• No results found

On the category O for rational Cherednik algebras - Opdam category rational

N/A
N/A
Protected

Academic year: 2021

Share "On the category O for rational Cherednik algebras - Opdam category rational"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (http

s

://dare.uva.nl)

On the category O for rational Cherednik algebras

Ginzburg, V.; Guay, N.; Opdam, E.M.; Rouquier, R.

DOI

10.1007/s00222-003-0313-8

Publication date

2003

Published in

Inventiones Mathematicae

Link to publication

Citation for published version (APA):

Ginzburg, V., Guay, N., Opdam, E. M., & Rouquier, R. (2003). On the category O for rational

Cherednik algebras. Inventiones Mathematicae, 154(3), 617-651.

https://doi.org/10.1007/s00222-003-0313-8

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)

and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open

content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please

let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material

inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter

to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

will be contacted as soon as possible.

(2)

arXiv:math.RT/0212036 v4 26 Jun 2003

VICTORGINZBURG, NICOLASGUAY, ERIC OPDAMAND RAPHA



EL ROUQUIER

Abstra t. Westudythe ategoryOofrepresentationsoftherationalCherednikalgebraA W

atta hed to a omplex re e tion group W. We onstru t an exa t fun tor, alled

Knizhnik-Zamolod hikovfun tor: O!H W

-mo d,whereH W

isthe( nite)Iwahori-He kealgebraasso

i-atedtoW. WeprovethattheKnizhnik-Zamolo d hikovfun torindu esanequivalen eb etween

O =O tor

,thequotient ofObythesub ategory ofA W

-mo dulessupp ortedonthedis riminant,

andthe ategoryof nite-dimensionalH W

-mo dules. ThestandardA W

-mo dulesgo,underthis

equivalen e,to ertainmo dulesarisinginKazhdan-Lusztigtheoryof \ ells",providedW isa

Weylgroup and theHe ke algebraH W

hasequalparameters. Weprove that the ategory O

is equivalentto themo dule ategoryover a nitedimensionalalgebra,ageneralized "q -S hur

algebra"asso iatedtoW.

Contents

1. Intro du tion 1

2. CategoryO 3

2.1. Algebraswithtriangularde omp osition. 3

2.2. Lo allynilp otentmo dules 3

2.3. Standardmo dules 4

2.4. Gradedmo dules 5

2.5. Highest weighttheory 7

2.6. Prop erties of ategory O 8

3. RationalCherednikalgebras 9

3.1. Basi de nitions 9

3.2. Category OfortherationalCherednikalgebra 11

4. Duality,Tiltings,andProje tives 12

4.1. Ringelduality 12

4.2. NaivedualityforCherednikalgebras 13

4.3. Homologi alprop ertiesofCherednikalgebras 14

5. He ke algebrasviamono dromy 16

5.1. Lo alisation 16

5.2. Dunkl op erators 18

5.3. TheKnizhnik-Zamolo d hikovfun tor. 20

5.4. Mainresults 21

6. RelationtoKazhdan-Lusztigtheoryof ells 25

6.1. Lusztig'salgebraJ 25

6.2. Standardmo dulesfortheHe kealgebraviaKZ-fun tor 27

Referen es 27

1. Introdu tion

LetW b ea omplexre e tiongroupa tingon ave torspa eV. LetA W

denotethe rational

(3)

of W with the algebra of p olynomial di erentialop erators on V. The algebra A W

an b e also

realized as an algebra of op erators (Dunkl op erators) a ting on p olynomial fun tions on V.

When W is a Weyl group, A W

is a rational degeneration ofthe double aÆneHe kealgebra.

Ani e ategoryOofA W

-mo duleshasb eendis overedin[DuOp℄, f. also[BeEtGi℄. Itshares

manysimilaritieswiththeBernstein-Gelfand-Gelfand ategoryO fora nite-dimensional

semi-simpleLie algebra.

We develop a general approa h to the ategory O for a rational Cherednik algebra, similar

in spirit to So ergel's analysis, see[So1 ℄,of the ategoryO inthe Lie algebra ase. Sp e i ally,

in addition to the algebra A W

, we onsider an appropriate ( nite) He ke algebra H W

, and

onstru t an exa tfun tor KZ:O !H W

-mo d, thatmay b e thoughtof as aCherednikalgebra

analogue of the fun tor Vof [So1℄. One of our main results says that the fun tor KZ is fully

faithful on proje tives. Thus, the (non ommutative!) He ke algebra plays, in our ase, the

role similar to that the oinvariant algebra (= ohomology of the ag manifold) plays in the

Lie algebra ase. It is also interesting to note that, in b oth ases, the algebra in question is

Frob enius.

To proveour results, in x2 we develop somebasi representation theory over a ground ring

(whi h is not ne essarily a eld) of a general asso iative algebra with a triangular

de ompo-sition. This generalizes earlier work of the se ond author [Gu℄ and of the last two authors

(unpublished). Su h generality willb e essential for us in order to use deformationarguments

in x5 . The results of se tion 2are appliedto Cherednik algebras in x3.2 .

In x4 ,we explainhowto generalizesome lassi al onstru tionsfor D (V), the Weylalgebra,

(su h as hara teristi varieties, duality) to the rational Cherednik algebra. We study two

kinds of dualities. One of them is related to Fourier transform while the other, mu h more

imp ortant one, generalizes the usual (Verdier typ e) duality on D -mo dules. This enables usto

showthat the Ringel dualof ategoryO is a ategoryO forthe dual re e tiongroup. We also

giveaformula for thedimensionof the hara teristi varietyinvolving onlythe highestweight

stru ture of O .

Our most imp ortant results are on entrated in x5.4. We use the de Rham fun tor for

Knizhnik-Zamolo d hikovtyp e D -mo dules overthe omplementof the rami ation lo us inV.

This way, we relate the ategory O with a He kealgebra. We prove that the ategory O an

b e re overed from its quotient by the sub ategory of obje ts with non-maximal hara teristi

variety(Theorem5.3 and Corollary5.5).

Then,weobtaina\double entralizer"Theorem5.16,assertinginparti ularthatthe ategory

O isequivalentto the ategoryof mo dules overthe endomorphismring of someHe kealgebra

mo dule. A ru ial p oint is the pro of that the de Rham fun tor sends the D -mo dules oming

from obje ts of O to representationsof the braid group that fa tor through the He kealgebra

(Theorem5.13 ).

In a di erent p ersp e tive, our results provide a solution to the problem of asso iating a

generalized\q-S huralgebra"to an arbitrary nite omplexre e tiongroupW. Thisseemsto

b enew evenwhenW isaWeylgroup (ex eptfor typ esA;B). For instan e,letW b etheWeyl

groupofanirredu iblesimply-la edro otsystem. Then,thedatade ningtheCherednikalgebra

A W

redu es to a single omplexparameter 2 C. In this ase, H W

is the standard

Iwahori-He kealgebra ofW,sp e ialisedatthe parameterq=e 2 i

. If isarationalnumb er,thenq isa

ro ot ofunity,andthe orresp onding ategoryH W

-mo db e omesquite ompli ated. Ourresults

(4)

ategory H W

-mo d, whi h is not itself quasi-hereditary. As a onsequen e, the de omp osition

matri esofHe kealgebras(in hara teristi 0)aretriangular(Corollary5.19 ). Weremarkthat,

inviewof[CPS2℄,onemighthaveexp e tedongeneralgrounds thatthe ategoryH W

-mo donly

has a\strati ed over", whi his weakerthan having a\quasi-hereditary over".

The reader should b e reminded that, in typ e A, a well-known \quasi-hereditary over" of

H W

-mo d isprovided by the q-S huralgebra. We exp e t that the latter ategory is equivalent

to the ategoryO . Furthermore,foran arbitrary nite Weyl groupW, weproveinx6that the

KZ-fun tor sends the standard mo dules in O to mo dules over the He ke algebra (with equal

parameters)that anb edes rib edviaKazhdan-Lusztig'stheoryof ells. Itfollowsinparti ular

that, intyp e A,thestandard mo dulesin ategoryO go to Sp e ht(or `dualSp e ht',dep ending

on the sign of parameter ` ') H W

-mo dules,intro du edin[DJ℄.

A knowledgments. These ond namedauthor gratefullya knowledgesthe nan ialsupp ort of the

FondsNATEQ.Thethird namedauthorwaspartiallysupp ortedbyaPionergrantoftheNetherlands

Organi-zationforS ienti Resear h(NWO).

2. Category O

2.1. Algebras with triangular de omposition. In this se tion, we assume given an

asso- iative algebra A with a triangular de omp osition. We study a ategory O (A) of A-mo dules,

similar to the Bernstein-Gelfand-Gelfand ategory O for a omplex semi-simple Lie algebra.

The main result of this se tion is Theorem 2.19 b elow, saying that the ategory O (A) is a

highest weight ategory (in the sense of [CPS1 ℄).

Throughout this se tion 2 , letk 0

b e an algebrai ally losed eld and k a ommutativeno

e-therian k 0

-algebra.

Let A b e agraded k-algebra with three graded subalgebras B, 

B and H su h that

 A=



BH B as k-mo dules

 B and 

B are proje tiveoverk

 BH =HB and H  B =  B H  B = L i0 B i ,  B = L i0  B i ,and B 0 =  B 0 =k and H A 0 .  H =k k 0 H(k 0 )where H(k 0

) isa nite dimensionalsemi-simple splitk 0

-algebra

 thegradingonAisinner,i.e.,thereexists 2A 0 su hthatA i =fu2Aju u =iug. WedenotebyBH and 

BH thesubalgebrasBH and  BH. WeputB i =B i . Wedenote by Irr(H(k 0

)) the set of isomorphism lasses of nite dimensional simple H(k 0 )-mo dules. We put  = 0  0 with  0 2  B H B >0 and  0 2Z(H). For E 2Irr(H(k 0 )),we denoteby E

the s alarby whi h 0

a ts on k k0

E.

The theorydevelopp edhere is loselyrelatedto the onedevelopp edby So ergel[So2 , x3-6℄ in

the asewhereg isagraded Liealgebra withg 0 redu tive,A=U(g),B =U(g >0 ),  B =U(g <0 ) and H =U(g 0 ). 1

2.2. Lo ally nilpotent modules. We denote by O ln

the full sub ategory of the ategory of

A-mo dules onsisting of those mo dules that are lo ally nilp otent for B, i.e., an A-mo dule M

is in O ln

if for every m 2 M, there exists n  0 su h that B >n

 m = 0. This is a Serre

sub ategory of the ategory of A-mo dules.

