• No results found

Closed-form evaluation of the wave potential due to a spherical current source distribution

N/A
N/A
Protected

Academic year: 2021

Share "Closed-form evaluation of the wave potential due to a spherical current source distribution"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Closed-form evaluation of the wave potential due to a

spherical current source distribution

Citation for published version (APA):

Boersma, J., & Doelder, de, P. J. (1979). Closed-form evaluation of the wave potential due to a spherical current source distribution. (Eindhoven University of Technology : Dept of Mathematics : memorandum; Vol. 7911). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1979

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: [email protected]

providing details and we will investigate your claim.

(2)

, I

. ;

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of ~~thematics

Memorandum 1979-11

October 1979

Closed-form evaluation of the wave poten~ial due to a spherical current source distribution

by

J. Boersma anQ P., J. de Doelder

Eindhoven University of Technology Department of Mathematics

P.o.

Box 513. Eindhoven The Net...'lerlands

(3)

Closed-form evaluation of the wave potential due to a spherical current source distribution

by

J. Boersma and P.J. de Doelder

1. Introduction

-r -r

Consider a current source distribution with density function J(r), having a finite supportin the volume V. Then the resulting electromagnetic field

-r

is expressible in terms of the wave potential ¢(r) given by

(1. 1) v -jkR e -r - - - dr' 471R R -r -r

stands for some rectangular component of J(r') and k is the wave number. It is 'Nell known that. (t,ri) satisfies the Helmholtz equation

=C~;J

,

...,.. r .: Ii

(1. 2) M+ k2¢

-r

,

r i V

and the radiation condition at infi~ity (for the exp(j~t) time convention) . -r

The present note deals with the closed-form evaluatio~ of ~(r) in the case of J(i) having its support in the s!",herical vol'...lIlle

:;

1

~ a. Introducing

-r -r

spherical coordiantes r = (r,e,~) ana r' = ( r' ,8' ,(pi), we then rewrite (1.1) as (1. 3) <P(r,8,·:p) a

r

J

o

dr' 71

f

o

d8' 271 -jkR j' dm' J(r',6',f!J ' ) e 471R (r,)2 sin6-'

o

where R [r 2 + (r') 2 - 2rr' cos ~ ~ (1. 4)

cos y cos 6 cos 5' + sin e si~ 6' cos (~ - f!J').

In section 2 it is shown that a closed-iorm evaluation of ~ is possible for a source distribution J of the form

(4)

, I I,', (L 5) J(r,a,rp) - 2 -cos sin (mrp ) m

where m,n,p are integers subject to 0 ~ m ~ n, p ~ n - 1; p stands for the n

associated Legendre function. In sections 3 and 4 two specific examples of source distributions (1.5) are examined. For these examples which were taken from Lee and Law [lJ, closed-form expressions for ~(r,a,rp) are derived valid fov r ~ a, i.e. in the interior of V. Results for ~(r,a,cp) when r ~ a might be derived in the same manner, however, we shall not go into the actual calculation. As a check the second example (section 4) is also treated by a different and independent approach based on the solution of the Helmholtz equation (1.2). Some concluding comments, additional to section 2, are pre-sented in section 5.

2. Wave potential due to the source distribution (1.5)

The key fcrmula in the analysis is the following -addition theorem:

(2. 1 ) -jkR e 41TR CD _ jk 41T

I

n=O (2n + 1) j (kr) h(2)(kr)· n < n > n

I

m==O (n - m)! e:

m (n

+

m)! pm (cos a) pm (cos a') cos m(rp- cp'). n n

Here r

=

min(r,r'), r

=

max(r,r'), EO

=

1 e:

=

2 for m

=

1,2,3, ... ;

further-< 12' > ' m

more j and h \ ' stand for L~e spherical Bessel and Hankel functions defined

n n

by

(2.2) J , ( ) - [ l 1 T 'T ( ' . ' (2) ( )

-Il

'

TT H (2) (z) •

Z - -;;-- U L Z I , n Z - -2 n+L

n LZ n+. n z .

