• No results found

Neural networks and neural fields: discrete and continuous space neural models

N/A
N/A
Protected

Academic year: 2021

Share "Neural networks and neural fields: discrete and continuous space neural models"

Copied!
181
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

■'i *L T Y OF ( ^ l i A ^ U A f ! . I ' U D ^ ' S

) A N

N EU R A L N ETW O R K S AND N EU R A L FIELDS:

Discrete and C ontinuous Space Neural M odels

by

R oderick E dw ards

B.A., U niversity of V ictoria, 1980 B.Sc,, Uni versity of V ictoria, 1988 M .Sc., H erio t-W att U niversity, 1990

A D issertatio n S u b m itte d in P a rtia l Fulfillm ent o f the R equirem ents for th e D egree of

D O C T O R O F P H IL O S O P H Y

in th e D ep artm en t of M ath e m a tic s a n d S ta tistic s We accept th is d isse rta tio n as conform ing

to th e req u ire d s ta n d a r d

Dr. R. Illner, S up ervisor (D e p a rtm e n t of M a th e m a tic s a n d S ta tistic s)

D r. A. H urd, D e p a rtm e n ta l M em ber (D e p a rtm e n t of M ath e m a tic s an d S ta tis tic s)

D r. P. van d en D riessche, D e p a rtm e n ta l M em ber (D e p a rtm e n t o f M a th em atics an d S ta tis tic s)

——

r==>---A Dr. N. D im opoulos, O u tsid e M em ber (D e p a rtm e n t of E lectrical an d C o m p u te r E n gineerin g)

Dr. R. S n e $ O u tsid e M em ber (R oyal R oads)

D r. Jacq u es B elair, E x te rn a l E x am in er, (U n iv ersity of M o ntreal)

© R O D E R IC K E D W A R D S, 1994 U n iv ersity o f V ic to ria

All rig h ts reserved. D isse rta tio n m ay n o t bf rep ro d u c e d in w hole or in p a r t, by p h o to co py in g o r o th e r m ean s, w ith o u t th e p erm issio n of th e a u th o r.

(2)

II

S up erviso r: Dr. R ein h ard Illner

A bstract

‘A ttr a c to r ’ .al netw ork m odels have usefu! p ro p erties, b ut biology suggests th a t m ore varied d y n am ics m ay be significant. Even th e eq u atio n s of th e Hopfield netw o rk , w ith o u t th e c o n stra in t of sym m etry, can have com plex b eh av io u rs which have been little s tu d ie d . Several new ideas o r app roaches to neural netw ork th eo ry are ex am in ed here, focussing on th e d istin c tio n betw een discrete a n d co n tin u o u s sp ace n eu ral m odels. F irs t, sim ple ch aotic d y nam ical sy stem s are ex am in ed , as c a n d id a te s for m ore n a tu ra l n eu ral netw ork m odels, in clud ing coupled system s of L orenz eq u a tio n s a n d a H opfield e q u atio n m odel w ith a balance of in h ib ito ry an d e x c ita to ry n eu ro n s. Also, co n tin u o u s space m odels w ith a s tru c tu re like th a t o f th e H opfield netw ork are briefly ex p lo red , w ith in terestin g tra in in g possibilities.

T h e m a in resu lts deal w ith th e a p p ro x im a tio n of Hopfield netw ork e q u atio n s w ith a p a rtic u la r class o f conn ectio n s tru c tu re s fallow ing a sy m m etry ), by a reaction- diffusion e q u a tio n , using tech n iq u es borrow ed from p a rtic le m eth o d s used in th e nu m erical so lu tio n of fluid -dy nam ical e q u a tio n s. It is show n th a t th e ap p ro x im atio n ho lds rigorously only in c e rta in sp a tia l regions b u t th e sm all regions w here it fails, n am ely w ith in tra n s itio n layers b etw een regions of high a n d low activ ity , are not likely to b e critical. T h e result serves to classify connectivities in H opfield-type m o d els a n d sheds light on th e lim itin g b eh av io u r of netw orks as th e n u m b er of n e u ro n s goes to infinity. S ta n d a rd J r cre tiz a tio n s of th e reaction diffusion eq u atio n s are a n aly zed to clarify th e effects w hich can arise in th e lim iting process. T h e d isc re te sp ace sy stem s can have sta b le p a tte rn e d eq u ilib ria which m u st be close to m e ta s ta b le p a tte r n s of th e co n tin u o u s system s.

O u r re su lts also suggest th a t th e fine s tru c tu re of n eural co n n ectio n s is im ­ p o r ta n t, a n d to o b ta in com plex b eh av io u r in th e Hopfield netw ork eq u a tio n s, a p re d o m in a n c e o f in h ib itio n o r wildly o scillatin g connection m atrix en tries are in d i­ ca te d .

E x am in ers:

D r. R . Illner, S u p erv iso r (D e p a rtm e n t of M a th e m a tic s a n d S tatistic s)

(3)

Dr. P. van den D riessche, D ep artm erftaT M em ber (D e p a rtm e n t of M ath em atics a n d S ta tistic s)

Dr. N. D im opoulos, O u tsid e M em ber (D e p a rtm e n t of E lectrical a n d C o m p u te r E ngineering)

Mei

Dr. R . Snell, O u tsid e M em ber (R oyal R oads)

(4)

iv

Table o f C ontents

A b s t r a c t ... ii T able of C o n t e n t s ...iv List o f F i g u r e s ...vi A c k n o w l e d g e m e n t s ...vii D edication ...viii 1. I n t r o d u c t i o n ... I 1.1 C o n te x t of n eu ral netw ork r e s e a r c h ...I 1.2 D evelopm ent o f n eu ral netw ork m o d e l s ... 3

1.3 M otivation for new a p p r o a c h e s ... 6

1.4 S u m m ary of a p p ro ac h es ta k e n a n d resu lts o b t a i n e d ... 10

2. B ack g ro u n d on th e conven tion al H opfield netw ork m o d e l ...I I 2.1 T h e H opfield netw ork e q u a t i o n s ... 14

2.2 E n erg y fun ction al for th e H opfield netw ork ... 17

2.3 M em brane p o te n tia ls , firing ra te s a n d th e S - £ ex change . . . 18

2.4 T h e sigm oid resp o n se fu n ctio n a n d th e high gain co n d itio n . 20 2.5 L earn in g rules for th e H opfield netw ork... ... 21

2 .6 T h e role of e x te rn a l i n p u t s ...23

3. L im ita tio n s of th e con ventio nal H opfield netw ork ...25

4. C h a o tic n e u ra l netw orks ... 31

4.1 C h ao s in n eu ral netw orks: why a n d h o w ? ... 31

4.2 T h e Lorenz e q u a tio n s as a n e u ra l n e t w o r k ... 35

4.3 A tte m p ts to e x te n d th e L orenz e q u a t i o n s ... 37

4.4 K w a n ’s m odel an d a new ch ao tic H opfield n e t w o r k ... 46

4.5 T e n ta tiv e c o n c l u s i o n s ...58

5. Integro -differen tial eq u a tio n s as n e u ra l f i e l d s ... 60

5.1 T h e integ ro-differen tial e q u a tio n ... 60

5.2 T h e energy fu n ctio n al ...60

5.3 E q u ilib ria a n d gain ... 6 '

5.4 E q u ilib ria w ith a h a rd n o n l i n e a r i t y ..., 6 3 5.5 T h e S - £ exchange rev isited ...65

(5)

5.7 S tab ility for d isc /e tc tim e d y n am ics ... 69

5.8 T rain in g th e d iscrete tim e e q u a t i o n ...71

5.9 T e n ta tiv e c o n c l u s i o n s ...80

6. A p p ro x im atio n of n eu ral netw ork d y n am ics by a reaction-diffusion e q u a tio n 82 6.1 In tro d u c tio n ...82

6.2 A p p ro x im atio n o f an in teg ral o p e ra to r by a differential o p e ra to r . 84 6.3 Q u a d ra tu re for th e i n t e g r a l ... 94

6.4 G en eralizatio n o f C o tt e t’s resu lt ... 97

6.5 C onvergence o f th e a p p r o x i m a t i o n ...103

6.6 D i s c u s s i o n ... 117

6 .A A pp en d ix on b o u n d s for th e seco nd d eriv ativ e o f th e so lu tio n . . 121

6.B A p p en d ix on w id th of tra n s itio n layers ...124

7. B ehaviour o f th e reaction -d iffusion e q u a tio n s ... 129

7.1 C 'o tte t’s e q u a t i o n . 129 7.2 T h e g en era l e q u a t i o n ... 133

7.3 C o nclusions ...133

8. F in ite difference d isc re tiz a tio n s of th e reaction-diffusion eq u atio n s . . 135

8.1 Form s o f th e reaction-diffusion e q u a tio n a n d th e ir d iscretiza tio n s . 135 8.2 L yapunov f u n c t i o n a l ... 138