1

IntheLiealgebra ase,thealgebraH=U(g 0

(5)

Remark2.1. The anoni al fun torD b (O ln )!D b

(A)isnotfaithfulingeneral. Nevertheless,

for i=0;1, and any M;M 0

2O

ln

, one stillhas Ext i O ln (M;M 0 )  !Ext i A (M;M 0 ). 2.3. Standard modules. 2.3.1. Let h 2 H. We denote by  h :  B ! 

B H  A the map de ned by 

h (  b) = h  b. Similarly,we denote by h

:B !H B Athe map de nedby h

(b)=bh.

LetE b ean H-mo dule. TheaugmentationB !B=B >0

=k indu esamorphismofalgebras

BH ! H and we view E as a BH-mo dule by restri tion via this morphism. All simpleBH

-mo dules that are lo ally nilp otent overB are obtained by this onstru tion,starting withE a

simpleH-mo dule.

Weput (E)=Ind A BH E =A BH E:

The anoni al isomorphism(E)  !  BE isan isomorphismof graded  BH-mo dules (E is

viewedin degree0), where 

B a ts by multipli ationon 

B and the a tionof h 2H isgiven by

 h H 1 E :  BE !  BH H E =  BE.

We now put r(E)= Homgr

  B H (A;E)= L i Homgr i  B H

(A;E) (this is also the submo dule of

elementsof Hom  B H

(A;E)thatare lo ally niteforB). Here,E isviewedas a 

BH-mo dulevia

the anoni al morphism  BH (  B=  B >0 )H =H.

We have an isomorphism of graded BH-mo dules r(E) 

! Hom

k

(B;k)E where B a ts

by left multipli ation on Hom k

(B;k) and the a tion of h 2 H is given by f e 7! (be 7!

(1f)( h

(b))e).

The A-mo dule (E) is a graded mo dule, generated by its degree 0 omp onent. The

A-mo duler(E) is also graded. Both (E) and r(E) are on entratedin non-negative degrees,

hen e are lo ally nilp otentfor B.

2.3.2. We have Ext i A ((E);r(F))'Ext i  B H (Res  B H (E);F)'Ext i  B H (Ind  B H H E;F)'Ext i H (E;F):

It follows that, when k is a eld and E;F are simple,then

(1) Ext

i A

((E);r(F))=0if i6=0 or E 6'F and Hom A

((E);r(E))'k:

Let N b e any A-mo dule. We have

(2) Hom A ((E);N)  !Hom BH (E;Res BH N)

2.3.3. A - ltration for a A-mo duleM is a ltration 0 = M 0  M 1    M n = M with M i+1 =M i ' (k k 0 E i ) for some E i 2 Irr(H(k 0 )). We denote by O 

the full sub ategory of

O ln

of obje tswith a - ltration.

Givenan H-mo dule E and n 0,we also onsidermoregeneral mo dules

 n (E)=Ind A BH (B=B >n ) k E  The mo dules  n (k k 0

F) havea - ltration,when F is a nite dimensional H(k 0

)-mo dule.

For N a A-mo dule,we have

Hom A ( n (E);N)  !Hom BH (B=B >n ) k E;N  :

(6)

 N is in O

 N is a quotient of a (possibily in nite) sum of  n

(E)'s

 N has anas ending ltration whose su essive quotients are quotients of (E)'s.

2.4. Graded modules.

2.4.1. Given 2k and M a A-mo dule,de negeneralized weight spa esin M by

W

(M)=fm2M j ( ) n

m =0 for n0g:

LetOb ethefullsub ategoryofO ln

onsistingofthosemo dulesM su hthatM = P 2k W (M) where W

(M) is nitelygenerated overk, for every 2 k. This is a Serre sub ategory of the

ategory of A-mo dules.

Let ~

O b e the ategory of graded A-mo dules that are in O . This is a Serre sub ategory of

the ategoryof graded A-mo dules.

Let ~ O

b e thefullsub ategory of ~

O onsisting ofthose obje tsM su hthat M i

W

i (M)

for all i. Note that this amounts to requiring that  0

(i + F

) a ts nilp otently on

Homgr i H (k k 0 F ;M) for F 2Irr(H(k 0 )),sin e  and  0 ommute.

Moregenerally,if I is asubset of k, wedenote by ~ O I

the full sub ategory of ~

O onsisting of

those obje tsM su h thatM i  P 2I W i (M). Wedenoteby ~

(E)the gradedversionof(E)(itisgeneratedindegree0andhasno terms

in negative degrees). Further, write hr i for `grading shiftby r ' of a graded ve tor spa e.

Lemma 2.3. Let E 2Irr(H(k 0 )). We have ~ (k k 0 E)hr i2 ~ O E r .

Proof. Notethat 0 a tsas zeroon ~ (k k0 E) 0 ,sin eB >0

a tsas zero onit. So,  a ts as E

on it. It follows that  a ts by i E on  B i ~ (k k 0 E) 0 = ~ (k k 0 E) i

and we are done. 

2.4.2. LetP b e the quotient of S E2Irr(H(k 0 )) ( E

+Z) by the equivalen e relationgivenas the

transitive losureof the relation :  if is not invertible.

Wemakethe following assumption untilthe end of x2.4 .

Hypothesis 1. We assume that E

 E

+n for some n 2 Z impliesn = 0 (this holds for

examplewhen k is a lo alring of hara teristi zero).

Proposition 2.4. We have ~ O = L a2P ~ O a .

The image by the anoni al fun tor ~ O !O of ~ O a+n is a full sub ategory O a+Z independent of n2Z. We have O = L a2P=Z O a+Z

and the forgetful fun tor ~ O a  !O a+Z isan equivalen e.

Proof. LetM b ean obje tof O . Leta 2P and M a = P 2 a+Z W (M). ByLemma2.3 and

Prop osition 2.2, we havea de omp ositionM = L a2P=Z M a as A-mo dules. Similarly,given ~ M 2 ~ O ,wehave ~ M = L a2P ~ M a where ~ M a = M i X 2a (W i (M)\M i )2 ~ O a : GivenM 2O a+Z

,weput a grading on M by settingM i = P 2i a W

(M) (here we use the

assumptiononk). Thisde nesanelementof ~ O a

and ompletesthepro ofoftheprop osition. 

Wedenote byp : ~ O! ~ O a

(7)

2.4.3. We now give a onstru tion of proje tiveobje ts (underHyp othesis1).

Lemma 2.5. Let a2P and d 2Z. There is an integer r su h that the anoni al map

Hom( ~  m (H)h di;M) !M d

is an isomorphism forall mr and M 2 ~ O a

.

Proof. Repla ingM by Mhdi and a by a+d, we an assume that d=0.

There isan integer r su h that p a ( ~ (H)hr 0 i)=0 for r 0

r . The exa t sequen e

0! ~ (B m H)hmi! ~  m (H)! ~  m 1 (H)!0

shows that the anoni al map

Hom( ~  r (H);M)  !Hom( ~  m (H);M)

is an isomorphismfor any M 2 ~ O a

and mr . Equivalently,the anoni al map

Hom B (B=B r ;M)  !Hom B (B=B m ;M)

is an isomorphism. Sin e M is lo ally B-nilp otent, this givesan isomorphism

Hom( ~  m (H);M)  !M 0 : 

Corollary 2.6. LetE 2Irr(H(k 0

)) and a2 E

+Z. Then, the obje t p a ( ~  r (k k 0 E)ha E i) of ~ O a

is independent of r ,for r0. It isproje tive, has a ltration bymodules ~

(k

k0 F)hr i

and has a quotient isomorphi to ~ (k k 0 E)ha E i.

Corollary 2.7. LetE 2Irr(H(k 0

)). Then, forr0, themodule r

(k

k 0

E)has a proje tive

dire tsummand whi h is - ltered and has a quotient isomorphi to (k k

0 E).

Corollary 2.8. Thereisaninteger r su hthat  r

(H) ontains aprogeneratorof O as adire t

summand.

Lemma 2.9. Let E;F 2 Irr(H(k

0

)) su h that Ext 1 O ((k k 0 E);(k k 0 F)) 6= 0. Then, F E is a positive integer.

Proof. ByLemma2.3andProp osition2.4,wehaveExt 1 O ((k k 0 E);(k k 0 F))=0if F E

is not an integer. Assumenow F E is an integer. Then Ext 1 O ((k k 0 E);(k k 0 F))' Ext 1 ~ O ( ~ (k k 0 E); ~ (k k 0 F)h F E i) ' Ext 1 A ( ~ (k k0 E); ~ (k k0 F)h F E i);

by Lemma2.3 and Prop osition 2.4 . Now,

Ext 1 A ( ~ (k k 0 E); ~ (k k 0 F)h F E i)'Ext 1 BH (k k 0 E;Res BH ~ (k k 0 F)h F E i):

If the last Ext 1

is non zero, then F

E

is ap ositiveinteger. 

Corollary 2.10. Assume k is a eld. Let E 2 Irr(H). Then, L(E) has a proje tive over

P(E) with a ltration Q 0

=0 Q

1

 Q d

=P(E) su h that Q i =Q i 1 ' (F i ) for some F i 2Irr(H), F E

is a positive integer for i6=d and F d

(8)

Proof. We know already that there is an inde omp osable proje tive mo dule P(E) as in the

statementsatisfying allassumptions but the one on F

i

E

, by Corollary2.7.

Take r 6= d maximal su h that Q r =Q r 1 ' (F) with F E

not a p ositive integer. By

Lemma 2.9 , the extension of P(E)=Q r 1

by (F) splits. So, we have a surje tive morphism

P(E)!(E)(F). This isimp ossible sin e P(E) is inde omp osableand proje tive. 

2.5. Highest weight theory.

2.5.1. We assume here that k is a eld.

For E asimpleH-mo dule,allprop ersubmo dulesof (E)are graded submo dulesby Prop

o-sition 2.4, hen e are ontained in (E) >0

. Consequently, (E)has a unique maximalprop er

submo dule, hen ea unique simplequotient whi hwe denote by L(E).