The key formula (2.1) is readily obtained from the additi~n ~heorem for Bessel functions (2.3) -jkR e "liTR 00 jk \' 41T

L

n=:O (2n + 1) j (kr ) h (2) (kr ) P (cos y) n < n > n

(cf. Watson [2, form.11.41(9), (10)], Abramowitz & Stegun [3, form.10.1.4S,46J, Stratton [4, form.7.10(87)]), combined with the addition theorem for Legendre polynomials

(5)

'. I

,,',

3

-(2.4) p (cos y) = p (cos e cos 6' + sin 8 sin 8' cos(<p - cp')) =

n n n

L

m=O (n m)! m e: ?

m (n + m)! n (cos 6) pm (cos 6') cos m(<p -n <p')

(cf. Stratton [4,form.7.S(46)J, Magnus, Oberhettinger & Soni [S,p.239J).

The source distribution (1.5) and the expar.sion (2.1) are now inserted into

the integral (1.3) for ~(r,6,cp). We employ the orthogonality relations

2rr (2.5)

J

dcp'~_cos m(-:p - <p')

o

where 0

,=

1 when m

=

m',

a ,

mm mm n (2.6)

J

d8 ' sin 8 ' pm n (cos 0 1 cos (m'IP') drp'

=

sin 2'Tf cos e:

a

mm , sin (mcp) m

o

when m ~ m'i and

8' ) , pm n' (cos 9' )de' (n + m)!

J

pm(x) p n' m (x) dx 2n 2

a

T 1 (n - n:)! nn'

,

-1 n

cf. Stratton [4, form.7.3(16),(17)J, Abramowitz & Stegun [3,form. 8.14.11,13J.

a...,{.

Then the 8'- ~ <p'-integration car. be carried out and we are led to the

fol-lowing result for ~ :

a h(2) (kr ) I ' ) p+2 (2.7) ~(r,6,9)

=

- jk

f

j (kr ) .r dr' pm (cos 6) cos m<p n < n > n sin 0

'2'

r (kr') (r' )p+2

=

- jk [ h' I (kr) ( jn dr' + n 0 a h (2) (kr') (r' )p+2 + jn (kr)

f

dr'J pm (cos e) cos n n sin m<p

,

r valid for r ~ a.

Now it is well known that the spherical Bessel a.nd Hankel functions can be

ex-pressed in terms of elementary functions, viz.,

(2.8) h (2) (2'.) n jn+l z-1 e-]Z n \' -,-,~nc:....,----::..;1..~~ . + 0).' L 9.! (n - Il.) ! 9.=0 '2" )-£ .. ]Z

(6)

',', - 4 -(2.9) jn (z) ~[h(l)(Z) + h (2) (z) J = n n ,-n-1 -1 jz n (n !(' , (-2jz) -90 ~ J z e

I

Q,! (n + -) £)

.

! + £=0 ,n+1 -1 -jz n (n ,Q,) ! (2jz)-1 ~

I

+ + J z e Q,! (n

-

£) ! 9,=0

cf. Watson [2,form 7.2(1), (2)J, Abramowitz & Stegun [3,form.10.1.16,17J, Mag-nus, Oberhettinger & Soni [5,p.72J. Consequently,the evaluation of <1' in (2.7) amounts to the evaluation of elementary integrals

(2.10)

f

e ±j kr ' (r ' ) p+ 1-Q, dr ' , ,Q, = 0 , 1 , ... , n •

The latter integrals can be determined through integration by parts if p + 1 - 2,

is a non-negative integer, that is, if p is an integer with p ~ n - 1, as assumed at the outset.

The evaluation of (2.7) for generai n is discussed in section 5. In the next sections we turn to some specific examples t,aken from Lee 3.nd La,,' [1 J .

3. First example from Lee and Law [lJ

As a first example Lee and Law [lJ consider a current density given ty -+

(3.1) J(r) 1-27\sln r ,28 sincpcoscp+ 3

,E.,

'\' 2 Sln , 2 6 cos 8 sin ~ cos w,

1 _, I

which will be contained in the spherical volume r , ~ ), i 7\

wave length. Since

(3.2) pO (cos 8)

o

1, P2 (cos 2 8) 3 sin

L

8, p_ 2 ~cos Ell .)

