane p a tte rn of a p rin ted m eander d ip o le on a dielectric lialf- space. P aram eters o f th e an ten n a are .V = 2. e = 12 m m , 21 = 44 mm, fi- = 4 m m . = 372 m m . ii\ = 372 m m . = 4 m m . an d Cr = 2.1.111 8.1 .A. dual m eander-sleeve a n te n n a ... 117 8.2 C om puted in pu t im ped an ce of the dual m eander-sleeve a n ten n a vs

frequency w ith the sleeve length / as a p aram eter; sleeve spacing

2 S = 3.2 cm ... 118

8.3 C om puted in p u t im p ed an ce of the dual m eander-sleeve a n ten n a vs

frequency for 3rd resonance around 1930 .MHz...119 8.4 M easured \ 'S \ \ ’R frequency characteristics o f the dual m eander-sleeve

antenna w ith sleeve le n g th I (cm) as the p a ra m e te r... 122 8.5 M easured H -plane p a tte rn of the dual m eander-sleeve a n ten n a at 890

MHz. Scale: lin e a r...122 8.6 M easured H -plane p a tte rn of the dual m eander-sleeve a n te n n a at 1890

MHz. Scale: lin e a r...123 8.7 M easured E -plane p a tte rn of the dual m eander-sleeve a n te n n a at 890

MHz. Scale: lin e a r...123 8.8 M easured E -plane p a tte rn of the dual m eander-sleeve a n ten n a at 1890

MHz. Scale: lin e a r...124 8.9 .A. com er reflector a n te n n a ...125 8.10 (a) M LBT dipole (T y p e A ), an d (h) M L B T dipole (T ype B )...128 8.11 C om puted in p u t im p ed an ce of the M LBT dip o le ( Type B) as a func­

tion of frequency (co m p u ted using NEC): w ire length. L^-ire = 2.95A. a = 120°. 21 = 0.28A. h = 0.48A. n = 0.0035A. and .V = 4 ...129 8.12 H orizontal-plane p a tte rn o f the M LBT d ip o le (Type B) a t 835 MHz

(16)

8.13 E levation-plane p a tte rn o f th e M LB T d ip o le (Type B) a t 835 M Hz (com puted using N E C )...130 8.14 H orizontal-plane p a tte rn of a plane sh eet reflector (co m p u ted using

N EC). T h e feed elem ents are a stra ig h t-w ire 0.44A dipole an d an M LB T dipole, respectively: S = 0.21A. H = 0.65A. L = 0.21A. a n d

a = 0.05A...1.30

8.15 R eturn loss vs frequency c h a ra c te ristic for a plane sheet reflector. Reflector p aram eters are: L = 0.21 A. H = 0.65A. 5 = 0.21 A. and

G = 0.05A. M LB T feed p a ra m e te rs are - a = 120°. 21 = 0.2SA. h = 0.48A. .V = 4. and a = 0.0036A. D ipole feed p a ra m ete rs are: h = 0.44A. and a = 0.0036A... 131

8.16 H orizontal-plane p a tte rn s o f a plane sh eet reflector (com p u ted using N EC ). T he feed elem ents are a stra ig h t-w ire 0.44A dipole an d an M LBT dipole, respectively. R eflector height [H ) for the dipole feed is 0.98A a n d th a t for the M L B T feed is 0.65A...133 8.17 H orizontal-plane p a tte rn s o f plane sh eet reflectors w ith M L B T and

straig h t-w ire dipole feeds (co m p u ted u sin g N E C ). Reflector p a ra m e ­ ters for th e dipole feed are: L = 0.31A. S = 0.21A. G = 0.05A. an d

H = 0.81 A. Reflector p a ra m e te rs for th e M L B T feed are: L = 0.21 A. S = 0.21 A. G = 0.05A. an d H = 0.65A...133

8.18 E levation-plane p a tte rn o f a plane sh eet reflector (com puted using N EC). T he feed elem ents are a stra ig h t-w ire dipole and an M L B T . respectively. S — 0.20A. G = 0.05A ... 134 8.19 .A. com pact plane sheet reflector fed by a n M L B T m onopole. P a ra m ­

eters of th e an ten n a are: h = 0.5A. a = 114°. I = 0.18A. h = 0.018A. and e = 0.074A. R adius o f w ire is 0.0005A... 135 8.20 Input im pedance of the co m p act plane sh eet reflector a n te n n a (com ­

(17)

L I S T O F F I G U R E S xvii

8.21 M easured R etu rn loss versus frequency ch aracteristics o f the co m p act p lan e sheet reflecto r... 137 8.22 H orizontal-plane p a tte rn of th e c o m p a c t plane sh eet reflector: solid

(18)

L ist o f T a b les

2.1 P a ra m e te rs a n d characteristics o f th e zigzag a n te n n a in [<]: see Fig.

2.2 16

2.2 C h a ra c te ristic s o f the m eander an ten n as o f [8]: see Fig. 2.3: I = 4.5

cm . a = 0.4 m m . and w = 0.3 mm. /u.,>f = 13.5 c m ... 19

3.1 Expressions for the param eters in eqns. ( 3.24)-( 3.27) ... 31 3.2 Expressions for th e param eters in eqns. (3.28)-(3.31 ) 32

5.1 P a ra m e te rs a n d characteristics of an .MLBT dipole: .V = 2. len g th of \vire= 32 cm . a n d radius of \vire=0.325 m m ... 68 5.2 P a ra m e te rs a n d characteristics of an M L B T dipole: .V = 4. length of

\vire= 32 cm . a n d radius of \vire=0.325 m m ... 69

7.1 R esonant resistan ce. Rres of a printed dipole a n te n n a as a function of s u b s tra te thickness: com parison w ith the resu lts in [34]. P aram eters of th e a n te n n a are: = 2.1. 21 = 44 m m . u’ = 4 m m . ;r, = 244 m m . an d Ls. = 244 m m ...97

(19)

XIX

A ck n o w led g em en ts

I wish to express m y deepest g ra titu d e to m y su p e r\iso r. Dr. S.S. S tuchly for his continuous encouragem ent an d guidance show n th ro u g h o u t this research w ork and the process of w riting th is m anuscript. T he valuable discussions th a t we have had for long hours in your office has essentially been the g uid in g light for this work. I can not th a n k you enough for your patience a n d forbearence w ith me. I also express my sincere g ra titu d e to D r. M .A. Stuchly for her valuable suggestions in relatio n to the w ritin g of this thesis. Special thanks are also due to Dr. M ichal O koniew ski for his valuable suggestions as related to my work on the p rin ted m eander an ten n as. Michal, I certain ly learnt a lot from m any of o u r enthusiastic yet realistic discussions in the lab. thanks.