8.3 S ta b ility o f flat eq u ilib ria . ... 141.

8.4 A sta b le eq u ilib riu m of p e rio d 6 ... 143

8.5 Large scale s ta b le p a t t e r n s ... 148

8.6 P a tte rn s in d - d i m e n s i o n s ... 157

8.7 D iscretizatio n s o f th e g en era l reaction-diffu sio n e q u atio n . . 158

8.8 S tab le p a tte r n s a n d m e t a s t a b i l i t y ...159

9. C o n c l u s i o n s ...164

9.1 Im p licatio n s for n eu ral n etw o rk t h e o r y ...164

9.2 M ath em atical i m p l i c a t i o n s ...166

9.3 F u rth e r d i r e c t i o n s ... 166 ,

(6)

VI

List o f Figures

2.1 An exam ple of a sigm oid response fu nctio n: r - <;(Ah)...16

4.1a T rajecto ries of coupled Lorenz system.* (4.4) w ith a — 1)...42

4.1b T rajecto ries of coupled Lorenz sy stem s (4.4) with o = 2 ...42

4.1c T rajectories of coupled L orenz system s; a = -2.5, in p u ts - 0 ,5 0 . . . 14

4 .Id T rajecto ries of coupled L orenz sy stem s; a — 5.5, in p u ts ~ 50, 50. . . 45

4.2 T h e ‘K w an ’ m odel. ...47

4.3 A ‘h u m p ’ function: th e difference of tw o logistic fu n ctio n s... 52

4.4a In p u t-sh ifted h u m p fu n ctio n w ith I — - 0 .5 2 5 ... 53

4.4b In p u t-sh ifte d h u m p fu n ctio n w ith / = - 0 . 6 ...54

4.4c In p u t-sh ifted h u m p fu n ctio n w ith / = 0.7... 4.5 H um p functio n w ith / = - 0 . 8 ap p lied only to th e in h ib ito ry neuron. 5.1 An ex am p le of a region o f s u p p o rt for T ( x , y ) w ith 3 disjoint boxes. 5.2 S u p p o rt of T(n , y ) (sh a d e d ) afte r o ne in p u t in E xam ples 5.3, 5.4, 5.5. 5.3 S u p p o rt of T ( x , y ) (s h a d e d ) a fte r tw o in p u ts in E xam ples 5.4 an d 5.5. 6.1 An exam ple of an even tj(x) satisfying m om ent conditions. 6.2 An exam p le of th e fu n ctio n 6 '(e ) from C o tte t’s eq u atio n . 6.3a An exam p le of th e re a c tio n te rm , b(v), in C o tte t’s eq u atio n . . 6.3b D erivative of th e re a c tio n te rm in C o tt e t’s e q u a tio n ... 6.4 A sketch o f a so lu tio n to C o t t e t ’s e q u a tio n show ing tra n sitio n layers. 6.5 An exam p le of a co n n ec tio n m a trix o f th e ty p e rovered by T heo rem 6.5 6.6 A sketch o f f ( w ( y )), from e q u a tio n (6.37), for use in energy estim ates. 3.1 A p erio d 6 eq u ilib riu m for a d iscrete space version of C o tte t’s e q u a tio n . 8.2a In itial d a t a for ite ra tio n to a p erio d 12 e q u ilib riu m ... 8.2b T h e p erio d 12 e q u ilib riu m re su ltin g from th e ite ra tio n ... 8.3a R an d o m p erio d 50 in itial d a t a for C o t t e t ’s eq u a tio n discretized. 8.3b T ran sitio n layers form ed a t t - 5 from th e ran d o m initial d a ta . . . . 162 8.4 S olution for th e g en era l reaction -diffu sio n e q u atio n discretized. . . . 1 6 3

55 57 67 75 76 88 105 107 108 110 120 127 144 150 152 161

(7)

A cknow ledgem ents

I am g ratefu l for th e gen ero u s financial su p p o rt w hich enabled m e to p u rsu e th is research an d co ntin ue to help s u p p o rt a family. T h e work was p a rtia lly s u p p o rte d by a n N SERC P o s tg ra d u a te S ch olarship, a U niversity o f V ictoria Fellow ship, a n d research g ra n ts of Dr. R ein n ard Illner (N S E R C research gran t A -7847) an d Dr. P au lin e van den D riessche (N S E R C research g ra n t A-8965).

T h e experien ce would not have been as p ro d u ctiv e o r enjoyable w ere it n o t for less co n crete (b u t not less sig nifican t) form s of a ssistan ce from several people. In p a rtic u la r, I th a n k R ein h ard for in s p ira tio n and enco u rag em en t, C a th y for p atien ce and s u p p o rt, a n d Tom for e m p a th iz in g . I also th a n k P hil a t the c o m p u te r help desk for saving C h a p te r 1 from m a g n etic oblivion.

(8)

\ II

To my father,

(9)

1. Introduction

1.1 Context of neural network research.

N eural netw orks, as m odels of biological n eu ral activ ity a n d especially as m odels of c o m p u ta tio n , have show n g re a t p com ire. It is cleai th a t biological b rain s, even very sim ple o nes, are cap a b le o f easily p erfo rm in g ce rta in tasks th a t are ex trem ely difficult to im plem ent in a s ta n d a rd seq u en tial p ro g ram on a st a n d ard seq uen r al c o m p u te r, d esp ite th e g reat pow er a n d com plexity of such m achines. Such task s include, for exam ple: recognition of a n o b je ct in an im age; recall o f a m em orized p a tte rn from a p a rtia l o r d is to rte d one; a n d co n tro l of lim b m ovem ents to m an o eu v re sm o oth ly a ro u n d o b je c ts. F u rth e rm o re , biological b ra in s a re cap a b le of le a n in g . T h e field of n eu ral n etw ork m odelling d eveloped as an a tte m p t to u n d e rs ta n d w hat it .s a b o u t a large sy stem of relatively sim ple in terco n n ected u n its such as biological neu rons th a t allows th e m to p erfo rm su ch processing ta sk s so well.

C e rta in p ro p e rtie s o f biological n e u ra l sy stem s a re ev iden t even from u rela­ tively naive physiological persp ectiv e. T h e y a re certain ly m assively p arallel sy stem s, ra th e r th a n single, pow erful seq uential p ro cesso rs like conventional co m p u ters. T h ey are also rem arkably fa u lt-tc le ra n t. T h a t is, a lth o u g h th e ir o p e ra tio n is d eg rad e d by su b sta n tia l d am ag e, a n d fun ction s m ay be en tirely lost w ith sufficient d am ag e, a m o d e ra te loss o f processing u n its o r co n n ec tio n s does n o t seriously affect th e func­ tio n in g of th e system . Also, a n d th is is a re la te d fact, in fo rm atio n is ‘s to re d ’ in a d is trib u te d m an n er. M em ories, for ex am p le, a re no t lo c a te d in specific m em ory ‘reg­ iste rs’ as in a c o m p u te r, w here d am ag e to th e se specific registers w ould o b lite ra te th e m em ory.

T h e physiological stu d y o f n eu ral a c tiv ity h as show n th a t th e essential m ech a­ nism is th e a cc u m u la tio n of electrical p o te n tia l in th e b o d y or ‘so m a’ of a n eu ro n

(10)

from th e incom ing signals from o th e r n eu ron s, leading to the ‘firing’ o f i« spike along th e n e u ro n ’s axo n w hen th e p o te n tia l exceeds a thresh old. Axons sp lit in to m any branches an d th e signals tra n s m itte d along an axon are pro p ag ated in to each b ran ch . T hese are co n n ected to o th e r n eu ro n s via sy napses (eith er directly o n to th e som a or o nto d en d rite s of th e o th e r n eu ro n ). T h ro u g h th ese sy n ap tic co n n ectio ns, a signal tra n s m itte d by one n eu ro n influences th e activ ity of o th ers. T h e sy napse tra n s m its a signal v ia th e em ission of n e u ro tra n sm itte rs across th e synaptic, cleft betw een th e sy r .pse a n d th e receiving d e n d rite or som a. B ut the signal is m odified in t h 1! tran sm issio n (th e signal reach in g th e synapse from th e axon of the sen< „ or