Itfollows from(1 )thatL(E)istheuniquesimplesubmo duleofr(E)andthatL(E)6'L(F)

for E 6'F.

Proposition 2.11. The simple obje ts of O ln

are the L(E) forE 2Irr(H).

Proof. LetN 2O ln

. Then there is a simpleH-mo dule E su hthat Hom BH

(E;Res BH

N)6=0.

By(2 ),itfollowsthateverysimpleobje tofO ln

isaquotientof(E)forsomesimpleH-mo dule

E. 

2.5.2. LetM b eaA-mo dule. Letp(M)b e thesetofelementsofM annihilatedbyB >0

. This

is an H-submo duleof M.

Lemma 2.12. Let M be a A-module and E an H-module. Then,

 M isaquotient of (E)if andonlyifthere isa morphismofH-modules':E !p(M)

su h that M =A'(E) ;

 Ifk isa eldandEissimple,thenM 'L(E)ifandonlyifM =Ap(M)andp(M)'E.

In parti ular, Ap(M) is the largest submodule of M that is a quotient of (F) for some H

-module F.

Proof. The rst assertion follows from (2) and the isomorphism

Hom BH (E;Res BH M)'Hom H (E;p(M)):

Now,we assumek is a eld and E is simple.

Assume p(M) ' E and M = Ap(M). Then, M is in O ln

. Let N b e a non-zero submo dule

of M. We have 0 6= p(N)  p(M), hen e p(N) = p(M) and N = M. So, M is simple and

isomorphi to L(E) sin e M is aquotientof (E).

Assume M ' L(E). Sin e dim

k

Hom((F);L(E)) = 1 if E ' F, and this Hom-spa e

vanishesotherwise, it follows from(2) that p(M) 'E. 

Let Mf0g =0 and de ne by indu tion Nfig =M=Mfig, Lfig =Ap(Nfig) and Mfi+1g

as the inverse image of Lfig in M. We have obtained a sequen e of submo dules of M, 0 =

Mf0gMf1gM.

Sin e(E)islo allynilp otentforB,the followingprop osition is lear. Itdes rib es howthe

obje tsof O ln

are onstru tedfrom (E)'s ( f Prop osition 2.2 ).

Proposition 2.13. A A-module M islo ally nilpotent for B ifand only if S

i

(9)

Lemma 2.14. Assume k is a eld. Every A-module quotient M of (E) has a nite Jordan-Holder series 0 = M 0  M 1    M d = M with quotients M i =M i 1 ' L(F i ) su h that F i 2Irr(kW), E F i

is a positive integer for i6=d and F d

=E.

Proof. By Prop osition 2.4, we an assume F

E

2 Z. FromProp osition 2.4, it follows that

M inherits a grading from (E) (with M 0

6=0 and M <0

=0). Note that sin e  0 a ts as zero on p(M), we havep(M) L F2Irr(H) M E F .

Wewill rst showthat M has a simplesubmo dule.

Take i maximalsu h that p(M) i

6=0 and F a simpleH-submo duleof p(M) i . Let L=AF. Then, p(L) p(M)\M i and p(L)F L >i

, hen e p(L) =F. It follows fromLemma2.12

that L'L(F) andweare done.

Let d(M)= P F2Irr(H) dimM E F . We put M 0 = M=L. We have d(M 0

) < d(M). So, the lemma follows by indu tion on

d(M). 

2.6. Properties of ategory O . We assume here in x2.6 that k is a eld. We now derive

stru tural prop erties of our ategories.

2.6.1.

Corollary 2.15. Every obje t of O ln

has an as ending ltrationwhose su essivequotients are

semi-simple.

Proof. Follows from Lemma2.14 and Prop osition 2.2. 

Corollary 2.16. Every obje t of O has a nite Jordan-Holder series.

Proof. Themultipli ityofL(E)ina ltration ofM 2O givenbyCorollary2.15isb ounded by

dimW

E

(M), hen e the ltration must b e nite. 

Corollary 2.17. The ategory ~ O a

is generated by the L(E)hr i, with r = E

a.

Proof. Follows from Lemma2.3 and Prop osition 2.11. 

Corollary 2.18. Given a 2k, the full abelian Serre sub ategory of the ategory of A-modules

generated by the L(E) with E

2a+Z is O a+Z

.

2.6.2.

Theorem 2.19. The ategory O is a highest weight ategory (in the sense of [CPS1 ℄) with

respe tto the relation: E <F if F

E

isa positive integer.

Proof. Follows from Corollary2.10 and Lemma2.14 . 

Thestandard and ostandardobje tsare the(E)andr(E). Thereareproje tivemo dules

P(E),inje tivemo dulesI(E), tiltingmo dulesT(E). Wehavere ipro ityformulas, f. [CPS1 ,

Theorem 3.11℄:

[I(E):r(F)℄=[(F):L(E)℄ and [P(E):(F)℄=[r(F):L(E)℄:

Corollary 2.20. If E

F

62Z f0g for all E;F 2Irr(H(k 0

)), then O is semi-simple.

(10)

 Ext O (M;r(H))=0 for i>0  Ext 1 O (M;r(H))=0  the restri tion of M to  B is free.

Proof. The equivalen e b etween the rst three assertions is lassi al. The remaining

equiva-len es followfromthe isomorphismExt 1 O (M;r(H))  !Ext 1 A (M;r(H))  !Ext 1  B (M;k). 

2.6.3. FromProp osition 2.2, we dedu e

Lemma 2.22. Let M 2O

ln

. The following onditions are equivalent

 M 2O

 M is nitely generated as a A-module

 M is nitely generated as a 

B-module.

Lemma 2.23. There is r  0 su h that for all M 2 O , a 2 k and m in the generalized

eigenspa e for  0

for the eigenvalue a, then ( 0

a) r

m=0.

Proof. The a tion of  0

on (H) is semi-simple. It follows that, given r  0, a 2 k and

m 2

r

(H)in the generalized eigenspa e for  0

for the eigenvalue a, then ( 0

a) r

m=0.

Now, by Corollary 2.7 , there is some integer r su h that everyobje t of O is a quotient of

 r

(H) l

for somel . 

Proposition 2.24. There is r  0 su h that every module in O ln

is generated by the kernel

of B r

. Further, there is an integer r >0 su h that for M 2O ln

, we have Mfig=Mfr g for

ir .

Proof. Let r  0 su h that every proje tive inde omp osable obje t in O is a quotient of

 r 1

(H). This meansthat everyobje tinO is generated bythe kernelofB r

. Now, onsider

M 2O

ln

and m 2M. LetN b e the A-submo dule of M generated by m. This is inO , hen e

m is inthe submo duleof N generated by the kernelof B r

. 

Proposition 2.25. Every obje t in O ln

is generated by the 0-generalized eigenspa e of  0

.

Proof. It isenough to provethe prop osition forproje tiveinde omp osableobje ts inO ,hen e

for  r

's,where itis obvious. 

2.6.4. Let Q b e a progenerator for O ( f Corollary 2.8 ) and = (End A

Q) opp

. Then, is a

nitelygenerated proje tiveO -mo dule. Wehave mutuallyinversestandard equivalen es

(3) Hom(Q; ):O



! -mo d ; Q ( ): -mo d

 !O :

Let now X b e a (non-ne essarily nitelygenerated) -mo dule. Then, Q X is a quotient

of Q (I)

for some set I, where X is a quotient of (I)

. Now, Q

(I)

is in O ln

. So, the fun tor

Q ( ): -Mo d!A-Mo d takes values in O ln

and we haveequivalen es

Hom(Q; ):O ln  ! -Mo d; Q : -Mo d  !O ln :

3. Rational Cherednik algebras

3.1. Basi de nitions. Let V b e a nite dimensional ve tor spa e and W  GL (V) a nite

omplex re e tion group. Let A b e the set of re e ting hyp erplanes of W. Given H 2 A;

let W H

W b e the subgroup formed by the elementsof W that x H p ointwise. We ho ose

v H 2V su h that Cv H is a W H

-stable omplementto H. Also, let H

2V 

(11)

Let k b e a no etherian ommutativeC-algebra. The group W a ts naturally on A and on

the group algebra kW, by onjugation. Let : A ! kW; H 7! H ; b e a W-equivariant map su hthat H isan elementof kW H

kW with tra e zero, forea h H 2A.

Given as ab ove, one intro du es an asso iative k-algebra A(V; ); the rational Cherednik

algebra. It is de ned as the quotient of k C

T(V V 

)oW, the ross-pro du t of W with

k-tensoralgebra, by the relations

[;℄=0 for ;2V; [x;y℄=0for x;y2V  [;x℄=h;xi+ X H2A h; H ihv H ;xi hv H ; H i H

Remark 3.1. Let Re  W denote the set of (pseudo)-re e tions. Clearly Re is an AdW

-stable subset. Giving as ab ove is equivalent to giving a W-invariant fun tion : Re !

k; g 7! g su h that H = P g 2W H rf1g g

g. One may use the fun tion instead of , and

write v g 2 V, resp. g 2 V  , instead of v H , resp. H , for any g 2 W H

rf1g. Then the last

ommutationrelationin the algebra A(V; ) reads:

[;x℄=h;xi+ X g 2Re g  h; g ihv g ;xi hv g ; g i g;

whi h is essentially the ommutation relation used in [EtGi℄. In ase of a Weyl group W,

in [EtGi, BeEtGi, Gu℄, the o eÆ ients

( a ro ot) were used instead of the g 's. Then, H = 2

g for H the kernel of and g the asso iated re e tion.

Remark 3.2. Put e H = jW H j. Denote by " H ;j = 1 e H P w 2W H det(w ) j

w the idemp otent of

CW H

asso iated to the hara ter det j jW H

. Given as ab ove, there is a unique familyfk H ;i = k H ;i ( )g H2A=W;0ie H

of elementsof k su h that k H ;0 =k H ;e H =0 and H =e H e H 1 X j=0 (k H ;j+1 ( ) k H ;j ( ))" H ;j :

We observethat an b e re overedfrom the k H ;i ( )'s by the formula H = X w 2W H f1g e H 1 X j=0 det(w ) j (k H ;j+1 ( ) k H ;j ( )) ! w :

This way,we get ba k to the de nition of [DuOp℄.