I also wish to th a n k M r. K rzysztof C a p u ta for his day to day help in arran g in g the ex p erim en tal setu p a n d perform ing m easurem ents. Special th an k s go to M ark for m any of our in terestin g an d lively discussions as related to electro m ag n etics and philosophy, in general. T h a n k s to Elise. M ario. Dr. C hris. Bassey. and Mrs. Ewa Okoniewska. .A. h earty th a n k is also extended to all colleagues in the d e p artm en t from w hom I have received valuable suggestions and help. Special th an k s also go to my buddies like M ahm ood. S h a h a d a t. M ahboob. Intekhab. a n d M iah M ahm ood.

Finally. I wish to express my deepest g ra titu d e to my wife. .Ayesha. who has practically relieved me from m any of my fam ily responsibilities and thus has m ade it possible for me to finish w ritin g this thesis. She has been the in sp ira tio n and encouragem ent in this en lig h ten in g p ath of travel. I also th a n k my little ones. Orko and N azia for enduring th e lonely m om ents a n d for providing me w ith the energy and en th usiasm needed to accom plish this work.

(20)

To Nnzia. Orko. and A yesh a. the wonderful droplets o f rain in an am a zin y s^l t t i-

(21)

Chapter 1

I n tr o d u c tio n

1.1

M o tiv a tio n

W ith the recent advances in telecom m unications, th e need for sm a ll a n d low-profile a n ten n as has g re a tly increased. T h e greatest d em an d for these antennzis is from m obile ap p lic atio n s (vehicles) a n d from portable equipm ent. S m all an ten n as are also in d em an d for ap p licatio n s, such as in base statio n s, in sea m obiles, and in aircrafts.

D epending on ap p licatio n s, th e re are differences in term s of a n te n n a perform ance requirem ents. For exam ple, in a base statio n a n te n n a gain of 9 to 17 dB i m ay be required, w hereas in a personal com m unication serv ices ( PC S) h a n d se t a gain of 5 .1 dB i m ay be a d e q u a te in practice [2]. Similarly, for a base s ta tio n a n ten n a lin ear p o larizatio n is req u ired , while in land-m obile to sa te llite co m m u n icatio n s circular p o larizatio n is u sed [2]. However, am ong all these differences in a n te n n a perform ance requirem ents, a n te n n a s of sm all size are essential for such a p p lic a tio n s, for e ith e r

(22)

-A. sm all a n te n n a , as defined in th is d isse rta tio n , is one in w hich its largest dim en­ sion is sm all co m p ared to a sim ila r type of a conventional a n te n n a [3]. For in sta n ce, a m onopole a n te n n a sm aller th a n 0.25A is considered as a sm all a n te n n a [3].

It is well know n th a t, as th e size of the a n te n n a is reduced, th e efficiency tends to degrade a n d the b an d w id th becomes narro w er [4]. This h a p p en s because the input im p ed an ce o f a sm all a n te n n a consists o f a sm all resistan ce an d a relatively large c ap a c itan c e or inductance. Thus, for a size-reduced a n te n n a , m atch in g o f its input im p ed an ce w ith the c h arac te ristic im p ed an ce of the feeding tran sm issio n line is difficult. N onetheless, this m atch in g is im p o rta n t in order to m ake th e a n ten n a useful.

One of th e effective ways to accom plish efficient m atching is to a tta in self­ resonance of th e a n ten n a because such an a n te n n a is purely resistive at the frequency of o p eratio n a n d hence no co n ju g ate m atching circu it is necessary [4]. Perform ance of a self-resonant an ten n a is not degraded by th e losses in the m a tc h in g circu it. T he self-resonance o f a sm all a n ten n a can so m etim es be achieved by th e a n te n n a itself, or by ad d ing passive reactive loadings or activ e devices in the a n te n n a stru c tu re . For instance, a norm al mode helical a n ten n a (.NMH.A) is an a n te n n a th a t can a tta in self-resonance w ith o u t an a d d itio n a l m atch in g circu it.

O th er a n te n n a s th a t are self-resonant include the inverted-L a n te n n a (IL .\) [5]. the m eander a n te n n a [6]-[9]. th e zigzag a n te n n a [7]. the m ean d er zigzag m onopole an ten n a [10]. a n d the sinusoidal an ten n a [Il]-[15]. .All of the above can be m an ­ ufactured by b e n d in g wires or m e ta l ribbons according to the specific geom etrical configurations.

(23)

3

th a n straight-vvire half-wave dipoles while o p e ra tin g in dipole c o n fig u ratio n and are sm aller th an straight-w ire quarter-w ave m onopoles while o p e ra tin g in m onopole configuration. To m easure the extent of size re d u c tio n a term called th e shortening

ratio ( S R ) [7] is often used. T he S R is defined in percent ;is

S R = — — X 100 11.1)

O.oA

w here L is the length of a self-resonant bent dipole in w avelengths. T h e S R depends on th e geom etry an d param eters of th e an ten n a.