(ef. Stratton [4,Appendix IV J ), we :nay rewrite (3.1) as

2w/k denotes the

15 sin~ 9 cos 8,

(3.3) 1 - -3 1 ~ P?2 (cos 8'1 sl'ni,2'",) (r, 2 D2

(co'" P)

1\ _ '" T 1 () ,II ~ 3 -.; v sin (2cp)

(7)

'.',

5

-By means of (2.7) we find for ~1:

(3.4) '" ( 8 ) - J'k [h

O(2) (kr)

"'1 r, ,cp

=

where the integration variable r' has been replaced by p for convenience. From (2.8), (2.9) we have (3.5) hence r , -1 JZ e -jz r jz + j -1, -jz e

2'

z e- sin z z

(3.6)

J

jO(kP)P 2 dp 1

f

sin(kp)pdp

= -

1 [- kr cos(kr) + sin (kr) ]

k k3 0 0 A h (2) (k ) 2

=1

A 1 ') -jkr 2n - j

f

o

p p dp

f

'k k e- J PPdP k3 (kr - J e -k3 r r (3.7)

through integration by parts. In (3.7) it was used that

A = 2n/k.

Inserting these results into (3.4) we find

(3.8) ~1 (r,8,cp) -jkr e [-kr cos(kr) + sin (kr)

J

-jkr e 1 + 2j'IT (1 + jkr) sin(kr) + sin(kr) k3r 1 1 + 2jrr sin(kr) - - + k2 k2 kr 1 1 + 2jn - - + jo (kr). k2 ,( ,2

Consider next ~2(r,8,cp) which is to be determined from

(3.9) r

A

f

j2(kP)p3dP + j2(kr)

f

h~2)

(kp) p3 dPJ

o

r 2 • P (cos 8) sin (2cp) . 2 From (2.8), (2.9) we have (3.10) - JZ , -1 e-jz [; _ • ~,-1 ~JZ - 3 -2z

J

,

(8)

*)

(3.11) hence (3.12 ) (3.13 ) j~(z) =Re L 6 -sin z 3 z 2 3 (3 - z ) - cos z 2 z 1 [8 - (8 - k2r2) cos(kr) - 5kr sin(kr)] , A

f

-

:12 (2) (kp)p 3 dp r r

f

cos(kp)pdp

o

1 4 2, 1 -i~r ,~ 2 2 d (8 + lOjif - 1 \ ) +"4 _e - '.:j + 5jkr - k r ). k - k

We then find after some elementary calculat~o~s

(3.14 ) .- 'k

. '-j -

J r , ) 2 2 4 4 ¢2 (:c, e, <p) = J 3" e i 3 {24j - 24kr - 8jK-r- -+-cos (k;::) [-24j - 4jk r -jk r ] A

Lk

'

r 1 1 2 2 4 4 8e-jkr 2 2

~)

[~(24 + 4k r + k r ) - _ 3 (3 + 3jkr - k r ) Tfk2 k r kjr

Nex't, consider ¢3(r,e,cp) which is to be determined from

This term can also be expressed as 8lh(2)

(kr)~

- 2

(9)

(3.15)

..,

, 1'3 (r , 9, cp) = -

2 -

[h?) (kr) 10>" 2 .) ( j3 (kp)p4 dP + j3 (kr) / '

h~2)

(kP)p4 dP ] •

o

r 2 • ? 3 (cos 9) sin (2cp) •

Again from (2.8), (2.9) we have

(3.16) (3.17 ) hence (3.18 ) (3.19 ) h~2)(Z) -1 -jz [ 1 -1 -2 -3 z e

-

6jz

-

15z + 1 5j z ] ,

j3(z) =Re h (2) 3 (. 2, \ sin 4 z (15

-

6z2) + - -cos 3 z (-15 + z ) 2

,

z z r 4 • r 22 1 : : : 23

J

j3(kp)p dp =~

f

sin(kp) (15 -Bk p )dp -~

f

cos(kp) (15p -k p ldp

o

~< 0 k- 0 1 -jkP'48 33 1 ~k2 2 - e ' + , J' Kp - ::I,' P - 5 \ k 3 J

It

- jk P ) r

Inserting these results into (3.15), 'lie find in a straightforwa:::d manner

(3.20)

, (7 20 .. 2' 2 2 c. k4 4

-J + I ~ r + c. r + k6 r ) e 6, jkr

J

\

(10)

8 -3

[

1 2 2 + 6k4r4 k6r6)

- - -

- - -

(720 + 72k r + 4'/ k2 k4r4 48e-jkr (15 + 2 2 ,,3 3)

*)

+ 15jkr - 6k r - JK r k4r4 + j(48 + 66jn - 36n2

The final closed-form expression for ~(r,e,~) is now obtained by addition of the results in (3.8), (3.14),(3.20). The expression for ~ is valid for r ~

A,

i.e., in the source region.