Intro du e free ommutative p ositively graded k-algebras P = k C S(V  ) = L i0 P i and =k C S(V)= L i0  i

. Wehaveatriangularde omp ositionA=P k kW k ask-mo dules [EtGi,Theorem1.3℄. For H 2A,weput a H ( )= e H 1 X i=1 e H k H ;i ( )" H ;i 2k[W H ℄ and z( )= X H2A a H ( )2Z(kW):

(12)

For E 2Irr(CW), we denote by E

= E

( ) the s alar by whi h z( ) a ts on k C E. The elements a H ( ); z( ); and E

( ); may b e thought of as fun tions of the o eÆ ients k H ;i

=

k H ;i

( ) (through their dep enden e on ). In parti ular, it was shown in [DuOp, Lemma 2.5℄

that E

, expressed as a fun tion of the k H ;i

's, is a linear fun tion with non-negative integer

o eÆ ients.

Below, we will often use simpli ed notations and write A for A( ), k H ;i

for k H ;i

( ), and z

for z( ); et .

We intro du e a grading on A by putting V 

in degree 1, V in degree 1 and W in degree

0 (thus, the indu ed grading on the subalgebra P  A oin ides with the standard one on P,

while the indu ed grading on the subalgebra   A di ers by a sign from the standard one

on ). 2 Leteu k = P b2B b _

bb ethe\deformedEulerve tor eld",whereBisabasisofV andfb _

g b2B

is the dual basis. Wealso put eu=eu k

z. The elementseu k

and eu ommute with W. Note

that P b [b;b _ ℄=dimV + P H H . Wehave

(4) [eu;℄ =  and [eu;x℄=xfor  2V and x2V

 :

This shows the grading on Ais \inner",i.e., A i

=fa 2Aj[eu;a℄=iag.

3.2. Category O for the rational Cherednik algebra.

3.2.1. We apply now the results of x2 in the sp e ial ase: A = A = A(V; ), B = ,  B = P, H = kW, k 0 = C, H(k 0 ) = CW,  = eu,  0 = eu k and  0

= z. In parti ular, we have the

ategory O ( ) := O (A(V; )), whi h was rst onsidered, in the setup of Cherednik algebras,

in [DuOp℄.

For any ( ommutative)algebra map : k ! k 0

, there is a base extension fun tor O ( ) !

O ( ( ))givenbyA( ( )) A

( ).

3.2.2. Assume k is a eld. Sin e O and ~

O have nite global dimension(Theorem 2.19 ), the

Grothendie k group of the ategory of mo dules oin ides with the Grothendie k group K 0

of

proje tivemo dules.

We havea morphism of Z-mo dules f : K 0 ( ~ O )!Z[[q℄℄[q 1 ℄K 0

(CW) given by taking the

graded hara ter of the restri tion of the mo duleto W :

M 7! X E2Irr(k W) X i q i dimHom k W (E;M i )[E℄: Set[P℄:= P E2Irr(k W) P i q i dimHom k W (E;P i

)[E℄. ThisisaninvertibleelementofZ[[q℄℄[q 1

K 0

(CW),andforanyF 2Irr(kW),wehavef([(F)℄)=[P℄[F℄:Sin ethe lasses ofstandard

mo dulesgeneratetheK 0

-group,weobtainanisomorphism 1 [P℄ f :K 0 ( ~ O )  !Z[q;q 1 ℄K 0 (CW). Let k[(k H ;i ) 1ie H 1

℄ b e the p olynomial ring in the indeterminates k H ;i

with k w (H);i

= k

H ;i

for w 2 W. We have a anoni al evaluation morphism k[(k H ;i

)℄ ! k given by the hoi e of

parameters. Letm b ethe kernel ofthat morphism,R the ompletionof k[(k H ;i

)℄at m, and K

the eldof fra tionsof R.

Wehave ade omp osition map K 0 (O K )  ! K 0 (O ). It sends [(K C E)℄ to [(k C E)℄. 2

We use sup ers ripts to indi ate the standard (non-negative) grading on , and subs ripts to denote the

gradingsonAandP. Thus,putting formally := i

(13)

Proposition 3.3. Assume k is a eld. Then, [(E)℄= [r(E)℄ and [P(E)℄ = [I(E)℄ for any

kW-module E.

Proof. We rst onsider the equality[(E)℄=[r(E)℄. The orresp onding statement for K is

true, sin e the ategory is semi-simplein that ase. Hen ethe mo dules are determined,up to

isomorphism,by their so le (resp. by their head).

The statementfor k follows by using the de omp ositionmap.

Now,the equality [P(E)℄=[I(E)℄follows, using the re ipro ityformulas (x2.6.2 ). 

4. Duality, Tiltings, and Proje tives

4.1. Ringel duality. We keepthe setup ofx2.1 , with k b eing a eld. We makethe following

two additionalassumptions

 We have 

B H B =B H

 B =A;

 The subalgebra B A is Gorenstein (with parameter n), i.e.,there existsan integern

su h that Ext i B (k;B)= ( k if i=n 0 if i6=n:

The Gorenstein ondition implies that, for any E 2 Irr(H), viewed as a BH-mo dule via the

proje tion BH ! H, we have Ext i BH

(E;BH) = 0;for all i 6=n; moreover, Ext n BH (E;BH) = E [ ; whereE [

is aright BH-mo dule su hthat dimE [

=dimE.

Assume further that the algebra A has nite homologi al dimension. Thus (see[Bj℄), there

is awell-de ned duality fun tor

RHom A ( ;A):D b (A-mo d)  !D b (A opp -mo d) opp :

Furthermore, this fun tor is an equivalen e with inverseRHom A

opp( ;A).

The triangular de omp osition A=BH 

B givesa similarde omp osition A opp =  B opp H opp B opp

,for the opp ositealgebras. Therefore, wemay onsiderthe ategoryO (A opp

)and,

for any simplerightH-mo dule E 0

,intro du ethe standard A opp -mo dule  opp (E 0 ):=Ind A opp (BH) opp E 0 =E 0 BH A;

and also the proje tiveobje tP opp

(E 0

)2O (A opp

), the tilting obje t T opp (E 0 )2O (A opp ), et .

Lemma4.1.Thefun torRHom A

( ;A[n℄)sends(E)to opp

(E [

);forE a nite-dimensional

H-module.

Proof. Usingthat A is free as a left BH-mo dule,we ompute

Ext i A ((E);A)  !Ext i BH (E;A)  !Ext i BH (E;BH) BH A:

We see that this spa e vanishes for i 6= n, and for i = n we get RHom A (E); A[n℄  ' E [ BH A= opp (E [ ). 

Wewouldlike to use the duality fun tor RHom A

( ;A[n℄)to obtaina fun tor D b (O (A))! D b (O (A opp )) opp

. Tothis end, wewill exploita general result b elow valid for arbitraryhighest

weight ategories (a ontravariant versionof Ringel duality [Ri, x6℄).

Givenanadditive ategoryC,letK b

(14)

Proposition4.2. LetA andA betwo quasi-hereditary algebrasand C =A-mo d, C =A-mo d

the asso iatedhighest weight ategories. LetF bea ontravariant equivalen e between theexa t

ategories of - ltered obje ts F :C   !(C 0 ) opp . Then,  F restri tsto equivalen es C-proj  !(C 0 -tilt) opp and C-tilt  !(C 0 -proj) opp

 The anoni al equivalen es K b (C-proj)  !D b (C) andK b (C 0 -tilt)  !D b (C 0 ), yield an

equiv-alen e of derived ategories

D :D b (C)  ! D b (C 0 ) opp :  Let T = F(A), an (A A 0

)-module. Then, we have D = RHom

A ( ;T) and D 1 = RHom A 0

( ;T). Via duality (A-mo d) 

!(A

opp )-mo d

opp

, the fun tor D identi es C opp with the Ringel dual of C 0 . Proof. LetM 2C 

. Then,M isproje tiveifandonlyif Ext 1

(M;(E))=0foreverystandard

obje t (E) of C (indeed, if 0!M 0

! P ! M ! 0 is an exa t sequen e with P proje tive,

then M 0

is - ltered, hen e the sequen e splits). The mo dule F(M) is tilting if and only if

Ext 1

((E 0

);F(M))=0for everystandard obje t(E 0

)ofC 0

. Wededu ethat M isproje tive

if and only if F(M)is tilting.

So, F restri ts to equivalen es C-proj  !(C 0 -tilt) opp and C-tilt  !(C 0 -proj) opp .

The last assertions of the Prop osition are lear. 

We an now apply this onstru tion to the ategory O (A). Sp e i ally, Lemma 4.1

im-plies that the fun tor RHom A

( ;A[n℄) restri ts to an equivalen e O (A)   ! (O (A opp )  ) opp .

Therefore, using Prop osition 4.2 weimmediatelyobtain the following

Proposition 4.3. The fun tor RHom A ( ;A[n℄) opp restri ts to equivalen es O (A)-proj  !(O (A opp )-tilt) opp and O (A)-tilt  !(O (A opp )-proj ) opp :

The anoni alequivalen es K b (O (A)-proj)  !D b (O (A))andK b (O (A opp )-tilt)  ! D b (O (A opp )) indu ean equivalen e D:D b (O (A))  !D b (O (A opp )) opp

;su h that(E)7! opp (E [ ); P(E)7! T opp (E [ ); and T(E)7!P opp (E [ ): 

Corollary 4.4. The ategory O (A opp

) opp

isthe Ringel dual of O (A). 

4.2. Naive duality for Cherednik algebras. Re allthe setup of x3.2.

Denote by ( ) y

:CW 

!CW the anti-involutiongiven by w7!w y

:=w 1

forw2W.

In this se tion, we ompare the algebras A = A(V; ) and A(V 

; y

). This will provide us

with means to swit h b etween left and right mo dules, b etween -lo ally nite and P-lo ally

nite mo dules. The anti-involution( ) y :CW  !CW extends to an isomorphism (5) ( ) y :A( )  !A( y ) opp ; V 37! ; V  3 x7!x; W 3w7!w 1 :

Remark 4.5. Ifallpseudo-re e tions of W have order2, then y

= .