T h e self-resonant bent antennas have som e in h eren t d isadvantages, such as low reso n an t resistance (th e real p a rt o f the in p u t im p ed an ce a t reso n an ce), narrow b a n d w id th , and undesired cross-polarization. T h ese lim itatio n s m ay becom e severe when the a n ten n a param eters are a d ju sted to increase the slio rten in g ra tio . Thus, a know ledge of the characteristics of the self-resonant bent a n te n n a s is vital for th e ir design to be accurate and efficient. T his know ledge can only re su lt from the analyses of such an tennas. This d isse rta tio n u n d e rta k es the task of a n a ly z in g several ex istin g self-resonant bent antennas from a design point of view. T h e m otiv atio n b eh in d th is work is to fill the gap in th e present s ta te of knowledge p e rta in in g to the analyses and design of such an ten n as. .Antennas th a t are in v e stig ate d include (1) th e inverted-L an ten n a (ILA). (2) the m ean der-lin e dipole (M L D ) a n te n n a . (3) the m eander-line bow -tie (M LBT) a n ten n a . (4) th e d u a l m eander a n te n n a , and (5) the p rin ted m eander antenna.

(24)

T h e m ajo r c o n trib u tio n of th is d isse rta tio n in re la tio n to th e a n te n n a analysis, is th e developm ent o f sim p le and a c c u ra te an aly tica l m o d els to stu d y th e c h arac te ristic s o f several e x istin g self-resonant b ent an ten n as. T h e second m a jo r c o n trib u tio n in re la tio n to a n te n n a design, is th e design a n d dev elo pm en t o f a \rid e-b a n d d u a l m eander-sleeve a n te n n a for dual-freq u ency v e h ic u la r a p p lic atio n in th e personal co m m u n icatio n services (P C S ).

Specific c o n trib u tio n s o f th e d isse rta tio n a re as follows:

• D evelopm ent o f an a n a ly tic a l m odel to c o m p u te th e in p u t im p ed an ce o f an inverted-L a n te n n a (ILA ) u sin g the in d u ced E M F m eth o d .

• D evelopm ent o f sim ple a n a ly tic a l m odels for th e c o m p u ta tio n o f the rad iatio n fields of th e M LD and M L B T antennas.

• E stab lish m en t o f the c o rre la tio n betw een th e sh o rte n in g ra tio . S R . the res­ onant re sista n c e. Rr^s. a n d th e c ro ss-p o lariza tio n o f the self-resonant bent an ten n as w ith th eir p a ra m e te rs using N E C a n d an aly tica l techniques.

• C h a ra c te riz a tio n of a p la n a r p rin ted m e a n d e r a n te n n a using the Finite-D ifference T im e-D o m ain technique from a design p o in t o f view.

• Design an d developm ent of a w ide-band d u a l m eander-sleeve a n te n n a for a p ­ p lication as a vehicular a n te n n a in b o th b a n d s (824-894 MHz a n d 1850-1990 MHz) of th e personal co m m u n icatio n s e r \ic e s (P C S ). To desig n th e an ten n a num erical m o d elin g is p erfo rm ed using N E C a n d to confirm its p ro p er o p e ra ­ tion m easu rem en ts are co n d u cte d using a n H P 8720C vector netw ro k analyzer.

(25)

• Design o f a novel M L B T dipole as a feed to p lan e sheet reflectors for a p p lic a tio n in base s ta tio n s using N EC.

• Design an d developm ent of a com pact p la n e sheet reflector an ten n a th a t uses an M LB T m onopole as a feed using N EC a n d experim ental techniques.

1.3

O u tlin e

C h a p te r 2 presen ts th e definitions o f various a n te n n a p aram eters, such as ra d ia ­ tion p a tte rn , ra d ia tio n intensity, in p ut im p ed an ce, efficiency, gain and half-pow er b eam w idth. b an d w id th , field regions, and p o la riz a tio n . It also presents a b rie f re­ view on self-resonant bent an ten n as.

C h ap ter 3 describes th e analysis of the in v erted -L an ten n a (ILA ). .After a b rie f in trod u ction an d an overview of th e lite ra tu re th e current d istrib u tio n is given, followed by a d escrip tio n of th e induced EM F m e th o d . .An expression for the in p u t im pedance of th e ILA is derived. T he accu racy o f the newly derived ex p ressio n is verified by co m p arin g the resu lts com p uted using it w ith th a t from N EC [1] co m p u tatio n . Finally, th e adv an tag es and lim ita tio n s of the new form ulation are discussed.

C h ap ter 4 analyzes the m eander-line d ip o le (M LD ) antenna. .A review o f th e present sta te of know ledge is presented first, followed by an analysis of its in p u t im pedance. In p u t im ped an ce is com puted u sin g N EC. T he dependence of th e sho rten in g ratio . S R . th e resonant resistance. Rres- and the cro ss-p o larizatio n on the an ten n a p a ra m e te rs is d e m o n strated . In p u t im pedance graphs as a fun ctio n o f a n te n n a length w ith th ree different p aram eters a re also given.

(26)

ch aracteristics o f the M LD an ten n a. The cu rren t d istrib u tio n along the a n te n n a is described, followed by a d e tailed derivation of th e rad iatio n fields which are given in closed-form . T he a n a ly tic a l m odel is verified by com paring the results co m p u te d using it w ith th a t from N E C co m putation. R a d ia tio n ch aracteristics of the M LD an ten n a is discussed as fu n ctio n of various a n ten n a p aram eters. Finally, the c h a p te r is closed by a discussion o f th e analysis and resu lts.

C h ap ter 5 describes an analysis of the m eander-line bow -tie (M LB T) a n te n n a . Sim ilarly to th e MLD a n te n n a the input im pedance of this a n ten n a is also c o m p u te d using N EC. an d a n ten n a c h aracteristics such as. th e S R . Rres- and cro ss-p o larizatio n are correlated w ith the p a ra m e te rs of the a n ten n a. To stud y the rad iatio n c h a ra c ­ teristics a sim ple a n aly tical form ulation like the one for the MLD is presented. T he rad iatio n p a tte rn and gain of the an ten n a are co m p u ted and discussed as fu n ctio n o f its p aram eters.

C h ap ter 6 presents an in v estig atio n of the d u al m eander an ten n a. The a n te n n a is analyzed using NEC. In p u t im pedance, ra d ia tio n p a tte rn , and gain resu lts are presented. T h e advantages an d lim itatio n s of th e a n ten n a are also discussed.