Lee and Law [lJ are especially interested in the numerical values of the deri-vatives

(3.21)

at the origin r

=

0; here x

1,x2,x3 are Cartesian coordinates. To evaluate these derivatives we expand ~1'~2'~3 in power-series in powers of kr, viz.,

(3.22) (3.23 ) (3.24) '" e --..L[2J''''' _ 1 + 2jn k2r2 + (k44.1 "'l(r,,~) k 2 " 6 o . r ) J 3

[

-, 2

e

s~n sin (jl cos ~ , 48j 3 3 4 4 2 3 k3r 3 105 k r +O(k r ) +j(48+66jn-36n -8jn )~

sin2 e cos

e

sin cp cos (jl •

The second derivatives of

ter~s

of order k3r 3 and higher vanish at the origin; for example

(11)

9 -a2 4 a2 2 2 2 2 2 2 2 2

o

ar r 0, r (xl + x 2 + x 3 )

=

4(x 1 + x2 + x3) + 8x1

=

2 2 aX 1 aX1 3 , 2 (r s~n 8 sin ~ cos ~) aX13~ r 2 , 4 2 , 2 J rL1 + sin 8 -s~n 8 cos ~ s~n ~

o

at r

=

0, 32 (3 , 2 , ) 2 r s~n 8 cos

e

s~n ~ cos ~ 3x 1 0, etc.

Thus i t is sufficient to retain only the terms up to and including O(k2r2), yielding (3.25) ¢(r,e,(,o)

-t

[2jrr k 1+2j'Tl k22 10+4jrr. 22 , 28 ' Otk33)J 6 r + 15 k r s~n s~n ~ cos <P + II r 1 [2' 1 + 2jrr 2 2 2 2 10 + 4jrr 2 3 3 k 2 J1T - 6 k (xl +x2 +x 3 ) + 15 k x1x2 + O(k r )J All second derivatives I

mn 2

a ¢/ax

ax

at the origin can easily be determined m n now: (3.26) 1 + 2jrr 3 10 + 4jrr 15 ' 113 O. As a check we have ~ (3.27) 6~(r

=

0)

=

III + 122 + 133

=

-1 - 2jrr

in accordance with the Helmholtz equation(1.2). The magnitude and phase of 1

11,112 are found to be

2 ~

(12)

- 10

-(3.28) 1

11

=

2.1207 55044 exp(-j 99.043°), 112

=

1.0706 4606 exp(j 51.488°),

which should be compa~ed to the values of Lee and Law [lJ , viz.,

(3.29) 2.1327 exp (-j 100.13°), 112 1.0740 exp(j 50.73 ).

°

4. Second example from Lee aud Law [IJ

As their second example Lee and Law [lJ consider a current density given by

(4.1)

again contained in the spherical volume

l"tl

::;

A. Clearly,

J("t)

in (4.1) is of the form (1.5) with m

=

0, n

=

O. Thus we have from (2.7) that the correspond-ing wave potential ~ is given by

(4.2) 1>(r,E),cr) JO(kp){p . 2 -3 2 .2- + A \ 3 4 +jO(kr)

J

h~2)(k

P)

{p2-2f-+3~}dPJ,

r \ valid for r :;; \. By means cf (3.5) we determine (4.3) (4.4) r 2 3 k

b

sir.. (kp) {p - 2

t-

+ 3

~

2 }dp 2 - kr 'IT / . (2)(k.){ 2 ? 03 :)4, :\ : n . c: 0 - _ - -+ 3 - , d.)

= i

J

' 0 ~ . ).. '» k r . /, <. J~ -jkp, 2c2

~

e t p - - . - + } dp A \2 -J. ko 20-') ' 3 ' ~ . 4J'p 2 4 18 lS'

1\

~ [ •. p + _ _ _ ~_ + 1. _ _ + -,]p P J ] , - A ) 2 k kA

k~

2 - k2 +

'K2~

2 - ,)(3,2 r K . " A · , 1\

(13)

through integration by parts. - 11 --jkr e

-

-k3 9j _ (1 + 2j ') 2 IT .. IT 3 1 3 3 ] --2 K r 4-:r

The present results are inserted into (4.2), thus leading to

9 )kr + 2IT2 (4.5) <P(r,e,ql) _ j k[=-j _e-:--_] k_r_ k4r ? 2 Q 1 2.2 J k3 3 - jkr-{-=- - [ - + (1 - -::-) kr - -;, k r- +"""2 r Je } + + 1 3 k r IT IT 2rr2 40-sin(kr) kr 2 3 -:rk r -jkr e

The latter result is now re-de=ived by a different and independen~ approa~h.