p re-sy n ap tic n eu ro n is called ihe pre-synapt>c p o ten tial; th e signal receiver! by th e som a o f th e receiving o r p o s t-s y n a p tic n euro n is called th e p o st-sy n ap tic p o te n tia l). D epending o n w hat ty p e o f tr a n s m itte r s th e s v * -p 8e em ploys, th e signal may in ­ hib it o r excite th e a c c u m u la tio n of p o te n tia l in th e p o st-sy n ap tic neuron. Also, th e sy n ap se may respo nd to a given p re -sy n a p tic p o te n tia l w ith m ore o r less efficiency. T h e degree to which it am plifies o r m u tes th e p re-sy n ap tic p o te n tial is called its ‘sy n a p tic efficacy’. T h e a c c u m u la tio n o r in te g ra tio n o f th e po st sy n ap tic p o te n tia ls a p p e a rs to be m ore o r less a s tra ig h t su m m a tio n . T h is sum m ed p o te n tia l, called th e ‘m e m b ra n e ’ p o te n tia l, is a s ta te v ariab le for th e neu ro n. A fter firing, th e re is a ‘refracto ry p e rio d ’ in w hich th e n eu ro n recovers a n d regains th e ab ility to fire; it will fire ag ain as long as th e m em b ran e p o te n tia l is still above th e th resho ld. T h u s , th e re is a m axim um ra te a t w hich th e n eu ro n can fire regardless of th e stre n g th of th e signals it receives. T h e firing ra te m ay b e considered a function of t'^e m e m b ran e p o te n tia l a n d th is fu n ctio n a p p e a rs to be a sigm oid, with no response from consis­ te n tly belo w -thresho ld m em b ran e p o te n tia l b u t a s a tu r a te d , m axim um response for very large m em b ran e p o te n tia ls. T h u s , in a sense, a neuron is a non lin ear ad d e r. (M uch of th e above d escrip tio n is ta k e n from [5]).

(11)

It was originally su gg ested by D onald H ebb [29], an d has since been generally accep ted , th a t th e le arn in g process involves m odification of sy n ap tic efficacies. Es­ sentially, w hen p re-sy n ap tie a n d p o st-sy n ap tic p o te n tials rem ain h ig h for sufficient tim e, th a t is w hen b o th pre- a n d p o st-sy n ap tic neu rons are very active, a sy n a p se ’s efficacy is en h an c ed . T h is proces® o ccurs on a longer tim e scale th a n th e fast evo­ lutio n of th e neural activ ities a n d it is also m ore p erm a n en t in effect. T h is allows a m odification in th e s y ste m ’s m o d e of o p e ra tio n in response to experience.

T h e above p ro p e rtie s of n e u ra l system s are rep ro du cible in m odels u sin g m any in terco n n ected sim plified ‘n e u ro n s ’. W hile th e d etails of th e electro -chem ical pro­ cesses o ccu rrin g in biological n eu ro n s a re su p p ressed , w h at should b e th e essen tial featu res of th e process a re re ta in e d to m ake a relativ ely sim ple m a th e m a tic a l m odel. N evertheless, th e resu ltin g m o dels involve n o n lin earity an d feedback a n d re a listi­ cally consist o f (a t th e very le a st) m any th o u sa n d s o f differential e q u a tio n s (see e q u a tio n s 2.3).

1.2 Development of neural network models.

To design an artificial n e u ra l netw ork th a t perform s a useful fu n ctio n req uires m ore th a n w ritin g dow n e q u a tio n s for th e above d escrib ed process. T h ese sim ply describ e th e lowest level of n e u ra l netw ork activ ity , nam ely th e m a n n e r in which in d iv id u al n eu ron s receive, re sp o n d to an d d is trib u te signals from a n d to o th e r neuron s. T h is is essentially a fram ew ork in w hich to work. H igher levels o f design (i.e. how to connect th e n eu ro n s to perfo rm ta sk s) m u st involve new principles. P rogress in th e neu ral netw ork field is ex actly th e discovery o f such prin cip les.

F irs t, we m ay ask w h at fu n ctio n s n eu ral n etw o rks can or sh ould p e rfo rm . C u r­ rent artificial n eu ral netw ork m odels p erfo rm fairly sim ple ta sk s re la te d to

(12)

per-I

cep tio n , memor;, a n d m o to r control. O ne of th e s ta n d a rd a p p lic a tio n s o f n eu ral netw orks is to function as a ‘c o n te n t-a d d re ssa b le ’ m em ory. R a th e r th a n lo catin g a ‘m e m o ry ’, wt ieh m ay be any m eaningful piece of in fo rm atio n (we m ight ju s t c o n ­ sider it a specific p a tte r n of b its ), by know ing th e ad d ress of th e m em ory ‘re g is te r’ w here it was sto re d , a c o n ten t-ad d ressab le m em ory lo cates it c o n te n t, i.e. by th e specific p a tte r n req u ired . A nice exam ple of th is process it; given by D enker [18]. An in co m p lete o r d is to rte d version of th e p a tte r n is used to lo c ate th e original com plete a n d u n d is to rte d p a tte r n . T h is m akes it clear th a t th e sam e process cast be u sed for p a tte r n reco g n itio n and im age re s to ra tio n ta -k s . which are in h e re n tly sim ilar. N ote th a t all these im age rela ted ta s k s req u ire prior know ledge, i.e., a previously sto red p a tte r n to recall.

A related ta sk p erfo rm e d by c u rre n t r.eura.1 netw orks is th a t of association o r classification. It m ay be req u ired to g en era te one o f a lim ited set of a p p ro p ria te resp on ses given a w ide ran g e o f possible stim uli. T h u s, th e netw ork m ust asso ciate th e ‘a p p ro p ria te ’ resp o n se w ith any given in p u t stim u lu s. W h at is m e an t by ‘a p p ro ­ p r ia te ’ d ep en d s on th e p ro b lem b u t in any case th e netw ork can learn (i.e. m odify its d y n am ics) to m ake resp o n ses th a t are desired e ith e r by an e x te rn a l tra in e r o r by in te rn a l co n sid era tio n s. T h a t is, a designer ‘o p e ra tin g ’ th e netw ork can nu d g e th e d y n am ics to w ard s m a k in g w hat she considers an a p p ro p ria te resp o n se (s u p e r­ vised learning ) o r th e sy stem can have a b u ilt-in way of deciding w hen and how to m odify its d y n am ics (u n su p erv ised learn in g ). Ai. ex am p le of th e form er is th e m u lti-lay er p e rc e p tro n (see e.g. [58]) an d a bimple ex am p le of th e la tte r is th e C arp e n te r-G ro ssb e rg classifier (as described in [45]). If th e n u m b er of responses is m uch sm aller th a n th e n u m b e r of possible in p u ts or stim u li, th e n th e asso ciato r a c ts as a classifier; a class o f in p u ts is m a p p ed to each response.

(13)

o p tim iz a tio n task s (such as finding good solutions to th e trav ellin g salesm an problem [36]) and for m o to r co n tro l (sec, e.g. [11,43]).

A m ong th e m o st significant sim plifying principles o r a n aly tic insigh ts th a t have en a b le d n eu ral netw ork m odels to carry o u t th e above fu n ctio n s, a re th e p e rc e p tro n convergence th e o re m , th e b ack -p ro p ag atio n alg o rith m , a n d th e use o f a n energy fu n ctio n al a n d th e H ebb ‘le a rn in g ’ ru le to fix p a tte rn s as a ttr a c to r s in netw ork d y ­ n am ics. T h e p e rc e p tro n th e o re m elu cid ates th e classification p ro p e rtie s o f c e rta in layered netw orks of sim ple ad d itiv e u n its called p erce p tro n s, m ak ing th e m p ro to ­ ty p ical asso ciato rs/classifiers [56, pp. 109ff]. W ith th e aid o f th e b ack -p ro p ag a tio n alg o rith m these n etw orks allow su p erv ised tra in in g to p ro d u ce th e desired response to a n in p u t w hen it is know n (a t least w ith a g o o d success r a te ), a n d th e n to con­ tin u e prod ucing responses to in p u ts w hen th e a p p ro p ria te resp o n se is n o t know n a

priori. Since o u r research does n o t involve th ese m odels, we do n o t d escrib e th e m

f u rth e r here, b u t refer th e read e r to [49,59].

For eq u atio n s (like o u r e q u a tio n s (2 .2 ) o r (2.3)) m od ellin g th e ad d itiv e n eu ral processes described above, w hen th e m a trix of sy n ap tic efficacies (th e ‘conn ectio n m a tr ix ’) is sy m m etric, th e re is a L yapunov fu n ctio n al, rep re se n tin g th e ‘free e n ­ e rg y ’ of th e sy stem . T h is ob serv atio n , a p p a re n tly m ade in d e p e n d e n tly by C ohen a n d G rossb erg [12] a n d by Hopfield [34,35], in itia te d th e s tu d y of ‘a ttr a c to r n eu ral n etw o rk s’, en su rin g th a t th e b eh av io u r o f th e netw ork will alw ays be convergent. M oreover, Hopfield show ed th a t a co n n ectio n m a trix m ay b e c o n s tru c te d , in a n a tu ­ ral way using so m ething like H e b b ’s ‘le a rn in g ’ ru le, so th a t a set T p a tte rn s becom e fixed point a tta c to r s o f th e d y n am ics. T h u s , given a n in itia l s ta te of th e netw ork w here th e p a tte rn of n eu ral a c tiv ity is sim ilar to one of th e fixed p a tte r n s (i.e. is in it s basin of a ttr a c tio n ) , th e netw o rk will evolve to w ard s th e fixed p a tte r n . T h is can be in te rp re te d as recall o f a m em ory. T h ere are re stric tio n s on th e p a tte rn s

(14)

6

for effective s to ra g e in H opfield’s fo rm u latio n : th ey m u st be reasonably o rth o g o n al (u n c o rre la te d ) a n d consist of roughly h a lf ‘o n ’ an d h alf ‘off’ bits; a n d th ere m ust not be to o m any of th e m .