C h ap ter 7 describes th e ch aracterizatio n of p la n ar printed m eander a n te n n a s using the Finite-D ifference T im e-D om ain ( F D T D ) technique. Two cases are c o n sid ­ ered: ( I) a n te n n a p rin ted on a grounded dielctric s u b stra te , and (2) an ten n a p rin te d on a dielectric half-space (n o g rou n d m etallization present). Input im pedances c o m ­ p u ted using a g ap -ex citatio n m odel are presented in graphical forms w ith b o th the dielectric c o n sta n t, a n d th e s u b stra te thickness. as param eters. T he d ep en d en ce o f the resonant resistance on th e su b strate thickness and the dielectric c o n sta n t, is d em o n strated . T he ra d ia tio n p a tte rn and g ain o f the printed m eander a n te n n a

(27)

are also p resen ted followed by a b rief discussion.

C h a p te r 8 exam ines th e p o te n tia l a p p lic atio n s of self-resonant bent a n te n n a s . F irst a d ual m eander-sleeve a n te n n a designed using NEC is d escrib ed . E x p e rim e n ta l results for th is a n te n n a are also presented. A pplication o f m eander-line b o w -tie (M LB T) a n te n n a s as feeds to p lan e sheet reflectors is discussed. Novel d esig n s are proposed for ap p lic atio n in base statio n s, followed by a discussion.

(28)

D e fin itio n s o f A n te n n a

P a r a m e te r s a n d L ite r a tu r e

R e v ie w

In th is ch apter first som e basic a n te n n a param eters, such as th e ra d ia tio n p a t­ te rn . rad iatio n in ten sity , directivity, in p u t im pedance, efficiency, g a in , b an d w id th , field regions, a n d p o la riz atio n are in tro d u ced . .A.11 definitions a n d m a th e m a tic a l ex­ pressions are ta k e n from [16] unless otherw ise m entioned. T h e d efin itio n s inside q u o ta tio n m arks com e from the IE E E S ta n d a rd D efinitions o f T e rm s for .Antennas (IE E E Std 145-1973) [17].

N ext a lite ra tu re review on self-resonant bent a n ten n a s is p re sen te d . T his in­ clu d es a brief d e sc rip tio n of previous work on the norm al m o d e helical a n ten n a (NMH.A). the invert ed-L a n ten n a (IL.A). the m eander an ten n a, th e zigzag an tenn a.

(29)

9 = 0

0=90

0=0

Figure 2.1: Spherical c o o rd in a te system , th e sin u so id al a n ten n a , and th e d u al m eander a n ten n a .

2.1

D e fin itio n o f P a ra m eters

2 .1 .1

R a d ia tio n P a tte r n

T h e radiation pattern of an a n te n n a is defined as the "graphical rep resen tatio n o f the ra d ia tio n p ro p erties of the a n te n n a as a function o f angular co o rd in a tes. In m ost cases, th e ra d ia tio n p a tte rn is d eterm in ed in th e far-fie Id region a n d is represented as a fu n ctio n of th e angular coordinates. R a d ia tio n properties include ra d ia tio n intensity, field stre n g th , phase o r polarization."

R a d ia tio n p a tte rn of an a n te n n a can be e ith e r a power pattern or a field pattern. R eferring to Fig. 2.1, a two dim ensional p a tte rn is o b tain ed by fixing one o f the angle

(30)

gives elevation patterns. Sim ilarly, keeping 6 c o n sta n t, and varying o (0 < o < 2 t ) gives azimuthal patterns.

T h e perform ance of an a n te n n a is often d escrib ed by using two principal plane p a tte rn s which are called the E-plane and the H-plane p a tte rn s. T h e E-plane p a t­ te rn for a linearly polarized a n te n n a is defined as "the plane c o n ta in in g the electric field vector an d th e direction of m axim um ra d ia tio n ." Sim ilarly, th e H-plane p a t­ te rn is defined as "th e plane con tain in g the m ag n etic field v ecto r an d th e direction of m axim um rad ia tio n ."

R ad iatio n p a tte rn can be broadly clssified as. isotropic, d ire c tio n a l, an d om nidi­ rectio n al. .An iso tro p ic ra d ia to r is defined as "a h y p o th etical a n te n n a having equal ra d ia tio n in all directions." .An exam ple of such a ra d ia to r is a p o in t source although physically u nrealizable, it can be a useful reference for expressing th e directive prop­ ertie s of practical antennas.

.A directional a n te n n a is one "having the p ro p e rty of ra d ia tin g o r receiving elec­ tro m ag n etic waves m ore effectively in some d ire c tio n s th an in o th e rs". .An omnidi­

rectional pattern is defined as one "having an essentially n o n d irectio n al p a tte rn in

a given plane of th e an ten n a an d a directional p a tte rn in any o rth o g o n a l plane."

2 .1 .2

R a d ia tio n In te n sity

Radiation intensity in a given direction is defined as "the pow er ra d ia te d from an

a n te n n a per un it solid angle. T h e unit solid angle dO. is given by sint9 dO do. R a d ia tio n in ten sity can be expressed as

CiO.o) ~ ^ [ |E o ( g .o ) |- -f- \ E J 6 . o ) \ - ] (2.1)

(31)

11

im pedance of the m edium . T h e to ta l power ra d ia te d by an a n te n n a is given by

Prad = [ [ U smO (16 d o (2.2)

70 Vo

2 .1 .3

D ir e c tiv ity

T h e directiv ity of an a n te n n a is defined as "the m a x im u m value o f th e directive gain in the direction of its m axim um value." Thus

D„ = i ^ (2 .3 )

^ rad

w here Do is the directivity. Umax is the m axim um o f th e ra d ia tio n intensity o b ta in e d from (2.1). a n d Prad is given by (2.2).

2 .1 .4

In p u t im p e d a n c e

-■\ntenna input im pedance is defined as "the im p e d a n ce presented by an a n te n n a a t its term in als or the ratio of the a p p ro p riate co m p o n en ts of the electric to m a g n e tic fields at a point." T he input im pedance consists o f a resistance a n d a reactan ce o f which the resistance com prises o f a rad iatio n re sistan ce. Rr a n d a loss re sista n c e.