Further, we de nean isomorphismof k-algebras reversingthe gradings by

':A(V; )  !A(V  ; y ) opp  1

(15)

Remark 4.6. When V is self-dual, an isomorphismof CW-mo dules F : V ! V 

extends to

an algebra isomorphism(Fouriertransform)

F :A(V; )  !A(V  ; ) V 3 7!F(); V  3x 7! F 1 (x); W 3w7!w : The fun tor F  restri tsto an equivalen e O (V; )  !O (V  ; y ). 4.2.1. Given M 2 O ln , denote by M _

the k-submo dule of P-lo ally nilp otent elements of

Hom k

(M;k). This is a right A-mo dule. Via' 

, this b e omes aleft A(V  ; y )-mo dule. IfM is graded, then M _ =Homgr  k (M;k).

Thuswehavede ned afun tor (analogous of the standard duality on the ategoryO in the

Lie algebra ase):

(6) ( ) _ :O ln (V; )!O ln (V  ; y ) opp

When k is a eld, this fun tor is an equivalen e.

Givena kW-mo dule E, we use the notation E _

=Hom

k

(E;k) for the dual kW-mo dule.

Proposition 4.7. We have (E) _



!r(E

_

) for any kW-module E. If k is a eld, then

L(E) _  !L(E _ ); P(E) _  !I(E _ ); I(E) _  !P(E _ ); r(E) _  !(E _ ); T(E) _  !T(E _ ): Proof. Wehave Homgr  k (A W E;k)  !Homgr  (W) opp(A;Hom k (E;k))

and the rst part of the prop osition follows.

The se ond assertion follows fromthe hara terization of L(E) (resp. L(E _

))as the unique

simplequotient(resp. submo dule)of(E)(resp. r(E _

)). Theotherassertions areimmediate

onsequen esofthehomologi al hara terizationsoftheobje tsand/ortheexisten eofsuitable

ltrations. 

Notethat the fun tor ( ) _ restri tsto afun tor O (V; )!O (V  ; y ) opp . When k is a eld,

itisan equivalen e. A ompatible hoi eofprogenerators forO (V; )andO (V 

; y

)givesthen

an isomorphismb etween the algebra (V) for O (V; ) and the oppp osite algebra (V  ) opp for O (V  ; y ) ( f x2.6.4 ).

Corollary 4.8. Let E and F be two simple kW-modules. Then, the multipli ity of (E) in a

- ltration of P(F), for O (V; ), is equal to the multipli ity of L(F _ ) in a omposition series of (E _ ), for O (V  ; y ).

Proof. Byx2.19 ,themultipli ityof r(E _

) inar- ltrationof I(F _

) isequaltothemultipli ity

of L(F _

) ina omp ositionseries of (E _ ). The fun tor( ) _ sends P(F)toI(F _

)and(E)to r(E _

)(Prop osition 4.7) andthe result

follows. 

Remark4.9.Whenkisa eldandW isreal,weobtain,viaFouriertransform,adualityonO ln

and on O . Sin e all omplexrepresentationsof W are self-dual,we havethen(E) _



(16)

4.3.1. The rational Cherednik algebra is a deformation of the ross-pro du t of W with the

Weyl algebra of p olynomial di erential op erators on V. In parti ular, there is a standard

in reasing ltration on A with W pla ed in degree 0 and V V 

in degree 1. The asso iated

graded ring, grA,is isomorphi to S(V V 

)oW [EtGi,x1℄. It follows (see[Bj℄, [Bo,xV.2.2℄),

that Ais leftand rightno etherian, providedk isno etherian. Sin e V 

V is asmo oth variety

of dimension2dimV,the algebra Ahashomologi aldimensionat most 2dimV. Furthermore,

the usual results and on epts on D -mo dules ( hara teristi variety, duality) also make sense

for A,eventhough the algebra gr A isnot ommutative.

4.3.2. Weassumekisa eld,and putn=dimV. ThealgebrasandPare learlyGorenstein

with parameter n. Moreover,wehave Ext n  (k;) ' n V  . Hen e,E [ = n V  Hom k (E;k)=  n V  E _

; for any nite dimensional W-mo duleE.

It will b e useful to omp ose the fun tor RHom A( )

( ;A( )) with the anti-involution ( ) y

,

see(5 ), to get the following omp osite equivalen e

(7) RHom A( ) ( ;A( )) y : D b (A( )-mo d)  ! D b (A( ) opp -mo d) opp  ! D b (A( y )-mo d) opp :

FromProp osition 4.2 we immediatelyobtain the following

Proposition 4.10. The fun tor RHom A

( ;A[n℄) y

gives rise to an equivalen e

D :D b (O ( ))  !D b (O ( y )) opp : 

Wefurther intro du ean equivalen e

( ) _ ÆD : D b (O (V; ))  !D b (O (V  ; )) su hthat (E)7!r( n V C E) T(E)7!I( n V C E) P(E)7!T( n V C E)

In parti ular, we obtain( f. Corollary 4.4)

Corollary 4.11. The ategory O (V 

; ) is the Ringel dual of O (V; ). 

Remark 4.12. Notethat if W is real, then O is itsown Ringel dual.

4.3.3. Semiregularbimodule. WriteP ~

=

i

Hom(P i

;k)forthegraded dualofP, andformthe

ve tor spa e R := P ~

k

W. Let us x an isomorphismof C-ve tor spa es  n

V 

! C. We

have the following anoni al isomorphisms:

Homgr  W (A; n V C W)  !Homgr  k (P;W)  P ~ k W  !P ~ P A:

The rst two isomorphisms de ne a left A-mo dule stru ture on R, and the last one de nes a

right A-mo dule stru ture on R. It is p ossible to he k by expli it al ulations that the left

and right A-mo dulestru tures ommute,so that R b e omes an A-bimo dule. It is aCherednik

algebra analogue of the semiregular bimo dule, onsidered in [A℄,[So2 ℄ inthe Liealgebra ase.

Fromthe isomorphisms of A-mo dules

R A (E)=R W E  !Homgr  W (A; n V E) wededu e

Proposition 4.13. The fun tor M 7! Homgr  k (R A M;k) y (= left A(V; y )-module) sends (E) to ( n V  E _ ). 

(17)

4.3.4. GivenM a nitelygenerated A-mo dule,ago o d ltration ofM isastru ture of ltered

A-mo dule on M su h that grM is a nitelygenerated grA-mo dule. The hara teristi variety

Ch(M)isthe supp ortofgrM,viewedas aW-equivariantsheafon V 

V (a losedsubvariety).

Itiswellde ned,i.e.,isindep endentofthe hoi eofthego o d ltration(every nitelygenerated

A-mo duleadmitsago o d ltration). NotethatBernstein'sinequality: dimCh (M)dimV do es

not hold in general. Further, for M in O , the omplexD (M) has zero homology outside the

degrees 0;:::;n.

Let T = L

E

T(E) where E runs overthe simplekW-mo dules.

Corollary 4.14. Let M 2O . Then, dimCh(M)=dimV minfij Ext i O

(T;M)6=0g.

Proof. Let R = End (T) opp

. The fun tor RHom O (T; ) : D b (O )  ! D b (R-mo d) is an

equiv-alen e. Comp osing with the inverse of ( ) _ ÆD we obtain an equivalen e D b (O (V  ; ))  ! D b

(R-mo d) that restri ts to an equivalen e O (V 

; ) 

! R-mo d . We see that minfi j

Ext i O

(T;M)6=0g = minfij H i

(D M) 6=0g; where the RHS is equalto minfi j Ext i A

(M;A) 6=

0g dimV bythe de nitionofD . Theresult nowfollows fromthewell-knownformula,seee.g

[Bj℄: dimCh(M)=2dimV minfij Ext i A

(M;A) 6=0g: 

5. He ke algebrasvia monodromy

5.1. Lo alisation. 5.1.1. LetV reg =V S H2A H and P reg =k[V reg ℄=P[( 1 H )℄ H2A

. The algebra stru ture on A

extends to an algebra stru ture on A reg =P reg k  k kW. Wedenote by M 7!M reg =A reg A M :A-Mo d !A reg -Mo d

the lo alisation fun tor. Note that Res Preg M reg =P reg P

M. Notealso that every elementof

M reg

an b e written as r

m for somer 0,m 2M, where = Q

H2A

H

. This makesthe

lo alisation fun torhave sp e iallygo o d prop erties.

The restri tion fun tor A reg

-Mo d ! A-Mo d is a right adjoint to the lo alisation fun tor. It

is fully faithful. The adjun tion morphism oin ides with the natural lo alisation morphism

M !M

reg

ofA-mo dules. Itskernel is M tor

, the submo dule ofM of elementswhosesupp ort is

ontained inV V reg

. Denote by (A-Mo d ) tor

the full sub ategory of A-Mo d of obje ts M su h

that M reg

=0. The followingis lear.

Lemma 5.1. The lo alisation fun tor indu es an equivalen e

A-Mo d=(A-Mo d) tor  !A reg -Mo d:

The ategory O is a Serre sub ategory of A-Mo d . Let O tor = O\(A-Mo d ) tor . Then, the anoni al fun tor O =O tor ! A-Mo d=(A-Mo d ) tor

is fullyfaithful. Consequently, the anoni al

fun tor O =O tor !A reg -Mo d

(18)

5.1.2. When k isa eld, wehave a ommutativediagram D b (A( )-mo d) RHom A ( ;A) y 

//



D b (A( y )-mo d) opp



D b (A( ) reg -mo d) RHom Areg ( ;A reg ) y 

//

D b (A( y ) reg -mo d) opp

where the verti al arrows are givenby lo alisation.

5.1.3.

Lemma 5.2. Assume k is a eld. Then, ( )

_ restri ts to an equivalen e O tor (V; )  ! O tor (V  ; y ) opp .

Proof. LetM 2O . We put a grading on M (Prop osition 2.4). Sin e M isa nitelygenerated

graded P-mo dule(Lemma 2.22 ),the dimensionof Ch(M),the hara teristi variety ofM, an

b e obtained from the growth of the fun tion i7! dimM i . In parti ular, M 2O tor if and only if lim i!1 i 1 dimV dimM i 

=0. Su haprop erty is preservedby ( ) _ .  Denote by V : O !  O = O =O tor ; M 7! 