We observe that for the present example the wave potential <P is spherically

symmetric, i.e., <P

=

<P(r). Then we fi~d from (1.2) that <P(r) must satisfy

the Hel~1oltz equation

3

(

f)

2 , 0 $ r <

,

1\ I

(4.6)

, r >

A.

Moreover <P(r) must satisfy the radi~t~on condition at infinity a~d OCr) must

be finite at r = O. Equation (4.6) is easily solved, viz.,

(4.7) 9(r) sin(k~) A + <P (r) 0 5 r $

A,

kr 0 ' -jkr B e kr r 2: A,

where A and B are arbitrary constants, and <i>O(r) is a particular solution

(14)

- 12

-(4.8)

determined by trial and error.

The integration constants A and B are found by requiring continuity of ¢ and

¢' at r = A, i.e.,

(4.9) ¢(A - 0) ¢(A + 0), ¢'(A - 0) ¢' (A + 0).

Thus we obtain

(4.10) A j 1T (4 - .=.!I.. -6; -7 '- + - ) 9j B

k 2 1T n 2 2n3 '

Insert these values into (4.7), then the result (4.5) is recovered, valid for r $

A.

In addition we find

(4.11)

-jkr e

kr when r ~ A.

Lee and ~aw [lJ are interested in the numerical value of the derivative III

a2~

/

ax~

at the observation point xl

=

0, x

2

=

0, x3

=

0.4'/... Such a

deri-vative is obtained from

(4.12)

which reduces to

(4.13) r) 1 ¢' (r)

r

for an observation point on the x

3-axis. Through differentiation of ¢(r) in

(4.5), and setting r

=

0.4A, we find

(4.14)

, _6J'_9 9J' ?' ]

- ~ (4 - -2 + -2J kr) sin(kr)

k 3r 3 1T 1T 21T 3 - 1T r- 2 A

(15)

5. 125 = - - ( 1 32'TT4 13 -2 8,,) 25j §.i 9

2i

(4'TT) 125 + -16'TT (4 - 'if -

2

+ 3 ) cos 5 'TT 'IT _ 12Sj (4 _ 38j

_1-

+2L) sin (4'TT5) 2 5 'IT 2 2 3 64 'IT 'TT 'IT - 0.9273 7407 - 1.6017 7327 j or in magnitude-phase-representation (4.15) III (xl

=

0,x2 1.8508 6474 exp( -j 120.069 ). o

This result agrees reasonably well to that of Lee and Law [lJ in their table III. A simpler result is obtained at the cbservation point xl

=

0, x

2

=

0, x3

=

~A, viz. , (4.16) I 11(x1 0, x 2 ~ 0, x3 ~A) 13 17

i

(4 ~) -0.5713 2684 0.9829 7573 j. +

-

-2 'IT 2 2'TT 4 'IT 'if 2

Addendum to section 2

C::msider a cur::cent densit.y

-+ (E.)p pm cos

(5.1) J(r) (cos 8l

sin (mcp) , a n

similar to (1.5), and contained in the spherical volume

1;1

~ ai again, m,n,p are integers subject to 0 ~ ill ~ n, p ~ n - 1. Let the corresponding wave

po--+

tential be denoted by ¢ (r). From a study of the specific results in (3.8),

pmn

(3.14), (3.20) and also (4.5), it is believed that in general ~ has the

pmn

following structure: If P - n is even, then

(5.2) 1 cos

sin (mcp)

where Qe(k2r2) is a polynomial in k2r2 of degree

~(p

- n), and A is a constant which depends on p,n and kai

(16)

if P - n is odd, then

-+

(5.3) <I> (r)

pmn

14

-where QO(k2r2) is a polynomial in k2r2 of degree

~(p

+ n + 1), and A,B are

constants which depend on p, nand ka.