Rf..

2 .1 .5

EflSciency

.\n te n n a efficiency accounts for th e losses a t the in p u t term in als o f the a n ten n a a n d w ith in the s tru c tu re o f the a n ten n a . Losses in a n a n ten n a m ay occur due to th e m ism atch betw een the feeding transm ission line a n d th e a n ten n a , and also d u e to co n d u cto r and dielectric losses.

(32)

In general, the overall efficiency m ay be w ritte n as e, = w here e, is th e to ta l overall efficiency, is the reflection efficiency an d is expressed as (1 — | r | - ) w here F is th e reflection coefficient. e<- is the co n d u ctio n efficiency, an d is th e dielectric efficiency.

Since an d ej can n ot he s e p a ra te d [16]. it is convenient to w rite c, = 1 —|r |~ ) w here e^d is th e a n te n n a ra d ia tio n efficiency. If a n a n te n n a has a loss resistance o f

Rc a n d a ra d ia tio n resistance o f Rr. e^d =

2 .1 .6

G a in a n d H a lf-P o w e r B e a m w id th

.A. usefid m easure to describe th e perform ance o f an a n ten n a is to specify its g ain.

Power gain of an a n ten n a in a specific direction is defined as " d r tim e s the ra tio o f

the ra d ia tio n in ten sity in th a t d ire c tio n to the net pow er accepted by the a n te n n a from a connected tra n sm itte r." T h e m axim um g a in is defined iis

6'o = CfDo- ( 2 . 4 )

"In a plane containing the d ire c tio n of the m axim u m of th e b e am , the angle betw een the d irectio n s in w hich th e rad iatio n in te n sity is o ne-h alf th e m axim um value o f the beam " is defined cis th e half-power beamwidth of an a n te n n a .

2 .1 .7

B a n d w id th

T h e b an d w id th of an a n ten n a c a n be defined as " th e range of frequencies w ith in which the perform ance of th e a n te n n a , w ith respect to som e c h arac te ristic s, conform s to a specified sta n d a rd ."

(33)

13

gain, efficiency, p o larizatio n , b eam direction etc. T h e term ran g e of frequencies' may m ean the ratio betw een the u p p e r and the lower frequencies for a b ro a d b a n d an tenna. For narrow band an ten n a s, the bandw idth is usually expressed as a p e r­ cent of the center frequency. T h us for a broadband a n te n n a D \ V = a n d for a narrow band an ten n a D \ V = x 100 where / f . fr.- an d f r are the u p p er, lower, and the center frequencies.

2.1.8

F ield R e g io n s

The space surrounding an a n ten n a is usually subdivided into th ree regions. T hese regions and their o u te r lim it are discussed below.

R e a c tiv e N e a r F ie ld R e g io n T h is region is defined as " th a t region of th e field im m ediately su rro u n d in g the a n te n n a where the reactive field p red o m in ates." T he o uter b o u n d ary of this region for all but sm all a n te n n a s is specified by

R = 0 . 6 2 wher e A is the w avelength and D is the largest dim ension o f the

antenna, and R is the d ista n c e from the surface of th e a n te n n a to th e o u te r boundary.

R a d i a t i n g N e a r F i e l d T his region is defined as " th a t region of the field o f an an ten n a betw een the reactive near-field region an d the far-field region w herein the angular field d istrib u tio n predom inates and w herein th e an g u lar field d is­ trib u tion is dep en d en t upon th e distance from th e a n te n n a . For an a n te n n a focused at infinity, the ra d ia tin g n ear field region is so m etim es referred to as the Fresnel region on the basis of analog}' to o p tical technolog}'. If the a n te n n a has a m axim um dim ension w hich is ver}' sm all co m p ared to th e w avelength, this field region m ay not ex ist." T he outer boundar}' of th is region for m ost

(34)

an ten n as is specified by Ro =

F a r-fie ld r e g io n T h is region is defined as "that region of th e field o f an a n ten n a where the a n g u la r field d istrib u tio n is essentially indep en d ent of th e distan ce from th e a n te n n a . If th e antenna has a m axim um overall d im en sio n D. the far-field region is com m only taken to exist at distan ces g re a te r th a n from the a n ten n a . A b ein g th e wavelength. For an a n te n n a focused a t infinity, the far-field region is so m etim es referred to as the Fraunhofer region on th e basis of analog}' to o p tic a l term inolog}."

2.1.9

P o la r iz a tio n

The polarization o f a radiated wave is defined as “th a t p ro p e rty o f a ra d ia te d elec­ trom agnetic wave d e sc rib in g th e tim e-var\'ing direction and relative m a g n itu d e of the electric field vector; specifically, the figure traced as a function o f tim e by the extrem ity of the v e cto r a t a fixed location in space, and th e sense in w hich it is traced, as observed a lo n g the direction of propagation."

P olarization m ay b e classified as linear, circular, and elliptical. Let us consider the in stan tan eo u s e lec tric field o f a plane wave, travelling in the positive z-direction. [18]

S = dj-EJocos(.i,'t — .ic -I- Ox) -f cos(w’t — .iz 4- Oy). (2.5) The m agnetic field is re la te d to the electric field of (2.5) by th e in trin sic im p ed an ce of the m edium .

L in e a r P o l a r i z a t i o n A tim e-harm onic field is linearly polarized a t a given point in space if the elec tric (or m agnetic) field vector at th a t point is alw ays oriented

(35)

15

along the sam e straig h t line a t ever}' in stan t o f tim e. T h is can h a p p e n if th e field vector (electric or m a g n etic) possesses (a) o n ly one co m p o n en t or (h) two orthogonal lin early po larized co m p o n en ts th a t a re in tim e p h ase or 180° out o f phase.

C ircu lar P o la r iz a tio n C ircu lar p o la riz atio n can be achieved only w hen th e m a g ­ nitudes of th e two co m p o n en ts in Eqn. (2.5) are th e sam e an d th e tim e -p h a se difference betw een them is o d d m ultiples of ~j'2.