T h ese m e th o d s have m ade possible th e p erfo rm an ce of th e fu n ctio n s described above a n d a g re a t deal of analy sis h as been c ^ n e to assess th e ir cap a b ilitie s an d lim ita tio n s a n d to im prove th e ir p erfo rm ance. A lte rn a te learn in g rules re tn c .e th e re stric tio n of o rth o g o n a lity of p a tte r n s , e n h a n c e th e sto rag e cap acity of th e netw ork an d red u ce th e p ro b lem s of ‘sp u rio u s’ m em ories, o r e x tra fixed p o in ts, which arise in H opfield’s o rig in al fo rm u latio n [13,48]. T h ese a lte rn a te learn in g rules are less b i­ ological, how ever, requ iring a sy n ap se to ‘know ’ th e sta te s of m any rem o te sy nap ses a t once. A d d itio n a l fe a tu re s have b een in tro d u c e d to e x te n d th e cap ab ilities o f th e first m o dels b u t still rely in g on th e sam e essen tial princir les. For ex am ple, th e use of sto c h a stic effects (sim u lated a n n e a lin g ) allows th e system to evolve n ot ju st to th e nearest local m in im u m o f th e energy fu n c tio n a l, b u t to bounce a ro u n d u ntil it finds th e g lo bal m in im u m o r a t least a relatively low one. T h is is useful in o p tim iz atio n prob lem s, for in s ta n c e [5, pp.89-91]. S im ilar sto c h a stic m e th o d s a re applied in a classifier know n as th e ‘B o ltzm a n n m a ch in e’ [32]. O th e r techniques allow te m p o ra l sequences of p a tte r n s to b e m a d e a ttr a c to r s o f th e dy n am ics, ra th e r th a n single fixed p a tte r n s [39]. S urveys of n e u ra l n etw o rk m odels m ay be found for in sta n ce in [5,18,28,45,48,65].

1.3 M otivation for new approaches.

T h e sim plifying principles o r a n a ly tic to o ls discussed above have proven useful in allow ing .h e c re a tio n of artificial n e u ra l netw orks th a t p erfo rm c e rta in ta sk s reaso n ab ly well. T h e p erfo rm a n ce of th e se m o dels is n o t always as goo d as m ig h t be h o p ed b u t th e re is n o d o u b t th a t th e y com prise a new a n d effective too l for

(15)

th e se tasks th a t is fu n d am e n tally different from o th e r m e th o d s. T h e y are so m etim es very much fa ste r th a n o th e r m eth o d s a n d have th e fa u lt-to le ra n c e and d is trib u te d m em ory c h a ra c te ristic o f biological n eu ral system s.

However, it is u o t a t all clear th a t these sim plifying principles are th e o nes th a t n a tu re uses. A lth o u g h the general featu res of th e u n d erly in g dy nam ical e q u a tio n s (ad d itiv e in p u ts , sigm oid response f u n c tio n .. . ) are p lau sib le reflections o f n a tu re , th e way th<; m odels o p e ra te a n d th e ir p a rtic u la r s tru c tu re s a re n o t. T h ere is no n a t­ u ral reason f<r sy m m e tric connections as req uired by th e Hopfield netw ork ( a n d even th o u g h th e an alysis o f Hopfield n ets so m etim es allow s som e re la x a tio n of sy m m e try , in n a tu re co n n ectio n s are m anifestly n o n -sy m m etric). T h is is discussed f u rth e r in C h a p te r 3. Also, th e necessity to su p erv ise le arn in g , a t least fo r p rim itiv e b rain functions (e.g. p erce p tio n o f o b je c ts), is c o n tra ry to o u r o b serv atio n s of n a tu re . It has been suggested t h a t in ter-cellu lar chem ical a c tiv ity in th e b ra in could a c t as a kind of ‘su p erv iso r’, for exam p le tu rn in g on o r off th e cap a city to learn in response to need. It is also possible th a t for so m e fu n ctio n s, one s u b sy ste m of a b ra in could supervise a n o th e r. H owever, th e kind o f su p erv isio n n eed ed in th e artificial neural netw ork m odels is to o d e p e n d e n t on th e know ledge a n d in te rv e n tio n of th e desig ner to be n a tu ra l. (R esearch on u n su p erv ised le a rn in g in n e u ra l netw ork m o d els h as recently been su m m arized in a p a p e r by B ecker [6]). F u rth e rm o re , m o st m odels require artificially sto p p in g a n d s ta r tin g th e d y n am ics, re s e ttin g in itia l co n d itio n s o r a t least p resenting in p u ts a t fixed m om en ts to be u sed for tra in in g . In a n a tu ra l n eu ral sy stem , th e n eu ro n s a re co n tin u ally activ e a n d e x te rn a l in p u ts , w hen p resen t, m u st sim ply a lte r th e ir d y n am ics. T h e re is a fu n d a m e n ta l p ro b lem in tra in in g such an u n su p erv ised sy stem in decid in g w hen a n in p u t sh o u ld be u se d for retriev in g an existing m em ory a n d w hen it sh ou ld itse lf b e le a rn e d . T h e su p erv ised a rtifi­ cial m odels a re o p e ra te d in le a rn in g m ode a n d retriev al m ode sep arately . N a tu re

(16)

8

evidently has a n o th e r solutio n. It is also not n a tu ra l for a neural system to have convergent dy nam ics. As S k ard a a n d Free , an p u t it, “C onvergence to a point a t ­ tr a c to r am o u n ts to ‘d e a th ’ for th e sy ste m ” [60, p. 172]. In fact, m easu rem en ts of neu ral a c tiv ity in biological b rain s show th a t com plex d y n am ics are typ ical. S kard a and F reem an [60] a n d T ra u b a n d Miles [66| claim to have d e m o n stra te d th a t th e dy n am ics can b e c h ao tic in th e m a th e m a tic a l sense. lr any case, n a tu re clearly does n o t lim it h erself tc fixed p o in t a ttr a c to r s a n d perio dic oscillators.

In fact, n euro physiological m easu rem en t of neural a c tiv ity has typically been not a t th e level o f in d iv id u al n eu ro n s b u t averaged a c tiv ity over an a rea occupied by m any n eu ro n s (th e electro en c ep h alo g ra m , o r E E G ). T h u s, on th e neurophysiological side, research e rs are o fte n n o t even w orking in th e sam e fram ew ork as th e artificial n eu ral n et m o dellers. T h e re a p p e a rs to be in terestin g b eh av io u r on this level of averaged activ ity , so m od elling a t th is level is of in te re st [66, pp.101-193; 26, p p .7- 10; 60, p p .163,190].

T h e se o b serv atio n s do n o t d e tra c t from th e value o f ex istin g artificial neural netw ork m odels. T h ey do suggest th a t w hile th ese m odels m im ic som e of th e func­ tions o f biological n e u ra l sy stem s, th e y do not work in th e sam e way. T h ere is necessarily a n in te rp la y betw een th e d escrip tio n a n d u n d e rs ta n d in g of biological b rain s on th e o n e h a n d a n d th e develo pm en t of a b s tra c t m odels a n d artificial n e t­ works o n th e o th e r. F ro m th e p o in t o f view of u n d e rs ta n d in g brain function, it is clearly n ecessary to tr y to discover th e m echanism s used by n a tu re . However, th is may involve sim plifying th e d e sc rip tio n so th a t insigh t in to un derlying principles may b e o b ta in e d . F ro m th e p o in t of view of developing useful artificial netw orks, it is still p ru d e n t p erio d ically to ta k e w h atev er in sp ira tio n from n a tu re we are c u r­ rently cap a b le o f co m p reh en d in g . In p a rtic u la r, if we w ish to be able to d o m ore w ith n eu ral netw ork m od els th a n is covered by th e list of functio ns discussed above

(17)

(o r even to do th ese w ith n a tu r e ’s effectiveness), it will be necessary to look for new principles.