-+

According to (2.7), <I> (r) can be expressed as

pmn j ~ h (2) (kr) kr (5.4) <I> (r) -+ =

f

jn pmn k2(ka)P n 0 ka h (2) (x) xp+2 dx] + j (kr)

J

p m (cos 8) n kr n n p+2 (x)x dx cos (mq» sin

where we introduced the new integration variable x = kr'.

+

An interesting special case occurs when p = n~- Then by use of the recurrence

relations [3, form.l0.1.23] (5.5) we have (5.6) d rr n+2 dx LX jn+1 (x)] = x n+2 jn (x), dxd -_ [n+2 h(2) (x)] x n+1 = xn+2h(2) (x), n h (2) (kr) n kr

f

j (x) xn+2dx + j (kr)

o

n n ka

f

h(2) (x) xn+2 dx kr n (kr) n+2[h (2) (kr) j 1 (kr) n n+ j (kr)h(2)1(kr)] + (ka)n+2h (2)1(ka)j (kr)-n n+ n+ n _j(kr)n + (ka)n+2h (2)1(ka) j (kr) n+ _ n

by means of the well-known Wronskian relation [3,form.l0.1.31]. Thus we find

(5.7) <I> (r) -+

runn

For n = m = 0 and a =

A

the present result reduces to that in (3.8). Notice

that (5.7) has the structure conjectured in (5.2).

Next we reconsider the evaluation of the second derivatives of-<I> at the origin

-+

(17)

15

-by expanding 1> in ~ pcwer-series in powers of kr while retaining only the terms up to and including O(k2r2). From the estimates [3,form.10.1.4,5]

(5.8) j (x) =O(x n ), h(2)(x) =

o

(x-n-1) as x +0,

n :1

:.t is readily found that

h (2) (kr) kr p+2 ka h (2) (x) xp + 2 (5.9) { jn (x)x dx + jn (kr)

f

dx n J n 0 kr = O\(kr)-n-1)

o

((k:!:")n+p+3) +O«kr)n) -+ since p + 2 ~ n + 1. v~nish when n ~ J.

Conseque:1tly, all second deriv~tives of <i> at r

pmn

This leaves t.."le followir,g" t.l,ree cases to be considered ;

(i) n = 0, m = O. ThreE subcases are to be distinguished, namely,

a) p -1. Then 'tiE; have from (5.4),

kr ka

o

(5.10) -+

= _

j ka -h (2) I k ) 1> -1 ,0 I 0 (r) 2 L· 0 \.r k

f

jO(x)xdx + jO(k:!:")

o

kr

f

(2 ) hO (x) xdx] _ j,~a 1 2 K [ -' j - e -jk!:" kr kr

f

o

sin x dx + sin(kr) j kr ; j -jkr [ _ _ . J _ + e sir. (kr) kr -jka e ] kl.' kr -+ ka

f

e -jx dx j kr

The second derivatives of <i> do not exist at r 0 i:1 ~his case; this is

not surprising since J(;) = ar-1 is singular at the origi.':1.

b) P

=

O. 'I'his subcasoe h~s been treated in (3.22) and (5.7),vi2.,

(5. III 1 [1 + j (ka i 2 fl 1_( 2) (ka) {1 k2 1 ~ ? -"-,,L. _ [;, r " A " 'k'" -r. '. ] + L \. r ' ;

(18)

, ' - 16 -c) ~. Then we have frcr.l (5.4) , (5.9) , (5.12 ) (5. 13) , ~2 ka (2) 2 J [O«kr)P')+ jO(kr)

f

hI) .

(~)Xp+

dx] . 2(. )p 0 .< Ka The i:1tegro.l I P ka

f

e-jx xp+1 dx

o

may be determi~ed r.ecursively t t rough

(5.14 ) I

=

J '(k ' a ) ,p+1 - J.p '( + 1) I , P

P ~1 0,1,2, ... ; 1_1 j (e

-j ka - 1).

(ii) n = 1, m = 0 or 1. Two subcases are to be distinguished, namely,

a) P

=

,0. Then we have £rom (5.4),

(5.15) ell ( \ + . Qml r; m cos • P1 (cos 8) (m<p) sin +

"

Again t.'1e second jerivatives ::>f 01> do not exis"C at r v, e.g. -for m =

2 2 12 ,) 3'") ~ 2 x3 (;:2 + x3) :2 2~. (5.16) '\ 2 [r"'P1 \COS 6)] ~[x3(x2 +}:2+x3'

J

2 .: A~)3/2 oX 1 oX1 (x 1 + h2 + -' / , 2 2

- cos 6(sin-e s~n Q + cos 6)

(19)

,

.