M; the quotient fun tor (the notation V has

b een used by So ergel [So1 ℄ for an analogous fun tor in the Lie algebra setup). The fun tor

Vadmits, by the standard `abstra t nonsense', b oth a left adjoint and right adjoint fun tors > V;V > :  O !O .

Theorem5.3. Assumek isa eld, andQisaproje tivein O . Then, the anoni aladjun tion

morphism a : Q ! V

> (



Q) is an isomorphism. In parti ular, for any obje t M in O , the

following anoni al morphism isan isomorphism

(8) V  : Hom O (M;Q)  !Hom O (  M;  Q):

Proof. Byx5.1.1 , for any twoobje tsM;Q; of O ,we have a anoni al isomorphism

Hom  O (  M;  Q)  !Hom A reg (M reg ;Q reg ):

Assume Q has a - ltration. Then it is free over P and thus has no non-zero submo dule

lying inO tor

, hen e V 

isinje tive.

Assume furthermore that M has a r- ltration. Then M _

has a - ltration (Prop osition

4.7), hen e has no non-zero submo dule lying in O tor . Sin e ( ) _ restri ts to an equivalen e O tor (V; )  !O tor (V  ; y ) opp

(Lemma 5.2), it follows that M has no non-zero quotient lying in

O tor

. This shows that V 

in(8) is an isomorphism.

Fromnowon, weassumethat Q isproje tive. It followsthat Q 0

=D (Q) istilting (Prop

osi-tion 4.10 ), hen e r- ltered.

Nowlet M b e a - lteredobje t. Then, M 0

=D (M) is - ltered. Weapply the result on

V 

, that we have already proved, to O ( y

). This yields, by duality ( f x5.1.2), that (8) is an

isomorphism,for any - lteredobje t M.

Sin e any proje tiveis - ltered,for any two proje tive obje ts P ;Q in O , we have

estab-lished the isomorphisms

(9) Hom O (P ;Q) V   !Hom  (  P;  Q) adjun tion =====Hom O (P ;V > (  Q)):

(19)

The ab ove isomorphisms imply, in parti ular, that, for any inde omp osable proje tive P,

we have dimHom O (P ;Q) = dimHom O (P ;V > ( 

Q)). It follows readily that the obje ts Q and

V >

( 

Q)have the same omp ositionfa tors with the samemultipli ities.

We an nallyprove that the anoni al adjun tion map a:Q !V >

( 

Q) is an isomorphism.

Bythe previousparagraph, itsuÆ esto showthata isinje tive. Tothisend,put K :=ker(a),

and assume K 6=0. LetL(E) b e asimple submo dulein K, and P(E) L(E); itsproje tive

over. By onstru tion,the omp ositemapg :P(E)L(E),!K ,!Qisnonzero. Thismap

g 2 Hom

O

(P(E);Q) go es, under the isomorphismb etween the left-hand and right-hand sides

of (9), to the map a Æ g : P(E)!K ,!Q a !V > ( 

Q). But thelatter mapis the zeromap sin e

K =ker(a), whi h ontradi tsthe fa t that (9 ) isan isomorphism. Thus, ker(a)=0, and the

Theorem isproved. 

Remark5.4. Ingeneral,the assumptionthatQisproje tive annot b erepla edbytheweaker

assumption that it is- ltered(already for W =Z=2Z). Nevertheless,see Prop osition 5.9 .

Corollary 5.5. Let X be a progenerator of O and E := (End O  X) opp . Then there is an equivalen e O  ! (E-mo d ) opp :

Proof. The pre eding theorem implies that (End O

X) opp



! E sin e proje tive mo dules are

- ltered. Hen ewe an use ategoryequivalen es(3 ). 

5.2. Dunkl operators.

5.2.1. One has an A-a tion on the ve tor spa e P, hen e an -a tion, arising via the

identi - ation P=(k). One nds, inparti ular, thatthe a tion of 2V on P isgivenby the Dunkl

op erator T  =  + X H2A h; H i H a H 2 D (V reg )oW; whereD (V reg

)standsfor the algebra of regulardi erentialop erators on V reg

, a tedup on by W

inanaturalway,anda H

2kW isviewedasanelementofD (V reg

)oW. ItfollowsthatT 

(P)P

(as partofA-a tiononP =(k));furthermore,this A-a tiononPisknown (Cherednik,[EtGi,

Prop osition 4.5℄) to b e faithful:

Theorem 5.6. The A-representation (k) is faithful. Thus, the natural a tion of PW on P

extends to an inje tive algebra morphismi :A,!k C D (V reg )oW whi h maps  2V to T  .

The map i indu es an algebra isomorphismA reg  !k C D (V reg )oW. 5.2.2. We onsiderM =Ind A W

X =PX,whereX islo allynilp otentand nitelygenerated

as an -mo dule,free overk. The a tion of 2V on pv,p2P and v2X is given by

(pv)=pv+  (p)v+ X H X 0i;je H 1 e H (k H ;i+j k H ;j ) H () H " H ;i (p)" H ;j (v):

Using Dunkl op erators, i.e., via the isomorphism of Theorem 5.6 , we have a stru ture of W

-equivariant(k C D (V reg ))-mo dule on M reg

. The orresp onding onne tion isgivenby

  = X H H () H  X 0i;je 1 e H k H ;i+j " H ;i " H ;j  :

(20)

Hen e   (pv)=pv+  (p)v X H X i e H k H ;i H () H p" H ;i (v):

For the rest of x5 , we assumethat k =C.

The followingresultiswell-knownto exp erts,butwe ouldnot nd anappropriatereferen e

in the literature.

Proposition 5.7. The above formula for  

de nes a W-equivariant integrable algebrai

on-ne tion on M with regular singularities.

Proof. Allthe laimsfollowfromthe onstru tion,with the ex eptionofthe assertion that the

singularities ofthe onne tionare regular. The onne tion has visiblyonly simplep oles at the

re e tionhyp erplanes,hen e itsuÆ es to provethe regularity at in nity with resp e t to some

(hen e any, see[De℄) ompa ti ationof V.

Consider the W-equivariant ompa ti ationY =P(C+V)of V,and extend M to the free

O Y -mo duleM Y :=O Y

X. Usinga ltration ofX we anredu e to the ase whereX =E is

simple.

A straightforward omputationshows that with resp e tto theextensionM Y

of M and with

resp e t to any standard o ordinate pat h on Y, the p oles at in nity are also simple in this

ase. 

5.2.3. We de ne a morphism of ab elian groups r : K 0

(O ) ! Z by r ([(E)℄) = dimE; for

E 2Irr(CW).

Lemma 5.8. Let M 2O . Then, M reg

is a ve tor bundle of rankr ([M℄) on V reg . Proof. Sin eM reg isa nitelygeneratedC[V reg

℄-mo dulewitha onne tion,itisave torbundle.

Now, taking the rank of that ve tor bundle indu es a morphism K 0

(O ) ! Z, whi h takes

the orre tvalue on (E). 

5.2.4. Proposition5.9. Assumek H ;i k H ;j + i j e H

62Z,for all H 2A andall 0i6=j e H

1. Let

N be a - ltered obje t in O . Then, for any M 2O , we have Hom O (M;N)  !Hom  O (  M;  N).

Proof. Assume rst that M is also a - ltered obje t. Then, we an write M = Ind A W X and N = Ind A W

Y with X ;Y nite dimensional W-mo dules, nilp otent over . The spa e

Hom A

(M;N) is the interse tionof Hom P (M;N) =PHom k (X ;Y) withHom A reg (M reg ;N reg ).

As in the pro of of Theorem 5.3, we have to show that any element of Hom P reg (M reg ;N reg )

that ommutes with the a tion of A reg

extends to a P-morphism M ! N. Observe that is

nothing but a at, W-invariantse tion of the onne tion on Hom Areg (M reg ;N reg ).

The residue of this onne tion on a hyp erplane H 2 A is onstant, and has eigenvalue

e H (k H ;i k H ;j ) on Hom k (X i ;Y j ), where X i is the summand of X of W H -typ e det i jW H (and likewise forY j ).

Lo ally near ageneri p oint p of H weexpand = P ll 0 l H l with l holomorphi on H near p,ofW H -typ e det l jW H ,andwith l 0

notidenti allyzeroon H. Fromthelowestorderterm

of theequation  v

H

( ) =0weseethat thereexisti;j su hthat i j =l 0 mo d(e H Z), andsu h that l 0 +e H (k H ;i k H ;j )=0. Thus l 0

(21)

The general ase follows fromthe sp e ial ase ab ove by rep eating the part of the argument

from the pro of of Theorem5.3, starting with formula (9 ). 

Remark 5.10. The ondition of the Prop osition is equivalent to the semi-simpli ity of the

He ke algebra H(W H

) of W H

. One ould onje ture that this assumption an b e repla ed by

theassumptionthatKZ(N)isaproje tiveH(W H

)-mo dule(thiswouldstillnot over ompletely

Theorem 5.3).

Remark 5.11. Ife H

=2 for allH, then the ondition of the Prop osition reads: k H 62 1 2 +Z. 5.2.5. LetC[(k H ;i ) 1ie H 1

℄ b e the p olynomial ring inthe indeterminates k H ;i with k w (H);i = k H ;i

forw2W. Wehavea anoni almorphismofC-algebras C[(k H ;i )℄!C; k H ;i 7!k H ;i . Let

m b e the kernel of that morphismand R the ompletionof C[(k H ;i

)℄at the maximalideal m.

Fix x 0 2V reg ,and letB W = 1 (V reg =W;x 0

) b e the Artinbraid group asso iated to W.

Let H R

=H

R

(W;V; ) b e the He kealgebra of W overR, that isthe quotient ofR[B W ℄ by the relations (T 1) e H 1 Y j=1 (T det(s) j e 2i k H;j )=0

for H 2 A, s 2 W the re e tion around H with non-trivial eigenvalue e 2i =e

H

and T an

s-generator of the mono dromy around H, f [BrMaRou, x4.C℄. Note that the parameters di er

from[BrMaRou℄b e ausewewillb eusingthehorizontalse tionsfun torinsteadofthesolution

fun tor. Weput H K =H R R

K,where K is the eld of fra tions of R and H =H R

R

(R=m).

