• No results found

Ellipsometry of nickel-oxides and -hydroxides in alkaline electrolyte

N/A
N/A
Protected

Academic year: 2021

Share "Ellipsometry of nickel-oxides and -hydroxides in alkaline electrolyte"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Ellipsometry of nickel-oxides and -hydroxides in alkaline

electrolyte

Citation for published version (APA):

Visscher, W. (1983). Ellipsometry of nickel-oxides and -hydroxides in alkaline electrolyte. Journal de Physique.

Colloque, 44(C10), 213-216. https://doi.org/10.1051/jphyscol:19831044,

https://doi.org/10.1051/jphyscol;19831044

DOI:

10.1051/jphyscol:19831044

10.1051/jphyscol;19831044

Document status and date:

Published: 01/01/1983

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

JOURNAL DE PHYSIQUE

CoJloque CIa, supplérnent au 0°12, Torne 44, décernbre 1983 page CI0-2B

ELLIPSOMETRY OF NICKEL-OXIDES AND -HYDROXIDES IN ALKALINE ELECTROLYTE

w.

Visscher

Lciboratory for Eleetroehemistty, Department of ChemieaZ PeehnoZogy, Eindhoven Univer'sity of PeehnoZogy, P.O. Box 513, 5600 MB Eindhoven, The NetherZands

Résumé

La croissance et l'oxydation de couches minces de Ni (OH)2 déposées sur Ni ont été étudiées par ellipsométrie. Les indices de réfxaction de a-Ni (OH)Z, I3-Ni (OH) 2

et ~2-NiOOHont été obtenus à la longueur d'onde 546.1 nm. On a également étudié

l'oxydation anodique de Ni dans 0,1 M KOH. La couche de passivation est initiale-ment NiO.xH20. Un cyclage répété des potentiels anodique et cathodique modifie les propriétés optiques de cette couche et conduit à la formation d'une couche d'oxyde de faible densité.

Abstract

The growth and oxidation of thin Ni(OH)2 films deposited on Ni were investigated by ellipsometry. The refractive indices of a-Ni(OH)2. ~-Ni(OH)2 and YZ-NiOOH were obtained at the wavelength 546.1 nm. Furthermore. the anodic oxidation of Ni in 0.1 M KOH was studied. The passive oxide layer is initially Nio.x HZO. Repeated anodic and cathodic potential cycling change the optical properties of this layer and leads to the growth of a low density oxide layer.

I. INVESTIGATION OF THIN Ni(OH)2-ELECTRODES

a-Ni(OH)2 was formed by cathodic deposition [I] from 0.1 M Ni(N03)2 on a smooth Ni substrate (0.5 cm2). The film growth was monitored ellipsometrically at À

=

546.1 nm with a Rudolph Automatic Ellipsometer Model RR 2200. Experimental details are given in [Z]. Fig. I shows the change of ~ and ~ with time during deposition at I

=

25 ~. In a ~-~ plot (Fig. 2) these data trace along an egg-shaped curve indicating the formation of a transparent layer. These results are compared with calculated ~-~ plots (Fig. 2) for the growth of homogeneous trans-parent films with refractive index n

=

1.41 and 1.42.

Optical measurements of ~-Ni(OH)2-filmswere carried out at electrodes at which first an a-film was deposited of known thickness. usually 50-100 nm; the electrode was th~n converted to ~-Ni(OH)Zby hot alkaline treatment [I] outside the optical cello The ~ and ~ parameters of the ~-Ni(OH)2electrode were measured in the Ni (N03) Z-electrolyte. The refractive indices for a- and ~-Ni(OH)2 are found to be:

n - k i a-Ni(OH)2 1.41 ± 0.03 - 0 i

~-Ni(OH)2 1.46 ± 0.03 - 0 i

For a-Ni(OH)2 a value of 1.52 - 0 i (X 632.8 nm) has been reported [3]. Density values of 3 Ni(OH)2.2 H20 (= a-Ni(OH)2) and ~-Ni(OH)2differ considerably: 2.6-2.8 g.cm- 3 for a-Ni(OH)2; 3.9 g.cm- 3 for ~-Ni(OH)2 [I]; so it is concluded that the thin ~-films as deposited here. have a higher H20-content than bulk ~-Ni(OH)2.The a-Ni(OH)2 to ~-Ni(OH)2conversion is evident from the difference in the cyclic voltammograms in KOH-electrolyte:

At scan rate 0.5 mV.s-l the oxidation peak for a-Ni(OH)2 is at E

=

1.36 V vs. RHE and for S-Ni(OH)2 at E = 1.45 V vs. RHE. Ellipsometrically the oxidation of a- and S-Ni(OH)2 was followed in KOH electrolyte during an applied potential program. The results are shown in Fig. 3 and 4; the changes in ~ and ~ are given with respect to their values at E = 1.0 V vs. RHE.

(3)

1.42

- - -exp

--cale.

30

25

30

100

CIO-214 JOURNAL DE PHYSIQUE

6.

1 \ti I

40 ""

150f

40

i

35

125

35

50

100

150

200

time/min

80

120

140

Fig. 1 - Growth of a-Ni(OH)Z-film on Ni during cathodic depos1tion.

Fig.Z - *-~ plot of data of Fig. 1. Numbers along the curves indicate thickness in nm.

~---b.---'" 8 0 4 lim~/mltl 60 80 100 min 20 40 () ~r_li.·lt.Q.i!_~... /

,

,

~ : ... _1R.l!,,~ ' _

o

lÓ~

-8. ti ·6 SI' ---- 2

(

\> ·4 ~"'-- .~

..

0 -2 -2

\

!

·1 '.__ __•__ .- 0 4

,.

...

_

...-..

_._

.. I 'i ·6

o

I I I I -2I -4 Fig. 3 Fig. 4

Change in ti and 0/ with respect to the values at E

=

1.0 V during oxidation and reduction in KOH-electrolyte.

Fig. 3: a-Ni(OH)Z potential range 1.0 to 1.4 V vs. RHE Fig. 4: S-Ni(OH)Z potential range 1.0 to 1.46 V vs. RHE

A characteristic feature of the oxidation of a-Ni(OH)Z to YZ-NiOOH is that ti and 0/

quickly reach constant values and when the reduction cycle is applied, the original ~,~ values of a-Ni(OH)Z are again obtained. The oxidation of S-Ni(OH)Z is a much slower proceSSj moreover, after reduction ti and

*

differ from the values before the oxidation started. Evaluation of the refractive index of YZ-NiOOH yields n-ki

=

(4)

CI0-2I5

1.74 - 0.51 (calculated assuming a change in thickness proportional to the change in densities; YZ-NiOOH : 3.79 g.cm- 3) and n-ki

=

1.54 - 0.39 i (calculated assuming no change in thickness).

The oxidation of ~-Ni(OH)Z leads to ~-NiOOHand then to higher valent oxides. The change in Á and $ after cycling indicates change in the thickness of ~-Ni(OH)Zor change in the nature of this layer.

11. INVESTIGATION OF ANODICALLY FORMED Ni-OXIDES

Fig. 5.

Y

Change in $ and Á at

prereduced Ni in O. 1 M KOH during stepwise increase and decrease of potential.

32

33

94

98

When Ni is anodically oxidized in 0.1 M KOH a passive layer is formed. Fig. 5 gives the changes of Á and $ during stepwise increase of the potential for a freshly polished. reduced Ni elec.trode. In the potential range up to ca. 1 V the oxide-layer grows linearly with potential reaching a few monolayers thickness; its refractive index is n-ki

=

Z.45 - 0 i and the oxide is considered [4] to be NiO.x HZO. Ó.

102

-100

300

700

1100

1500

ElmV

vsRHE #

oxidation~Ni/NiO.x HZO: Ni(OH)Z'y HZO

·d

I.

d

OXl. atl.on an reduction

...