In a tte m p tin g to build neural netw ork m o d els th a t p erform useful functions based on th e observed behav iou r of biological n e u ra l sy stem s, th e la rg e st o b stacle we face is th a t th e re is no real u n d e rsta n d in g o f th e c o m p u ta tio n a l processes o c c u r­ ring in b rain s, except in th e sim plest cases o f in v e rte b ra te m o to r co n tro l functions a n d p e rh a p s to som e ex te n t in th e m a p p in g o f im ages in th e visual co rtex . T ra u b an d Miles [66, pp.xiii-xv,205] p oint o u t th a t a lth o u g h th e a c tiv ity of p a r ts o f th e b rain can be m o n ito red , no-one knows w h at c o m p u ta tio n is being p erfo rm ed in m ost cases. T h ey s tu d y the h ip p o c am p u s, for ex am p le, w hich is know n to c o n trib u te to th e fo rm ation o f lo ng -term m em ory, b u t how th is is d o n e is n o t know n, d esp ite all th e d etailed ex p erim en ts. In th e ir work, they d esig n a com plex m a th e m a tic a l m odel closely d escribing the s tru c tu re of th e h ip p o c a m p u s a n d d escrib e an d co m p are th e . activ ity of b o th th e m odel a n d th e original, b u t w ith no real id e a of th e significance of w hat th ese system s a re doing. N evertheless, th e in fo rm a tio n o b ta in e d in e x p e r­ im ents like th e se does give us som e clues. If we w ant to understand th e processes o ccu rrin g in b ra in s, we can a t le ast ex plore th e m a th e m a tic s o f th e b eh av io u rs o b ­ served a n d look for in sights in to th e ir p o te n tia l in fo rm a tio n processing cap a b ilitie s. T h en th e m o d eller can a tte m p t to use th e m as b u ild in g blocks for in fo rm atio n p ro ­ cessing task s. Even if we do n o t h it u p o n th e e x a c t process o ccu rrin g in biological b rain s, th e re is th e p o te n tia l for new a n d useful artificial n etw o rk m odels.

For th e se reasons, we co n sid er it im p o r ta n t to a tte m p t to stre tc h th e b o u n d ­ aries o f co nventional ap p ro ach es to m odelling n e u ra l netw ork s. It is n o t so easy to discover new fu n d am en tal prin ciples, b u t u n less new app ro ach es a re ta k e n a n d gro u n d w o rk is laid th ey will n ever b e discovered. E v en if we sim ply leave th e confines o f sy m m e try in th e Hopfield netw ork e q u a tio n s , th e y becom e cap a b le of

(18)

10

com plex a c tiv ity an d a n aly tic tools in th is case a re scarce. (We will loosely call th e se e q u atio n s the ‘Hopfield netw ork e q u a tio n s ’ from now on, alth o u g h properly th e te rm ‘H opfield n etw o rk ’ refers to th e se eq u a tio n s w ith th e p a rtic u la r s tru c tu re of sy m m e tric co n n ectio n s a n d fixed-point m em ories — even th is usage of th e nam e is p e rh a p s n ot technically co rrect, as p o in ted o u t by G rossberg (28, p.23| b u t has becom e com m on n evertheless).

1.4 Summary o f approaches taken and results obtained.

In th is research p ro g ram it was decided to ex plore several new approaches to n e u ra l netw o rk m odels. T h ese each involve m a th e m a tic a l m e th o d s different from th o se usu ally em ployed — we need new m a th e m a tic a l tools for new an aly tic in ­ sig h ts. Tw o basic ideas in itia te d th e research: ch ao tic dy nam ics w ith in p u t-d riv en b ifu rc a tio n , a n d con tinu ou s sp ace m odelling. T h e research in th e tw o areas is essen­ tia lly d isjo in t, b u t som e in te re stin g id eas em erg ed , co n n ectin g th em . T h e n a tu re of th e research is e x p lo ra to ry a n d th e work o f C h a p te rs 4 a n d 5 in p a rtic u la r is prelim ­ in ary , w hereas th a t of C h a p te rs 6 -8 is m o re fully w orked o u t. H ere we su m m a ri/e th e ap p ro ac h es tried a n d th e resu lts achieved.

1. An in itia l in v e stig atio n was m a d e in to th e possibilities o f using chaos in n eu ral n etw orks as a b ack g ro u n d s ta te , in such a way th a t a p p ro p ria te in p u ts are ‘reco g n ized ’ by changes in th e d y n am ics (b ased on work of E vans, et ul. (24|, as well as th a t of P rieso l, et al., [51] a n d K w an [42]). T h e m odels of Freem an [27] a n d T ra u b an d M iles [66] ex h ib it in te re stin g b eh av io u r (such as chaos) b u t th e se m odels a re to o com plex to be am en ab le to analy sis. S im pler m odels are

need ed for in sig h t. W e briefly su m m arize th e id eas in references [24,42 a n d 51] a n d ex p lo re th e ir possibilities a little fu rth e r. S om e new insights o b ta in e d m ake c o n tin u e d work feasible a n d p o te n tia lly fruitful. In p a rtic u la r, it is shown th a t u n d er

(19)

c e rta in con ditio ns, m any Lorenz sy stem s (w hich wc in te rp re t as system s of tn re e n eu ro n s each) coupled to g e th er re ta in b o u n d ed b u t irreg u lar beh av io u r a n d resp o n d to p a rtic u la r in p u ts by converging to a fixed p o in t. We show th a t th e o th e r m odel sugg ested by Kwan a n d his c o lla b o ra to rs [42,51] allows th e sam e possibilities in a d iscrete tim e s e ttin g , an d we also show th a t th ese can be refo rm u lated as a Hopfield netw ork w ith a p a rtic u la r co n n ectio n m a trix s tru c tu re interw eav ing positive a n d n eg ativ e en tries.

2. An a tte m p t was m ade to ex p lo re co n tin u o u s space versions of th e H opfield netw o rk eq u atio n s (i.e. an in teg ro -d ifferen tial eq u atio n m odel). T h is provides a different fram ew ork an d different in sig h ts, even th o u g h th e resu lts could in th e ­ ory be tran sferred back to th e s ta n d a r d H opfield netw ork by space d iscretiza tio n . U sing very sim ple con nectio n fu n ctio n s a n d e x te rn a l in p u ts, m ainly c h a ra c te ristic fu nction s, it was d e m o n stra te d (by c o n s tru c tio n ) th a t such m odels can ‘le a rn ’ in a sim ple sense w hile o p e ra tin g co n tin u o u sly a n d resp o n d in g only to e x te rn a l in p u ts (no tra in e r req u ired to sto p a n d s ta r t th e sy ste m , to sw itch from le arn in g to retrieval m o d e , etc.).

3. A m ore com plete a n d m a th e m a tic a lly rigorous inv est!; itio n was m ad e in to th e a p p ro x im atio n o f th e Hopfield n etw o rk e q u a tio n s by reactio n-diffusion e q u a ­ tio n s. T his is a sim plifying p rin cip le th a t provides a different classification o f co n ­ n ectiv ities th a n the s ta n d a rd s y m m e tric /ru m -sy m m e tric o n e, an d show s how m odels w ith one class of con nectiv ities beh av e. T h is h a d been trie d by C o tte t [14] for a p a rtic u la r sim ple ty p e of co n n ectio n m a trix b u t we have found th a t th e m e th o d can b e e x ten d ed to a far w ider class of co n n ectiv ities. T h eo re m s are p resen ted d e m o n stra tin g th e a p p ro x im atio n form ally, a n d rigorously p rov ing its convergence u n d e r a p p ro p ria te co ndition s. A p ro b le m arose w ith th e ap p ro a c h th a t h a d n o t been noticed by C o tte t, lim iting th e convergence to regions of h ig h o r low a c tiv ity

(20)

away from tra n s itio n layers. B ut th e se tra n s itio n layers are typically very th in an d effects are e x p ec ted to p ro p a g a te o u t from th ese regions ex trem ely slowly, s o th e a p ­

pro x im atio n is still q u ite good from th e p oin t o f view of an essentially b in a ry -s ta te n eu ral netw ork. T h ese th eo rem s ap p ly to a still restric ted class of co n n ectiv ities a n d th u s serve to classify ty p e s o f co n n ec tiv ity into tho se th a t have b eh av io u r like th e se P D E s a n d th o se th a t do n o t. For th o se th a t do, th e theory of these reaction- diffusion e q u atio n s can be ap p lied to g ain insigh t into behaviour. In p a rtic u la r, th e reaction-diffusion e q u atio n s give in sigh t in to th e lim iting beh aviou r as th e n u m b er of n eu ro u s goes to infinity. Also, th e ty p e s o f co n n ectiv ity th a t d o not satisfy th ese th e o re m s (p a rtic u la rly th ose w ith a p rep o n d eren c e of in hibition o r those w ith co n ­ n ectiv ity m atrice s w ith wildly flu c tu a tin g e n trie s) prom ise m ore com plex beh av io u r th a n th a t possible for th e P D E s. T h e H opfield netw ork form ulation of K w an ’s m odel has such m atrices.