Remark 5.12. It is known that H R

is free of rank jWj over R for all W that do not have

an irredu ible omp onent of typ e G 17:::19 , G 24:::27 , G 29 , G 31:::34

in Shephard-To dd notation (in

these ases, the statementis onje tural) [Mu℄.

5.3. The Knizhnik-Zamolod hikov fun tor. Let M b e a (C[V

reg

℄oW)-mo dule, free of

nite rank over P reg

= C[V

reg

℄. Let r : M ! M

C

R b e an R-linear integrable onne tion.

Then,the horizontalse tionsof rde ne,viathe mono dromyrepresentation,an RB W

-mo dule

L, free overR.

Let r

0

: M ! M b e the sp e ial b er of r. Then, the horizontal se tions of r 0 is the CB W -mo dule L R (R=m). Let r K :M ! K C

M b e the generi b er of r. Then, the horizontal se tions of r K is the KB W -mo duleL R K.

Takinghorizontalse tionsde nesanexa tfun torfromthe ategoryofW-equivariantve tor

bundles on R C

V reg

with an integrable onne tion to the ategory ofRB W

-mo dules that are

free of nite rankoverR.

Sin ethe onne tionon (R C

E) reg

hasregularsingularitiesitfollows that the onne tion

on M

reg

has regularsingularities for any M 2O  R .

Comp osing with the lo alisation fun tor, we obtain an exa t fun tor KZ R from O  R to the ategory of RB W

-mo dules that are free of nite rankoverR.

Similarly,we obtain exa tfun tors KZ:O !CB W -mo d and KZ K :O K !KB W -mo d.

It is well-known ( f. e.g. [BrMaRou, Theorem 4.12℄) that the representation of KB W on KZ K ((K C

E)) fa tors through H K

to givea representation orresp onding (via Tits'

(22)

Theorem5.13(He ke algebra a tion). Thefun tor KZ:O !CB W

-mo dfa tors througha

fun tor KZ:O =O tor

!H-mo d. Similarly, the fun tor KZ K

:O K

!KB

W

-mo d fa tors through

a fun tor KZ K :O K =(O K ) tor !H K -mo d. For M 2O  R , thea tion of RB W on KZ R (M) fa tors through H R .

We have a ommutative diagram

O K KZ K

//

H K -mo d O  R KZ R

//

C R



K R

OO

H R -mo d C R



K R

OO

O KZ

//

H-mo d Proof. First, O tor (and (O K ) tor

) are the kernels of lo alisation.

When M = (K

C

E), then, we have the Knizhnik-Zamolo d hikov onne tion and the

representationKZ K (M)fa torsthroughH K . Sin eO K

issemi-simple(Corollary2.20 ),itfollows

that the a tion on KZ K (M) fa tors through H K forany M in O K .

Wenow onsiderthe aseofa- lteredmo duleM ofO R

. Weknowthatthea tionofKB W on K R KZ R (M)'KZ K (K R M) fa torsthrough H K . Sin eKZ R

(M) isfreeoverR, itfollows

that the a tion of RB W on KZ R (M) fa tors through H R .

Fromthis result,wededu ethatthea tionofCB W on KZ( r (CW))  !C R KZ R ( r (RW))

fa tors through H. Sin e everyinde omp osable proje tive obje t of O isa dire t summandof

 r

(CW)forappropriater (Corollary 2.7), itfollowsthat the a tionofCB W

on KZ(M)fa tors

through H for every proje tiveM, hen e forevery M inO . 

5.4. Main results. In this subse tion weassume that dimH =jWj, f. Remark5.12.

The fun tor KZ:O ! H-mo dis exa t. Hen e,it is represented by a proje tiveP KZ

2O . In

other words, there exists an algebra morphism  : H ! (End O

P KZ

) opp

su h that the fun tor

KZ isisomorphi to Hom O

(P KZ

; ).

Weknowalso, see x5.1.1,that the fun tor KZfa tors through O =O tor

!H-mo d.

Theorem 5.14. The fun tor KZindu es an equivalen e: O =O tor



!H-mo d.

This Theorem isequivalentto

Theorem 5.15. The morphism :H!(End O P KZ ) opp is an algebra isomorphism.

Proof of Theorems5.14-5.15. Re all that the horizontal se tions fun tor gives an equivalen e

from the ategory of ve tor bundles over V reg

=W with a regular integrable onne tion to the

ategoryof nite-dimensionalCB W

-mo dules(Riemann-Hilb ert orresp onden e,[De,Theorems

I.2.17 and I I.5.9℄).

We dedu e from x5.1.1 that KZ :O =O tor

! H is a fully faithfulexa t fun tor with image a

full sub ategory losed undertaking sub obje ts and quotients. Furthermore,P KZ , theimage of P KZ in O =O tor , is aprogenerator of O =O tor

. Thus, Theorem5.14 follows from Theorem5.15 .

To prove Theorem5.15 , observe that the morphism  is surje tive. Indeed, let C 0

b e a full

sub ategory of an ab elian ategory C, losed under taking quotients, and >

F a left adjoint to

the in lusionF :C 0

,!C. Then the adjun tion morphism:Id !F Æ

( >

(23)

(X) is the anoni al map from X to its largestquotient inC 0

. Thisproves surje tivity of the

morphism ab ove. Further, we have P KZ = M E2Irr(CW)

(dimKZ(L(E)))P(E):

Hen e,we ompute dim(End O P KZ )= M E;F

dimKZ(L(E))dimKZ(L(F))dimHom(P(E);P(F))

= M

E;F ;G

dimKZ(L(E))dimKZ(L(F))[P(E):(G)℄[(G):L(F)℄

= M

E;F ;G

dimKZ(L(E))dimKZ(L(F))[r(G):L(E)℄[(G):L(F)℄

= M

G

dimKZ(r(G))dimKZ((G))

Now, the restri tions of r(G) and (G) to V reg

are ve tor bundles of rank dimG (Prop

osi-tion 3.3 and Lemma 5.8), hen e dim(End O

P KZ

) = jWj = dimH. This shows that  is an

isomorphism. Notethat this rank omputation an also b e a hievedby deformationto R. 

The following result shows that the ategory O an b e ompletelyre overed from H and a

ertain H-mo dule :

Theorem 5.16 (Double- entralizer property). Let Q be a proje tive in O . Then, the

anoni al map Hom O

(M;Q)!Hom

H

KZ(M); KZ(Q) 

isan isomorphism,for any M 2O .

Furthermore, if X is a progenerator for O , then, we have an equivalen e

End H KZ(X)  opp -mo d  !O :

Proof. The rstpartfollowsfromTheorems5.3and5.15andthese ondfromCorollary5.5. 

Remark5.17. We onje turethat,if W =S n

, thenO isequivalenttothe ategoryof

nitely-generatedmo dulesovertheasso iated q-S huralgebra. Thatwouldimply,inparti ular,thatif

k H ;1

=k 1

<0 is a negativereal onstant, then the Cherednikalgebras A(S n ) with parameters k 1 and k 1

1;resp e tively,are Morita equivalent.

Let Z(H) denote the enter of the algebra H and Z(O ) the enter of ategory O (i.e. the

algebra of endomorphismsof the identity fun tor Id O

).

Corollary5.18. The anoni almorphismZ(O ) !End O P KZ indu es anisomorphismZ(O )  !

Z(H). In parti ular, the fun tor KZindu es a bije tion between blo ks of O andblo ks of H.

Proof. This follows immediatelyfrom Theorem5.16 : given two rings B and C and a(B;

C)-bimo dule M su h that the anoni al morphisms B  !End C opp (M) and C  !(End B M) opp are

isomorphisms, then wehave a anoni al isomorphismZ(B) 

!Z(C). 

The de omp osition matrix K 0

(O K

) !K

0

(O ) is triangular. We dedu e the triangularity of

de omp osition matri esof He kealgebras, in hara teristi 0:

(24)

5.4.1. KZ-fun tor and Twist. Let  b e a one-dimensional hara ter of W and  

: CW !CW

the automorphismgiven by w7!(w )w for w2W. This extends to an isomorphism

  :A( )  !A(  ( )); V 3 7!; V  3x7!x; W 3w7! (w )w : Weobtain an equivalen eO ( )  !O (  ( )),sending V(E)to V(E 1

),where V stands for

any ofthe symb ols: L;;r;P ;I;T.

For H 2 A, let d H 2 f1;:::;e H g su h that  jW H = det d H jW H . De ne an automorphism   of D (V reg )oW by P 3f 7! f; W 3w7!(w )w and   7!  X H H () H " H ;e H e H k H ;e H d H for 2V:

(for notation, see Remark3.2). We havea ommutativediagram

A( ) i

//

  



D (V reg )oW   



A(  ( )) i

//

D (V reg )oW GivenM a(D (V reg

)oW)-mo dule,then (  )  M  !M O V reg ( 1 ) reg .

This self-equivalen e of the ategory of W-equivariant bundles with a regular singular

on-ne tion on V r eg

orresp onds, viathe horizontalse tionsfun tor, to the automorphismof CB W givenby T 7!e 2i k H;e H d H (s) 1 T

for H 2 A, s 2 W the re e tion around H with non-trivial eigenvalue e 2i =e

H

and T an

s-generator of the mono dromy around H. This indu es an isomorphism H() : H(W; )  !

H(W; 

( )) and the following diagramis ommutative:

O ( ) (  ) 

//

KZ



O (  ( )) KZ



H(W; )-mo d H() 

//

H(W;  ( ))-mo d

5.4.2. KZ-fun tor and Duality. Wehave a ommutativediagram

D b (A( )-mo d) ( det )ÆRHom A( ) ( ;A( )) y 

//



D b (A( det ( y ))-mo d) opp



D b ((D (V reg )oW)- oh ) 

//

D b ((D (V reg )oW)- oh) opp

wherethe verti alarrowsare givenbylo alisation followedbytheDunkl op eratorisomorphism

i of Theorem5.6 and the b ottom horizontalarrowis the lassi al D -mo dule duality.