E llip tic a l P o la r iz a tio n E llip tical p o larizatio n can be o b tain ed (a) w hen th e m a g ­ nitudes of th e field co m p o n en ts in (2.5) are n o t equal and th e tim e phase- difference betw een the two co m p o n en ts in (2.5) is an odd m u ltip le of ~j'l or (b) when the tim e-phase difference betw een th e two co m po n en ts is not equ al to m ultiples o f ~ / 2 irresp ectiv e of th e ir m ag n itu d es.

2 .2

R ev ie w o f L itera tu re

A lth o u g h a self-resonant bent a n te n n a can be o f v irtu a lly any im agin ab le g eo m etrical sh a p e , the ones th a t are m entioned an d stu d ie d in th e lite ra tu re include the n o rm al m o d e helical a n ten n a ( XM HA). th e invert ed-L a n te n n a (IL A ), the m e a n d e r a n te n n a , th e zigzag an ten n a, th e sinusoidal a n te n n a , and the d u a l m eander a n te n n a . In the following we provide a brief acco u n t of th e previous w ork as related to th e a n aly sis a n d design of these an tennas.

T h e norm al m ode helical a n te n n a (N M H A ) is an a n te n n a w hich ra d ia te s in the d ire c tio n norm al to th e helical ax is. T h e ra d ia tio n p a tte r n of a sm all N M H A is th e sam e as th a t of a sm all stra ig h t-w ire dipole [19]. T h e s tu d y of th is a n te n n a d a te s

(36)

Table 2.1: P a ra m e te rs an d ch arac te ristic s of the zigzag a n te n n a in [7]: see Fig. 2.2. 2Ia-,rc (A) 2Z « r(A ) r (°) Rres (H SR (%) G ain (dB i) H P B W (M

0.50 0.45 129 65 10 2.1 ± 8 0

0.58 0.38 81 46 24 2.0 ± 8 2

0.67 0.33 59 37 34 1.95 ± 8 4

back to th e 1940's w hen K rau s [19] first introduced th e helical an ten n a. However, due to its a ttra c tiv e self-resonance property, and sm all size, th e NMHA has b een found useful for a p p lic a tio n in m obile com m unications and hence has been s tu d ie d quite extensively [19]. [4].

T he inverted-L a n te n n a (ILA ) is a low-profile a n te n n a th a t has found a p p lic a tio n in m issile telem etn.', an d rockets [5]. .-Vs the nam e suggests th e a n ten n a co n sists of a sm all vertical c o n d u c to r on top of which there is a horizontal co nductor. In th e lite ra tu re th e IL.A. h a s been stu d ie d using both a n aly tica l and num erical techniques. Closed-form expressions for the ra d ia tio n p a tte rn of this a n te n n a are available in [4]. K ing and H arrison Jr. [5] have presented an analysis for co m p u tin g th e in p u t im pedance of the ILA . T h e analysis is based on tran sm issio n line theor>' a n d is restricted to the s itu a tio n kh <C 1 w here k is the wave num ber an d h is the le n g th o f the vertical section o f the ILA. Jam e s et al. [4] have presented M ethod of M o m en ts solution for the ILA using piecewise sinusoidal reactio n form ulation. W unsch a n d Hu [20] have derived a closed-form expression for the in p u t im pedance of th e ILA . This expression is re stric te d to an ten n a s th a t are electrically sm all.

N akano et al. [7] describ ed a zigzag and a m eander an ten n a. T h e zigzag a n te n n a described in [7] is show n in Fig. 2.2a. Its geom etrical p a ra m ete rs are e an d r. T h e an ten n a was an aly zed in [7] using the M ethod of M om ents (M oM ) which was verified by ex p erim en tal re su lts. R esu lts from [7] are su m m arized in T able 2.1.

(37)

I L

. . . ©

-(b)

in ...

F igure 2.2: (a) .A. zigzag, a n d (b) a m ean d er an ten n a [/]

From Table 2.1 it can be seen th a t as r decreases the S R increases and Rres decreases. For a n S R o f as much as 34%. the Rres is ab o u t 37 V.. T h e gain o f the a n ten n a is close to the gain o f a straigh t-w ire half-wave d ip o le o f 2.16 dB i. T he half-pow er b e am w id th . HPBW" is also close to th a t of a stra ig h t-w ire half-wave dipole of 78°. However, th e sam e can n o t be said for the resonant resistance. For instance, the value o f th e resonant resistan ce for a zigzag a n te n n a is a b o u t 37 fl for a sh o rten in g ra tio o f 34%. which is significantly sm aller th a n the reso n an t resistance of a straig h t-w ire half-w ave dipole o f a b o u t 70 fl. T h e m ean d er d ip o le o f Fig. 2.2b resonates at a le n g th of 2Lax = 0.35A (where 2I^.,re = 0.70A. c = 0.0133A) w ith

Rres = 43 n an d S R of 30%. The half-pow er beam w idth (H P B W ) a n d th e gain are

± 8 4 °. and 1.95 d B i.

H ashed and T ai [8] introduced a n o th e r class o f m ean d er a n te n n a s which are shown in Fig. 2.3. T h e shortening fa c to r defined in [9] sta te s th a t if a b ent a n ten n a of len g th I and a con v en tio n al a n ten n a o f length Iq have the sam e reson an t frequency.

(38)

I

(a)

(b)

(c)

A .

Figure 2.3: Several m eander an ten n as (a) N = 2 . (h) X = 4 . (c) X=G [8].

the size re d u c tio n (SR ) is.

I

In X 1 0 0 9 f (2.6)

w hen b o th th e a n te n n a s are m anufactured from th e sam e d ia m e te r wire. T he size red u ctio n for th ese an ten n as [as defined in (2.6)] depends p rim arily on the num ber of sections p er w avelength (X) and the w idth o f th e rectan g id ar loops (fc). Some resu lts from [8] a re sum m arized in T able 2.2.