4. F inally, fu rth e r an aly sis on th e above reaction-diffusion eq u atio n s was c a r­ ried o u t via s ta n d a r d (finite-difference) space d iscretizatio n s. In fact, th e sy stem s of O D E s resu ltin g fro m th ese d isc re tiz a tio n s a re very sim ple neural netw orks of th e H opfield e q u a tio n ty p e , w hich (as a resu lt of th e ap prox im ation th eo rem s) are re p re ­ se n ta tiv e o f a w hole class of H opfield n e ts (th o s e th a t a re ap p ro xim ated by th e p a r­ tic u la r reaction -d iffusion e q u a tio n ). D ifferent p a ra m e te rs in th e reaction-diffusion e q u a tio n will have different d is c re tiz a tio n s rep re se n ta tiv e of different classes o f H op­ field n ets. W e prove p ro p o sitio n s d e m o n s tra tin g th e existence o f large scale sta b le p a tte rn s for th e se very sim ple H opfield n ets. T h is is co n trary to ex p e c ta tio n s from th e reaction-diffusion eq u a tio n s, w hich ty p ically have no stab le sta te s o th e r th a n th o se co n sta n t in sp ace. T h is p o in ts o u t th e c a r . th a t m ust be taken in d e d u cin g p ro p e rtie s of d iscrete from co n tin u o u s sy stem s a n d vice versa, despite a rigo ro us (a lm o st) convergence th e o re m . P rev io u s a n a ly tic research suggests th a t rn e ta sta b le

(21)

s ta te s of th e reaction-diffusion e q u a tio n s are responsible.

C h a p te r 2 p resen ts b ack g ro u n d m a teria l on th e conventional Hopfield netw ork (a n d som e en h an cem en ts). A co m p lete su m m a ry of th e exten siv e lite ra tu re on th is su b je c t is no t a tte m p te d ; r a th e r th e m ain m a th e m a tic a l p ro p erties of th e m odel th a t have relevance to later c h a p te rs a re described. C h a p te r 3 co n tain s a discussion of th e lim itatio n s o f th e co n v en tio n al Hopfield n etw ork a n d re la te d m odels a n d o u tlin es an a lte rn a te set of featu res o r p ro p erties th a t we co nsider d esirab le in a n eu ral system m odel. !n C h a p te rs 4 th ro u g h 8 we develop a n d explore m odels ex h ib itin g rom e of th e se featu res.

(22)

II

2. Background on th e conventional H opfield n et­

work m odel

2.1 The Hopfield network equations.

A good d eal of a tte n tio n has been p aid in th e la st few years to th e ty p e of neu ral netw ork m odel often referred to as »he ‘H opfield n etw o rk ’ since H opfield’s im p o rta n t c o n trib u tio n to th e s tu d y of su ch sy stem s [34,35]. O f th e m any discussions of th is typ e o f n eu ral netw o rk , one of th e best a n d m ost com prehensive is th e book by A m it [5]. T h e e q u a tio n s d escrib in g th e d ynam ics o f these netw orks are o f th e form

it, =

- a u i

+ £

Ti j g( \ uj ) ,

(2.1)

j

w here i an d j a re indices over all n eu ro n s in th e netw ork, it; represents th e m em b ran e p o te n tia l of th e i th n eu ro n , a > 0 is a ‘leakage’ ra te (or resistance p a ra m e te r in H opfield’s fo rm u latio n ), Tjj is th e ‘s y n a p tic efficacy’ m o d u latin g th e effect of neuron

j on neuron i, a n d g is a sigm oid resp o n se function w ith ‘g a in ’ A > 0, describing how

a n e u ro n ’s firing ra te d ep en d s o n its m em b ran e p o te n tia l. We have also followed the com m on p ractice o f assu m in g th a t n eu rons a re identical here (i.e. o , g an d A do n o t d e p en d on i). T h ese e q u a tio n s m ay also have ex te rn a l in p u t te rm s, c;, a n d th re sh o ld te rm s , 0,, d escrib ing sign als to each neuron arriving from o u ts id e th e net an d firing th resh o ld s o th e r th a n zero. For exam ple,

it; = - a i t ; 4 - Ti j g (A( u j - 0 j ) ) 4 - c ; . (2.2)

j

As a m odel for biological n e u ra l netw orks th is is clearly a g re a t sim plification b u t it nevertheless e x tra c ts som e featu res o f th e ir design. A rtificial n eural netw orks using these dy n am ics have p roven useful in som e ap p licatio n s (as m en tio n ed in S ection 1.2). T h ere are , o f cou rse, m any m odels o f neural n ets (see, for ex am p le,

(23)

th e survey p ap ers [28,45,48,65]). T h e dy nam ics of m any of th e m odels have th e form of eq u a tio n s (2.2).

T h e d y n am ical b eh av io u r of these eq u atio n s is in gen eral com plex a n d difficult to describ e. M uch of th e lite ra tu re has co n ce n trate d on th e special case of a sy m ­ m etric con nectio n m a trix , T (i.e. Tij — Tj;). T h is is m a th e m a tic a lly convenient as th e re exists an energy fu nctio nal in th is case w hich en su res convergent b eh av io u r of th e net [35]: Any in itial co n d itio n s ap p ro ac h a fixed p o in t. C onvergence is useful in th e ap p licatio n of th ese neural n ets to c o n te n t-a d d re ssa b le m em ory or th e retrieval of p a tte rn s ( ‘m em o ries’) from d is to rte d o r sim ilar versions of th em ; it is possible to c o n stru c t the tra n s itio n m a trix so th a t selected p a tte rn s becom e fixed p o in ts of th e d y n am ics (discussed below ).

T h e Hopfield netw ork e q u atio n s w ith e x te rn a l in p u ts an d th re sh o ld s m ay be w ritten as in (2.2) o r, if in ste a d we let u, rep resen t th e a m o u n t by w hich the m em b ran e p o te n tia l of neu ro n i exceeds its th resh o ld , we m ay w rite th e m a lte rn a te ly as

it, = T i j g ( \ u j ) - a u j + c, - c*0,. (2.3)

j

We req uire a > 0, A > 0 a n d g sigm oidal in sh ap e, increasing on

R

a n d b o u n d ed . T y pically we use g :

R

—*•

( 0 ,

1) o r g :

R

—*■ ( - 1 , 1 ) (th e effect o f th is choice is discussed below). To be precise we will assu m e from now on (except in C h a p te r 5):

0 : R -

( - 1 , 1 ) , f l e e 1,

</(*) >

0,

(2.4)

$ '( * ) < fl'(0) = i

(24)

in

>

2

2

1 0 1

u

F ig u re 2.1 An example of a sigmoid response function: v — </(Au) . vi t h g = tanh and A = 3. The straight line is

f i u ) - n. _

(25)

We present beiow som e basic p ro p erties of th e Hopfield netw ork eq u atio ns. A lth o u g h th e y a re well know n, th ey provide a b ack g ro u n d to th e m a te ria l of subse­ q u e n t c h ap ters. In d eed , m any of th ese p ro p e rtie s c arry over d irectly to o th e r form s of th e m odel ex p lo red la te r.

2.2 Energy functional for the Hopfield network.

Hopfield [35] show ed th a t ihere exists an energy fu n ctio n al (o r L yapunov func­ tio n a l) for e q u a tio n s (2.3) in th e case w here T is sym m etric:

= + j E A" G ( V M V i . (2.5)

i j i 0 i

w here r. = g ~ x a n d

Vi = g ( \ u i ) (2.6)

rep resents th e firing rat-* o f neuron i. In fact, along so lu tion s to (2.3),

^ = S T " + + x S G ( v i) v i - £ ( c t - a $ i) vi

i j i i

7= - \ 11 Z

+ X S G^ 6i ~

~ “W*

= ~ £ Tii v i ~ + Ci “ a d i j bi

= - A V ( y

Tijg(Xuj) - aui + a - a0i

)

g'(\ui)ui

)

= - n >

i

since g' > 0, so t h a t en erg y decreases ex cep t a t eq u ilib ria. Also

(26)

18

a t eq uilib ria. F or given p a ra m e te rs , E is clearly b o u n d ed below , since t’, is b o u n d ed . T h u s, solution tra je c to rie s for e q u atio n (2.3) m ust descen d th e energy surface to ­ w ard s a local m in im u m , w hit, m ust be an eq u ilib riu m point.

If T is n ot sy m m e tric, th e n th e E above is not a L yapunov functional for th e sy stem . C onvergent b eh av io u r a p p e a rs to be slightly ro b u st in reg ard to a sy m m etry (p a rtic u la rly for ran d o m ly d ilu te d , b u t c ’’erw ise sy m m e tric conn ection m atrices [5, p.363ff.]) b u t in g en eral non-convergent b eh av io u r is to b e ex p ected (see, e.g.,

W e will rev isit th e se energy fun ction als several tim es, for analogous in teg ral

th e ir finite-difference d isc re tiz a tio n s (C h a p te r

8

).