Consider the isomorphismCB  !(CB ) opp givenby T 7!det(s) 1 e 2i k H;1 T 1

(25)

for H 2 A, s 2 W the re e tion around H with non-trivial eigenvalue e 2i =e

H

and T an

s-generator ofthe mono dromy around H. It indu esan isomorphism

H( y ): H(W; )  !H(W; y ) opp :

We on lude that wehave a ommutativediagram

D b (O ( ))  D

//

KZ



D b (O ( y )) opp KZ



D b (H(W; ))  H( y )

//

D b (H(W; y )) opp

On the other hand, by Lemma 5.2, we know that ( ) _

preserves O tor

, hen e des ends to

the quotient ategory O =O tor

, i.e., there is an equivalen e  making the following diagram

ommute: O (V; )  _

//

KZ



O (V  ; y ) opp KZ



H(W;V; )-mo d  

//

H(W;V  ; y )-mo d opp

Further, ho ose a W-invariant hermitian form on V, i.e., a semi-linear W-equivariant

iso-morphism  :V 

!V



. Then, we get an isomorphism 1 (V reg =W;x 0 )  !  1 (V  reg =W;(x 0 )). It indu es an isomorphismH() : H(W;V; )  ! H(W;V 

; ). Comp osing with H( y ), we obtain an isomorphismH( Æ ( ) y ):H(W;V; )  !H(W;V  ; y ) opp

, whi hwe denoteb elowby .

Remark 5.20. One ould onje ture that the two fun tors  and 

are isomorphi (they

indu e the samemaps at the levelof Grothendie k groups).

5.4.3. TheA-moduleP KZ

andDuality. LetIrr(W;V; )Irr(W)denotethesubsetformedbyall

E 2Irr(W)su hthatL(E) reg

6=0. Wehaveabije tionIrr(W;V; )  !Irr(W;V  ; y ); E 7!E _

(Prop osition 4.7 and Lemma5.2 ). Thus,P KZ

= L

E2Irr(W;V; )

(dimKZ(L(E)))P(E).

To makethe dep enden eon V and expli it,wewill write P KZ

=P

KZ (V; ).

Proposition 5.21. (i) We have D (P KZ (V; )) ' P KZ (V; y ) and P KZ (V; ) _ ' P KZ (V  ; ). In parti ular, P KZ

is both proje tive and inje tive.

(ii) ForE 2Irr(W), the following are equivalent

 E 2Irr(W;V; )

 L(E) is a submodule of a standardmodule

 P(E) is a submodule of P KZ  P(E) is inje tive  P(E) is tilting  I(E) is proje tive  I(E) is tilting

Proof. The rst laimfollows fromx5.4.2. Prop osition 4.7 then impliesthat P KZ

is inje tive.

The onsiderations ab ove implythat if E 2 Irr(W;V; ), then P(E) is inje tiveand tilting.

The assertions ab out I(E) followby applying( ) _

.

(26)

This shows thatany of the assertionsab out P(E)or I(E)impliesthat E 2Irr(W;V; ): 

6. Relation to Kazhdan-Lusztig theory of ells

WereviewsomepartsofKazhdan-LusztigandLusztig'stheoryofWeylgrouprepresentations.

6.1. Lusztig's algebra J.

6.1.1. Let(W;S)b ea niteWeylgroup,H b eitsHe kealgebra, aZ[v;v 1

℄-algebrawithbasis

fT w g w 2W and relations T w T w 0 =T w w 0 if l (w w 0 )=l (w )+l (w 0 ) and (T s +1)(T s v 2 )=0 for s2S:

Lusztig asso iated to W a Z-ring J, usually referred to as asymptoti He ke algebra, [Lu3 ,

x2.3℄. Let $ :H !Z[v;v 1 ℄ Z J b e Lusztig'smorphismof Z[v;v 1 ℄-algebras [Lu3, x2.4℄. The ring Q Z

J is semi-simpleand the morphismId Q(v ) $ is an isomorphism. For any ommutativeQ[v;v 1 ℄-algebra R weput H R :=R Z[v ;v 1 ℄ H. De nition 6.1. TheH R -modules S(M)=$  (R Q M), for M a simple Q Z J-module, will be referred to as standard H R -mo dules. 3

When R =Q(v),then the standard H R

-mo dules are simple and this givesa bije tion from

the setof simple(Q Z

J)-mo dulesto the setof simple(Q(v) Z[v ;v 1 ℄ H)-mo dules. Similarly,takingK =Q[v;v 1

℄=(v 1),weobtainabije tionfromthesetofsimple(Q Z

J

)-mo dules to the setof simpleQW-mo dules.

Wewillidentifythese sets of simplemo dulesvia these bije tions.

We have an order  LR

on W onstru ted in [KaLu, p.167℄. We denote by C the set of

two-sided ellsofW and by  the order on C oming from LR . LetfC w g w 2W

b e the Kazhdan-Lusztigbasis forH. LetI b e anideal of C,i.e., asubsetsu h

that given  0 , then 0 2I ) 2I. We putH I = L 2I;w 2 Z[v;v 1 ℄C w . This is atwo-sided ideal of H [Lu1 , p.137℄.

The ring J omes with a Z-basis ft w g w 2W and we put J = L w 2 Zt w . This is a blo k of J and J = L 2C J

. The orresp onding partition of the set of simple (Q Z

J)-mo dules is

alled the partition into families.

GivenI an ideal ofC, wedenote by I Æ

the setof 2I su hthat thereis 0

2I with < 0

.

The following isa slightreformulationof [Lu3 ,x1.4℄ :

Proposition 6.2. Let I be an ideal of C. Then, the assignment t w 7!C w indu es an isomor-phism of H-modules M 2I I Æ $  Z[v;v 1 ℄ Z J   !H I =H I Æ : In parti ular, the (Q[v;v 1 ℄ Z[v ;v 1 ℄ H)-module Q[v;v 1 ℄ Z[v ;v 1 ℄ (H I =H I Æ ) is a dire t sum of standard H Q[v ;v 1 ℄ -modules.

Thisprop ositiongivesa hara terizationofstandardH Q[v ;v

1 ℄

-mo dulesviatheHe kealgebra

ltration oming fromtwo-sided ells.

(27)

6.1.2. Next,we onsider ltrations omingfrom ertainfun tionson thesetoftwo-sided ells.

De nition 6.3. A sorting fun tion f :W ! Z is a fun tion onstant on two-sided ells and

su h that 0

< )f( 0

)>f( ).

Givenasortingfun tionf,weputH i R := L w 2W;f(w )i R  C w andH >i R := L w 2W;f(w )>i RC w : Then,H i R isa two-sided idealofH R

,sin e I =f 2C jf( )igisan ideal. Similarly,H >i R is a two-sidedideal of H R . Furthermore, I Æ

f 2 C jf( )>ig. Consequently, we dedu e from

Prop osition 6.2 :

Corollary 6.4. We have an isomorphism of H-modules M 2C;f( )=i $  Z[v;v 1 ℄ Z J   !H i =H >i : In parti ular, the (Q[v;v 1 ℄ Z[v ;v 1 ℄ H)-module Q[v;v 1 ℄ Z[v ;v 1 ℄ (H i =H >i ) is adire tsum of standard H Q[v ;v 1 ℄ -modules.

Thus,wehaveanother hara terizationof standard H Q[v ;v

1 ℄

-mo dulesvia the He kealgebra

ltration oming fromf.

LetFb ethesetoffamiliesofirredu ible hara tersofW. Wetransferthe on eptsasso iated

with C to F viathe anoni al bije tionb etweenC andF.

In parti ular, we havea fun tion f :Irr(W)!Z onstant on families.

WehaveH i =H \ ( L f(E)i e E Q(v) Z[v ;v 1 ℄ H),wheree E

istheprimitive entralidemp otent

of Q(v) Z[v ;v

1 ℄

H that a ts as 1 on the simple(Q(v) Z[v ;v

1 ℄

H)-mo dule orresp onding to E.

This shows that, if R is alo alisation of Q[v;v 1

℄, thenthe ltration on H R =R Z[v ;v 1 ℄ H

givenby f an b e re overed without using the Kazhdan-Lusztig basis. Weobtain

Proposition 6.5. Let R be a lo alisation of Q[v;v 1 ℄ and P be a proje tive H R -module. Let Q i (resp. Q >i

)bethesum of thesimple submodulesE ofQ(v) R

P su h thatf(E)i (resp.

f(E)>i).

Then, (P \Q i

)=(P \Q >i

) is a dire t sum of standard H R

-modules. 

Thus, any sorting fun tion yields a hara terization of the standard H R

-mo dules without

using the Kazhdan-Lusztig basis.

6.1.3. Given E 2 Irr(W), we denote by a E

(resp. A E

) the lowest (resp. highest) p ower of q

in the generi degreeof E [Lu1 ,x4.1.1℄.

By[Lu2 ,Theorem5.4 and Corollary 6.3 (b)℄,Lusztig's a-fun tionis asortingfun tion. The

orresp onding ltrations on proje tivemo dules haveb een onsidered in[GeRou℄.

WriteE <E 0

forthe orderonF arisingfrom< KL

viathe anoni albije tionb etweenC and

F. The following Lemmaisa lassi alresult :

Lemma 6.6. Let E;E 0 2F. If E <E 0 , then a E >a E 0 and A E >A E 0.

Proof. By [KaLu, Remark3.3(a)℄, we havev  LR w if and only if w 0 w  LR w 0 v, where w 0 is

the element of maximallength. Left multipli ation by w 0

indu es a automorphism of C. The

orresp onding automorphismofF istensor pro du tbydet [Lu1, Lemma5.14℄. It follows that

E <E 0

if and only if E 0

det <Edet ( f also [BaVo, Prop osition 2.25℄).

Wehave A

E

=N a

Edet

, whereN is the numb erof p ositive ro ots of W [Lu1, 5.11.5℄.

The Lemmais nowa onsequen eof the fa t that E <E 0

Referenties

GERELATEERDE DOCUMENTEN

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Niet alleen van Theo, die zich pas tot een antiracistisch protest laat verleiden nadat hij daarvoor oneigenlijke motieven heeft gekregen en die in zijn erotische escapades met

You might have noticed that this page is slightly scaled to accommodate its content to the slide’s

If they have a common factor, divide both by their greatest common divisor.. Pete Agoras Some

“Het CO2-niveau in de gesloten kas viel toen veel sneller terug dan in een standaardkas, omdat er weinig lucht van buiten werd aangevoerd.. Achteraf gezien hadden we toen meer

One of the nice properties that the circular chromatic number enjoys is that it is a rational number for all finite graphs G (see for instance [16]), and a fundamental question,