.\cco rd in g to th e num erical resu lts of T able 2.2 a size red u ctio n o f 36% or m ore m eans th a t th e reso n an t resistance is 20.7 Q o r sm aller w hereas th e ex p erim en tal resu lts show th a t for a size reduction of 29% or m ore. Rres is 22 Q o r sm aller. D espite the differences in the num erical and ex p erim en tal results, it m ay be p red icted from T able 2.2 th a t if som eone intends to m an u factu re th e dipole c o u n te rp a rt of Fig. 2.3.

(39)

19

T ab le 2.2: C h arac te ristic s of th e m eander a n te n n a s o f [8|: see Fig. 2.3: I = 4.5 cm .

a = 0.4 m m . a n d w = 0.3 m m . = 13.5 cm .

P a ra m e ters SR(% ) SR(%) R r e s (H) R r e s (H)

(N um erical) (E x p erim en tal) ( N um erical) ( E x p erim en tal)

.\' = 2 41 41 11.5 13

.V = 6 37 33 19.3 21

.V = 10 36 29 20.7 22

an d is in terested to achieve Rres = 50 Q. th e size reduction m ay be less th an 30%. W ong a n d K in g [10] proposed a h eight-reduced m eander zigzag m onopole con­ figuration th a t co n sists of a d riv en elem ent fed from a coaxial line a n d one or m ore closely spaced o p en sleeves. B o th the d riv en elem ents and th e o p en sleeves were m ad e from 2 .0 m m d ia m e ter w ire. T he d u a l zigzag con fig u ratio n was chosen to reduce cro ss-po larizatio n . T h e a n ten n a was designed to o p e ra te in the frequency range of 250-750 .MHz. T he height and w id th o f the an ten n a w ere 13.97 and 11.43 cm . T h ro u g h o u t th e frequency range of 250-750 MHz. the \'S W 'R was less th a n 5.5:1. The ra d ia tio n p a tte rn o f th e h eight-reduced m eander zigzag m onopole on a g ro u n d plane o f d ia m e te r 121.9 cm was s im ila r to the p a tte rn o f a straig h t-w ire q uarter-w ave m onopole u p to 500 MHz. T h e p a tte rn showed sm a ll side lobes for frequencies above 500 MHz.

T h e in p ut (\'S W ’R b a n d w id th ) and the ra d ia tio n (p a tte rn a n d g ain ) ch aracter­ istics of two classes of bent w ire an ten n as e.g. th e sinusoidal a n d th e m eander were m easured e x p erim en tally as fu n ctio n of th e ir sh o rte n in g ra tio s (S R 's) in [13]. T he design variables for these configurations were defined and th e n c o rre la ted w ith the a n te n n a c h arac te ristic s. T he resu lts of the in p u t c h arac te ristic s show th a t for b o th ty p es of a n te n n a s th e b a n d w id th becom es n arro w er as the sh o rte n in g ra tio increases. For a sh o rten in g ra tio larger th a n 30%. V '5 U '/? > 2.0. However, it was found th a t

(40)

for the sam e sh o rte n in g ratio the sinusoidal a n te n n a h a d b e tte r \ ’S \\'R frequency ch aracteristics th a n th e m eander.

M easured ra d ia tio n p a tte rn s ( b o th H -plane an d E -p lan e ) of both classes o f amten- nas show th a t these are sim ilar to the p a tte rn of a s tra ig h t quarter-w ave m onopole. T he half-pow er b eam w id th 's (HPBW "s) of these b en t a n te n n a s are som ew hat wider (42° — 44°) th a n th a t of a stra ig h t quarter-w ave m on o p o le (39°). The gain of the bent a n te n n a was found to be decreasing w ith th e increase in SR (4.96-3.84 dBi for a sinusoidal w hen th e SR increased from 18% to 38.82% ). The gain o f a bent a n te n n a is found to be sm aller th a n a stra ig h t cjuarter-w ave m onopole (Ô.1 dB i).

\'u a n d .Tu [21] p roposed two m eander dipole a n te n n a s for possible ap p licatio n in personal co m m u n icatio n netw ork (P C N ) h andsets. B o th th e anten nas were printed on D uroid 6010 (e^ = 10.2: thickness= 0.064 cm ) s u b stra te . T h e ground co n d u cto r of the s u b stra te was etch ed off. For fu rth er size red u ctio n , th e second m eander an ten n a was covered by a n o th e r layer of dielectric. T h e len g th o f th e first an ten n a was 11.2 cm at 880 MHz. T h e size red u ctio n and b a n d w id th o f th is a n te n n a were 34.1% and 7.3% respectively. T h e length of the second m ean d er was 9.2 cm with size reduction and b a n d w id th of 45.9% an d 5.0% respectively. To calc u la te size reduction (1.1) was used.

N akano et al. [22] stu d ie d a printed zigzag dipole using th e M ethod of M om ents (M oM ) [22]. T h e a n te n n a geom etry' w ithout the s u b s tra te is shown in Fig. 2.2a. It was assum ed th a t the a n te n n a consisted of a th in w ire printed on a grounded dielectric s u b stra te o f infinite ex ten t. T he thickness o f th e su b stra te was O.IOI6A0. T h e resonant resistan ce and th e sh o rten in g ra tio for th is a n ten n a were 20 Q and 30%. respectively. T h e cro ss-p o larizatio n was found to be below -45 dB.

(41)

21

T h e geom et r}' o f th e a n te n n a w ith o u t th e su b strate is show n in Fig. 2.2b. Sim ilarly to th e analysis given in [2 2] it was assu m ed th a t the a n te n n a consisted o f a th in wire p rin ted on a gro u nd ed dielectric s u b s tra te of infinite ex ten t. The thickness of the s u b stra te was O.IOIGAq. T h e rad iu s o f th e wire was 10“ 'Ao and the elem en t length of the m eander a n te n n a e was taken to be 0.0133Ao [Fig. 2.2b|. The in p u t im pedance of th e printed m ean d er a n ten n a was co m pu ted w ith th e dielectric c o n sta n t of the su b stra te . Cr as a p a ra m ete r. For f.r = 4.0. and 6.05 th e resonant resistan ces were 13 a n d 32 Q. respectively. For f.r = 2.0. and 6.05 th e sh o rten in g ratio s w ere 47 and

(42)

C h a p te r 3

T h e In v e r t ed -L A n te n n a

E lectrically sm all m onopoles have draw n th e interests of a n te n n a d esig n ers over the decades due to th eir size an d conform ity w ith geom etries like a irc ra fts, ro ck ets, missiles etc. Sm all m onopoles are also used in low frequencies w hen the size o f a resonant quarter-w ave m on o p o le becomes p ro h ib itiv ely large.