2.3 Membrane potentials, firing rates and the

S -

£ exchange.

W e can re-express e q u a tio n (2.3) in te rm s o f firing ra te s, e;, as follows: [53,54,61,64]).

e q u a tio n m odels (C h a p te r 5), reaction-diffusion e q u a tio n m odels (C h a p te r 7) a n d

from (

2

.

6

), so

TijVj - a ( ^ G ( y , ) ) +- c, - a 9 i ,

(2-7)

T h is is en tirely equ iv alent to (2.3) for in itia l co n d itio n s Vj(0) <E range(</). It is easy to see th a t so lu tio n s to e q u a tio n s (2.3) a n d therefore to e q u a tio n s (2.7), are b o u n d ed a n d so exist globally in tim e a n d are u n iq u e (see S ection 2.6).

(27)

T h is tech n iq u e o f sw itching betw een different variables proves very useful in la te r c h a p te rs , for in teg ral e q u a tio n s an d reaction-diffusion eq u atio n s co rresp o n d in g to th e H opfield netw ork e q u atio n s. In th e case o f d iscrete tim e o r eq u ilib riu m e q u a tio n s th is change of variables takes a p a rtic u la rly sim ple form . W e give a n a b s tr a c t fo rm u latio n of th is idea in Section 5.5.

We n o te here th a t d iscrete tim e versions o f th e H opfield netw ork eq u atio n s c a n be o b ta in e d via w h at has b ee', called by G ro ssb erg [28, p .26] th e S - £ exchange, from e q u a tio n s describing th e a c tu a l firing of each n eu ro n . If Xj represents th e ‘a ctio n potential* of a n eu ro n , i.e. th e signal being sen t dow n its ax o n , we can su p p o se th a t x,-(t) takes on th e values +

1

? m ean in g th a t a spike is e m itte d along th e axo n a t th is tim e, o r - 1 , in d ic a tin g th a t no spike is e m itte d . T h e activ ity c a n th e n be m odelled (w ith g re a t sim plification from th e biological reality ) as

!,■(< +

1

) = sgn (

2

.

8

)

w here sgn(i/) =

1

if y >

0

an d sgn(j/) =

- 1

if y <

0

( i t ’s value w hen y =

0

is not c ritic a l), a n d 0, a n d c, a rc th e th re sh o ld s a n d e x te rn a l in p u ts respectively. T h e ev o lu tio n is ta k en to be asy n ch ro n o u s, i.e. only one (ra n d o m ly selected) neuron c a n ch ang e s ta te a t each tim e ste p a n d it fires a t th e n ex t tim e step if its acc u m u la ted inco m in g signals exceed its th re sh o ld . T h e lack o f c o n n ec tio n fro m a n eu ro n back o n to itse lf ( T a =

0

) is necessary in th e d iscrete tim e case for th e ex isten ce of th e en erg y fu n ctio n al. T h e S - £ exchange consists o f th e follow ing tra n sfo rm a tio n .

Let

M O = 5 ^ T i j X j ( t ) + C i , (2.9) j * i

(28)

20

over i and a d d ck, using (2.9) to jr-t

u k (t + 1) = T k.iSgn(uj(t) - 0j) + ck . (2.10)

i^k

Thie. is a d isc re te tim e ai.alogue o f e q u a tio n (2.2) w ith o =

1

. T h e S - £ exchange may b e reversed via

*,■(/ +

1

) = sgn(u,(< ) - $i ) . (

2

.

11

)

T h e d isc re te an d con tin u o u s tim e H opfield netw ork m odels (using e q u atio n s (

2

.

10

) and (

2

.

2

) respectively) are form ally analogous a n d b o th m odelling ap p ro ach es have been ta k e n . H opfield [35] showed th a t if th e g ain in (2.2) is large, th e solutio ns to th e two sy stem s have sim ilar b eh av io u r. (O f course, th e high g ain lim it o ' * is th e ‘h ard n o n lin e a rity ’, sg n (u )).

2.4 The sigmoid response function and the high gain condi­

tion.

In th e lite r a tu r e g is o ften ta k e n to b e a n o d d fu nctio n ta k in g values in ( - 1 , 1 ) , such as ta n h . In p a rtic u la r, su ch a fu n ctio n h as <

7

(

0

) =

0

. H orizontal sh ifts in the resp o n se fu n ctio n m ay be acc o u n ted for by a th resh o ld term . A m ore realistic sigm oid m ig h t, how ever, tak e values in (0,1). For exam ple, a logistic fu n ctio n is often used:

g( Xu) = ... ...

v ' 1 + e ~ 4Xu

However, by a change of c o o rd in a tes, th e resu ltin g H opfield-type eq u atio n can be tran sfo rm e d in to th e orig in al one w ith a n a d d itio n a l th resh o ld te rm . E q u atio n (2.3) can still be tra n s fo rm e d to e q u a tio n (2.7) a n d th e n we let w = 2v - 1 so th a t w ~ 2v, T h en

2

Wi =

(29)

Now let F{n>) 2 G ( u' p ), so th a t F ' ( w ) = G ' ( ^ ) . T h en

iut ~ A ^ TijiVj - a F ( w j ) -h A | 2cj — 2 a0 j + ^ Tij

j \ j

w hich is of th e sam e form as before w ith in p u ts

2

c, a n d th resh o ld s ^

2

a

0

* - V^j T h u s , horizontal a n d vertical sh ifts in th e resp o n se fun ctio n do n o t significantly a lte r th e m odel, ex cept in changing th e th re sh o ld values. If

5

(

0

) = 0, th e n th e Hopfield eq u atio n s w ith o u t in p u ts o r th re sh o ld s (2.1) have th e stead y s ta te solutio n it; =

0

. In biological n e ts, w here firing ra te s sh ou ld b e s tric tly p ositive, th is m ay not m ake sense, b u t th e re is no reason n o t to c re a te artificial n ets w ith th is p ro p e rty if it is desired.

In th e absence of in p u t o r th resh o ld te rm s in th e H opfield netw ork eq u atio n s (2.3), if th e gain , A, is sm all, th e n all so lu tio n s decay to zero. T his m ay be proved e ith e r by a c o n tra c tio n m ap p in g arg u m e n t o r (in th e sy m m etric case) fro m th e energy fun ctio nal. We will no t give a p ro o f o f th is re su lt here, b u t we will prove it for analog ou s e q u a tio n s in Section 5.3, using th e co n tra c tio n m a p p in g th e o re m a n d in S ection 8.3 using th e energy fun ctional. It is a s tra ig h tfo rw a rd m a tte r to m odify these proofs for th e s ta n d a rd Hopfield e q u atio n s.

2.5 Learning rules for the Hopfield network.

‘L earn in g’ in a co nv en tion al Hopfield n et is acco m p lished by se ttin g

Tij =

£

>n = l

for i ^ j , an d 71,, =

0

, w here rep resen ts th e m th p a tte r n to b e le arn ed w ith = ± 1 , say. If th e n u m b e r of p a tte rn s s is n ot to o larg e a n d th e p a tte r n s are

(30)

a p p ro x im a te ly o rth o g o n al th e n th e p a tte r n s will be close (in p h ase space) to fixed p o in ts of th e dy nam ics. T his is shown in [34,35), th o u g h th e o rth o g o n ality co nd ition ta k e s a slightly different form w hen e, t {0,1} as in H opfield’s original form ulation . It is n o t g u aran teed th a t th ese will be th e only fixed p o in ts of th e d ynam ics; in fact, th e re are usually ex tra n eo u s fixed p o in ts, called ‘spu riou s m em o ries’.

T h is ‘learn in g r u le ’, loosely referred to as H ebbian learn in g , is not th e only o n e th a t has been ap p lied to th e H opfield netw ork eq u atio n s. Som e o th e rs (an d th e ‘H ebbian ru le’) a re describ ed by D enker [18] a n d Michel a n d Farrell [48], for e x am p le. In p a rtic u la r, we m en tio n h ere th e A daline rule a n d th e ‘g eo m etric’ o r ‘p seu d o -in v erse’ rule. Like th e ‘H e b b ia n ’ rule used by Hopfield, b o th of these can be b u ilt u p one p a tte rn a t a tim e, so th a t a d d itio n a l m em ories can be added w itho ut d o in g th e calcu la tio n for all p a tte r n s from scratch. T h is in crem en tal ‘learnin g p ro ­ cess’ is obviously necessary fro m th e biological view point. T h e H ebb ride expressed in c re m e n ta lly is

T j j " * 1'1 = r ! ” ’ + v , t j ,

w here v = (e ;) here is th e new p a tte r n to be sto red [18, p.224|. T h e A daline rule is

, | - , ( m + l ) _ r p { m ) , r „ - L „ .