- 17 -

-+-depends on the direction in which r -+- O. Again this is not surprising,

since

J(i)

=

pm(cos 8) cos(mw) is not continuous at

i

=

0 (let alone

-1' S1."

Holder continuous).

b) P ~ 1. Then we have from (5.4), (5.9),

(5.17) ¢ 1 (r) -+ pm -; ,! ka

f

h '1 (2) ( x ) p+2 X \.. ~, •• .. ,

o

-+

All second derivatives of ¢ vanish at r O.

ka ]

f

-

,(

fi 2) ( ) p+2d l x x x

o

kr 3 31m cos ~ + O(k r ) J,P1 (cos 8) , (mrp). J s~n

( i i i ) n = 2, m 0, 1 or 2, p ~ 1. Then we have from (5.4), (5.9),

-+ (5.18) ¢ 2(r)

pm

j

t

o

«'Kr\jP+2), ,ka (2) ( , P+2d ] m 6) co, s (m )

+J2(krloJ h2 XIX x P2'cOS s~n q>

k20o.)P

ka 2 2

1

( (2)( \ p+2d k r

r:

k3 3) m! 8'cos()

J h" XI X X --,-~- + ../ (. r

J

P ~ ,cos I ' mq>.

o

""

l:: L. s~n

Here one has from (3.10),

(5.19) ka ka

f

h '2 (2) ~XIX-. \ p+ 2d x -- J'

f

o

0 -J'x p-l P 0+1 e [3x + .3 j x - x · ] ax , [ r l ' I I ] J ~p-2 + -J p-1 P to be determined from (5. 14) . -+

The second derivatives of the pertaining l 's at r

tained from (5. 11), (5. 12), (5.:8).

(20)

ob-,

.

18

-References

[lJ S.W.Lee and C.L. Law,Singularity in Green's function anj it;;; numerical

evalua~ion, Electromagr .. Lab., U:1iv. of Illinois, Tech.Rep. Etv!79-10,

June 19/9; a revised versi.on of the report, co-authored by J. Boersma

and G.A. Deschamps, will appear in IEEE Trans.Antenn~s Prop.

[2J G.N. Watson, A treatise on the theory of Bessel f'.lnctions, Cambridge

Univ.Press, Cambridge, 1958.

C3J M. Abramowitz & I.A. Stegun, Handbook of mathematical functions, Dov~r.

Publ., New Ycrk, 1965.

[4J J.A. Strattcn, Electromagnetic theory, McGraw-Hill, New York, 1941.

[5

J

W. Magnus, F. Oberhettinger e, R. P. Son1, FOrIDLllas and theorems for t:.he

Referenties

GERELATEERDE DOCUMENTEN

a) SedÏ (geen semantische en geen syntactische relatie); in deze. groep verryachten we een slecht resultaat vanwege het

arbeid van water bij uitstroom- -opening aan perszijde van pomp arbeid van water bij instroom- -opening aan zuigzijde van pomp gemiddelde snelheid van het water biJ de

• De ammoniakemissie vanuit de natuurlijk geventileerde ligboxenstal met roostervloer kan voor bedrijfssituaties met beperkte weidegang goed worden voorspeld met een emissiemodel met

Uitgangspunten: melkveebedrijf met een quotum van 650.000 kg melk; 80 melkkoeien; 180 weidedagen (omweidesysteem); jongvee op stal; identieke mechanisatie; het maaien, schudden

Cette maçonnerie fut étalée partiellement sur un remblai terreux contenant quelques morceaux de poterie (n° 37a, fig.. - Parement externe du rempart ouest..

Quant au projet d’un grand théâtre ailleurs, qu’avait craint De Wailly, il s’agissait d’une grande salle circulaire à construire dans l’angle du Parc entre les rues Royale

First a matrix equation, containing the covariance matrix, is derived, next it is solved for the h1A, AR and ARMA case.. The result is quite, and maybe

We calculate the fluctuating voltage V (t) ovei a conductor diiven out of equilibnum by a cunent soiuce This is the dual of the shot noise pioblem of cunent fluctuations l (t) in