In the lossless case, th e in p u t im pedance of a sm all m onopole c o n sists o f a sm all rad iatio n resistan ce an d a large cap acitiv e reactance. Such an a n te n n a is inefficient an d is difficult to m a tc h to sta n d a rd transm ission lines, w ith c h a ra c te ris tic im pedances of 50 and 75 Q.

The sm all ra d ia tio n resistan ce m ay be increased and the cap acitiv e re a c ta n c e can be reduced o r cancelled en tirely by ad d in g an add itio n al segm ent of c o n d u c to r of length L as shown in Fig. 3.1. The a n te n n a shown in Fig. 3.1 is c a lle d an inverted-L a n ten n a (ILA ) [5]. It consists of a vertical elem ent o f height h a n d a horizontal elem ent of le n g th L.

(43)

V 7 7 7 7 7 7 7

F igure 3.1: .A.n in v erted -L m onopole.

/

2h

h-F igure 3.2: .A.n in v e rte d -L dipole

23

on tran sm issio n line theop.'. T h e analysis is re s tric te d to the s itu a tio n where kh <c 1 where k = w ith A being th e o p e ra tin g w avelength. Fujim oto et al. [4] p resen ted a M oment M eth o d solution for the in p u t im p e d a n ce of the a n te n n a using piecew ise sinusoidal re a c tio n form ulation. T h e MoM so lu tio n , however, n eeds m ore c o m p u ta ­ tional power since it deals w ith the c o m p u ta tio n o f the elem ents o f th e generalized im pedance m a trix , m a trix sto rag e, an d m atrix inversion. W unsch a n d Hu [20] p ro ­ posed a closed form expression for th e input im p e d a n c e of the ILA solving Pockling- to n 's integral eq u atio n using a point m atching schem e. The closed form expression presented in [20] is restricted to th e situ a tio n w here kh < 0.5 a n d k L < 0.5.

In this thesis we derive an expression for th e in p u t im pedance o f an ILA u sin g the induced E M F m ethod [24]. To o b ta in this expression, a sinu so id al d is trib u tio n o f current th a t d ro p s to zero a t th e a n te n n a end is assu m e d and closed-form expressions

(44)

for the near-fields of the a n ten n a are derived. The closed-form expressions are then used to derive an expression for the input im pedance o f th e an ten n a. Z . T h e expression for Z contains integrals th a t can be easily ev alu ated using a s u ita b le num erical in te g ra tio n routine.

W hile th e transm ission line m odel of King and H arrisson .Ir. [5] is re s tric te d to kh <C 1. a n d the closed-form expression o f W unsh and Hu [20] is ap p licab le to an ten n as w ith k L < 0.5 and kh < 0.5. our form ulation gives acc u ra te re su lts as long as kl = k{h L) < 2 .1 . T h is allows us a m uch w ider range o f an ten n a le n g th s

for which th e input im pedance can be com puted. Thus, o u r form ulation is not lim ited to sm a ll and nonresonant antennas only but it can c o m p u te the im p ed an ces o f resonant a n te n n a s as well.

To verify th e accuracy of the proposed form ulation, the in p u t im pedance co m ­ puted using it is also com pared w ith th at com p u ted using .\'EC [ij.

3.1

C u rren t D istrib u tio n

We consider th e dipole mode of th e inverted-L a n ten n a shown in Fig. 3.2. .Assuming the IL.A [Fig. 3.1] to be rad iatin g on a perfectly conducting infinite ground p lan e, its input im p ed an ce should correspond to half the im pedance of the a n ten n a show n in Fig. 3.2. W h a t follows now is a derivation for the input im p ed an ce of an IL.A b ased on the d ip o le m ode of the inverted-L antenna, which consists o f four wire e lem en ts [Fig. 3.2]. W e call the lower and u p p e r horizontal elem ents a n te n n a elem ents 1 an d 4. and the low er and u pper vertical elem ents a n ten n a elem ents 2 a n d 3 respectively.

T he a n te n n a is fed by a d elta-g ap voltage and is m a n u factu red from a w ire th a t is thin and p erfectly conducting. .Assuming a sinusoidal d istrib u tio n of current alo n g

Referenties

GERELATEERDE DOCUMENTEN

More specifically, we contrasted two different prototype models –which neglect extensional information – with an instantiation based exemplar model – which takes

Onderlinge overheden zijn niet m eer met elkaar bezig, maar met de w oonruim te en leefomgeving van de burgers.. D o o r dus te stemmen tijdens de Provinciale

- De Gasperifl at 1-120, aanvraag omgevingsvergunning voor het tijdelijk wijzi- gen van het gebruik door 1 huishouden naar meerdere huishoudens per wo- ning voor maximaal 8

De senioren van Pin Pongers 3 blijven in de hoek waar de klappen vallen, daar op vrijdag 2 oktober 2020 de derde (forse) nederlaag op rij geleden is.. Of deze nederlaag ook onnodig

Participants named various game elements to support motivation and success, either through the general structure of the game or through feedback.. For the general structure levels

To contextualise the collection of Greek and Roman antiquities I have examined the collection practices of the South African Museum and the South African Cultural

The model combines closed form analytical equations for the folded dipole antenna, the re-entrant folded dipole antenna, the two-wire transmission line, the mutual coupling

Financial analyses 1 : Quantitative analyses, in part based on output from strategic analyses, in order to assess the attractiveness of a market from a financial