I l j ~ * i j 1 v i v } >

w h ere vf- = ^ N

*8

4he n u m b er of n eu ro ns in th e netw ork an d F < 1 is a p o sitiv e p a ra m e te r [18, p p .224-225]. T h is rule tak es th e com pon ent of v o rth o g o n a l to th e sp an of th e previo usly sto red p a tte rn s , a n d th u s does n o t require in itia lly o rth o g o n al p a tte rn s . A v aria n t of th is id ea which re ta in s sy m m etry is th e ‘g e o m e tric ’ ru le [18, pp.225-227]

r p ( m + l) r p ( m ) . p *’i ^ j

~ * i j ^ 1 V 1 . y l *

w here v x • v x = ( e ^ ) 2. T h is la st ru le g u aran tees exact sto ra g e of th e d esired p a tte r n s w ith no ‘sp u rio u s m em o ries’ a n d equal d e p th s of th e p a tte r n s in th e energy surface.

(31)

From th e c o m p u ta tio n a l p o in t of view, th ese have con siderab le ad v an tag es over th e H ebb rule suggested by Hopfield. H owever, th e H ebb rule has som e basis in biology, w hile th e o th e rs above do not. In p a rtic u la r, th e calcu latio n o f vf- requ ires know ledge a t th e i th neuron o f th e s tre n g th s of sy n a p tic connections across th e netw ork. T h is in fo rm atio n is n o t available to biological neurons.

2.6 The role of external inputs.

L ittle o f th e lite ra tu re on th e co nv entio nal H opfield netw ork deals w ith th e role of ex te rn a l in p u ts. K jp fie ld ’s fo rm u latio n of th e n etw ork does n o t req u ire th e m . R a th e r, in itial co n d itio n s serve as ‘in p u ts ,’ a n d th e so lu tio n evolves to w ard s a (pre- estab lish ed ) fixed po in t. In p u ts are u sed effectively in ap p licatio n s o f H opfield nets to o p tim iz a tio n p ro blem s (see e.g. [36]), b u t th is is a pu rely m a th e m a tic a l ap p licatio n , n o t a biological sim u latio n .

We n o te here th a t sufficiently stro n g e x te rn a l in p u ts can d o m in a te th e b e­ hav io u r o f th e netw ork eq u atio n s. T h is m ay be significant in th e u n su p erv ised o p e ra tio n of a biological n eu ral sy stem , as th e re m ust b e stim u lu s from o u tsid e to d is tra c t it from its m ean dering s a n d to p ro v id e ex p erien ce from w hich to le arn . In effect, a stro n g in p u t can reset th e sy stem , th e eq u iv alen t (w ith o u t su p erv isio n ) of artificially re s ta rtin g th e ev o lu tio n from a new set of in itia l con ditions.

F irst, we need a m ax im u m p rin cip le to en su re b o u n d ed n ess o f solu tio ns. C o n ­ sider e q u atio n (2.3) w ith o u t th e in p u t te rm , c,. S u p p o se th a t u; is p o sitiv e a n d th a t tii, is also positive. T h e n

a u j < T j j g ( X u j ) at0j < |T ij| a$i

(32)

which is a co n sta n t. S im ilarly for «; a n d ti, negative,

a u i

> V

T i j ( j { \ u j )

-

a H j >

- V

\ T i j \

-

a B i

.

j J

T hese tw o to g e th e r show th a t »,«,• > 0 im plies

a | l t ; | < ^ | T , ' j | + c* 10 ; | .

j

T h erefo re, if

« | » | | > ^ |Tij I + a|0;| = B j , (2.12)

j

th e n u ,u , < 0 a n d |« ,| c a n n o t grow . F or in itial d a ta w ith in these h o u n d s (2 .1 2), th e solutio n m u st alw ays rem ain w ith in th em .

If in p u t is ad d ed , we still have a m axim um principle w ith th e te rm |c,| ad d ed to th e b o u n d B j , so so lu tio n s a re still b o u n d ed . B ut w hile an in p u t is active,

a 11 ; < B i

=;• it,

j > C, — 2 B i ,

a it; > - B i =:• U; < C; + 2 B i ,

from (2.3). T h u s,

|c; | > 2Bi => iijCi > 0

for as long as a |u ; ( t ) | < Bi.

So if Mi is in itially w ith in th e b o u n d s (2.12) a n d th e n a stro n g in p u t is ap p lied , |c;| > 2 B i , th e n u; h as th e sign of c;, a n d u, is pulled to w ard c;, a t least u n til it exceeds th e b o u n d s in (2.12). T h u s , w herever a stro n g in p u t is ap plied , th e n eu ral a c tiv ity resp o n d s in k in d , an d th e firing ra te becom es high (o r low) w hen th e in p u t is p o sitiv e (or n eg ativ e).

(33)

3. L im itations o f th e conventional H opfield n et­

work

T h e Hopfield netw o rk , p ro p erly sp eak in g , co nsists o f th e d y n am ical sy stem given by (2 .2 ), (2.3) o r (2.7), w ith in itial co n d itio n s rep resen tin g a n in p u t p a tte r n , a n d a sy m m etric co n n ectio n m a trix d eterm in e d b efo reh an d by th e ‘H eb b ian ’ le a rn ­

ing ru le to fix chosen p a tte r n s in to m em ory. A g reat m any v aria tio n s on th is schem e ' have been p u t forw ard in th e lite r a tu r e on n e u ra l netw o rks, a g reat ^^al o f a tte n tio n

has gone into d e te rm in in g th e m em ory ca p a c ity of such a netw ork a n d ways have been developed to rem ove som e o f its p ro b lem s, such as th e necessity for ‘n e a rly ’ o rth ogo nal m em ories, a n d th e ex isten ce of ‘sp u rio u s m em ories’. T h ere a re le arn in g rules, for in sta n ce, th a t en ab le an y in p u t p a tte r n s to be sto red (still w ith a m ax i­

m um capacity o f course) a n d th a t prev en t th e o ccu rren ce of sp u rio u s uj nories (a s %

discussed in Section 2.5).

However valuable th e se n eu ral netw ork m o dels a re from th e p o in t o f view of th e ir cap ab ilities in th e a b s tra c t, th ey do n o t co rresp o n d very closely to biology. T h is is not an o b je c tio n to th e ir stu d y — o n th e co n tra ry , it is surely ad v an tag eo u s to follow two lines of research , o n e th a t keeps an eye on biology a n d a tte m p ts to u n d e rsta n d a n d m odel its processes m ore deeply, a n d th e o th e r th a t ta k e s in sig h ts alre ad y gained from biology as a s ta rtin g p o in t a n d a tte m p ts to re sh a p e th e m to m axim um effect in a n a b s tr a c t o r artificial s e ttin g . S om etim es in sig h ts m ay arise from su rp risin g d ire c tio n s, such as H opfield’s im p o rtin g of s ta tis tic a l physics in to n eu ral netw ork th eory. However, th e re is, n o d o u b t, a lim it to how m uch can be ex p ec ted from th e s ta n d a r d Hopfield netw ork. It h as ta k en its place as a useful tool for c e rta in task s, such as ‘co n ten t a d d re ssa b le m em o ry ’, im age re s to ra tio n , classification, a n d will co n tin u e to b e ex p lo red in rela tio n to th ese ta sk s. B u t th e stu d y of biological b rain s req u ires us to ste p o u ts id e th e b o u n d s set by th e

Referenties

GERELATEERDE DOCUMENTEN

For the video segmenta- tion test cases, the results obtained by the proposed I-MSS-KSC algorithm is compared with those of the incremental K -means (IKM) ( Chakraborty &amp;

By using this model, it is possible to predict the cluster membership of unseen (also called out-of-sample) points allowing model selec- tion in a learning framework, i.e.,

For the video segmenta- tion test cases, the results obtained by the proposed I-MSS-KSC algorithm is compared with those of the incremental K -means (IKM) ( Chakraborty &amp;

Although, to some extent, high negative switching costs can prevents customers from leaving, it will reduce customer attitudinal loyalty, which means that clients are less

Het idee is dat de mestprijs van onderen wordt begrensd door de mestafzetkosten op het eigen bedrijf, terwijl de bovengrens wordt bepaald door de gegeven kosten van export

De centrale probleemstelling van de studie was of door de beoogde korte keten, waarin geen transport van levende dieren plaatsvindt, de kwaliteit van het eindproduct wordt verbeterd

– make classification NN (cfr. also session 2, ex. 3) – perform ARD, rank inputs. – select subset of inputs based on

Comparative Study of the Application of Box-Behnken Designs (BBD) and Binary Logistic Regression (BLR) to study the effect of demographic characteristics on HIV risk in South