Ni/Ni(OH)Z'y HZO

With further increase of the potential $ begins to decrease due to conversion in Ni-lIl-oxide.

NiO.x HZO is the initially formed Ni-I I-oxide layer. It is changed into a struc-turally different oxide by repeated potential cycling from -0.8 to +I.Z V vs. RHE. At a freshly polished electrode Á and $. measured at E = -0.1 V vs. RHE. give the refractive index of bare Ni; the values of Á and $ at E

=

-0.1 V after a complete oxidation-reduction cycle have changed. The difference with respect to the original bare substrate values increases with each cycle and can be interpreted as the growth of an oxide film with n-ki

=

1.5Z - 0 i; the thickness increase per cycle is ca. 1 nm. This oxide has a much lower density and may be a hydroxide-type layer. The process can be explained by the following scheme in which the growth proceeds via oxidation and (irreversible) convers ion into a non-reducible oxide:

oxidation Ni )0 Ni/NiO.x HZO

.

.1

oXl.dat~on and reduction

4-Ni/Ni(OH)Z·y HZO

(5)

CIO-216

REFERENCES

JOURNAL DE PHYSIQUE

JOURNAL DE PHYSIC Colloque CIO, supplérr

1. Bode H., Dehmelt K. and Witte J., Electrochim. Acta 11 (1966) 1079. Z. Anorg. AUg. Chemie 366 (1969) I.

2. Visscher W. and Barendrecht E., J. Electroanal. Chem., to be published. 3. Hopper M.A. and Ord J.L., J. El~ctrochem. Soc. 120 (1973) 183.

4. Visscher W. and Barendrecht E.,Surface Sci., to be published.

ELLIPSOMETRIC ST

FORMATION ON Bi 2 T. Hoshino, . Department 0, Japan Résumé - Dans que la format lieu par un m Tefraction, 1 anodique sont Abstract - Th the anodic fi the two-dimen the ref'ractiv the anodi c t i respecti vely. 1. Introduction The previous paper favorable situation describes the furth BizTea under consta analyzer ellipsomet 2. Experimental P-type BizTea with was easily cleaved c-axis was anodized made by soldering I sulation with an eI cathode, the sample dence <1>1 = 70.50

an 1.40, is a solution made of fused quart voltage Vc was simu throllgh a buffer am The ellips ometer of Japan) was used in laser with the wave with 1 Hz and it th one set of the para series of data acqu with consideration 3/ • • The experiment sesses have been es

lo'!'l

< 0.10

Referenties

GERELATEERDE DOCUMENTEN

Als het verschil tussen de berekende stikstof- en fosforbelasting naar het oppervlaktewater en de gemeten stikstof- en fosforconcentraties in het oppervlaktewater kan worden

Er worden heel hoge eisen gesteld aan het mobiele systeem om niet juist prestatie te verliezen door het optreden van wachttijden of te lage transportsnelheden.. Bij

Figuur 3 Het percentage mosselzaad in het bestand voor locaties met mosseldichtheden boven 0.1 kg/ m 2 , uitgaande van het gewicht van het zaad en meerjarige mosselen in

Met een directe schade van circa 2,5 miljoen euro per jaar en een onbekende gevolgschade voor gemengde boeketten in het handelskanaal vormt Botrytis een knelpunt in de gerberaketen..

Zo werd in het voorjaar van 2002 bij onze k wekerij een bestelling geplaatst voor knol boterbloem (Ranunculus bulbosus); bijzonder, want deze plant wordt bijna noo it

Het bot maakt die curve, om het voor de schildpad mogelijk te maken zijn poten binnenin zijn schild te trekken (Kerkhoff, 1987), iets dat de levende exemplaren op de figuren

van de hoeveelheid opgebaggerde specie heeft de heer Hans Niesen voorgesteld om voor mensen die de datum ongelegen komt of die rustiger willen verzamelen contact met hem op kunnen

Aangezien bij de verkeersprognose een uitgebreider wegennet doorgerekend wordt dan eerder bij de veiligheidskaarten is gebeurd, kan de vergelijking van waargenomen