• No results found

Bounds on sets with few distances modulo a prime in metric spaces of strength t

N/A
N/A
Protected

Academic year: 2021

Share "Bounds on sets with few distances modulo a prime in metric spaces of strength t"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Bounds on sets with few distances modulo a prime in metric

spaces of strength t

Citation for published version (APA):

Blokhuis, A., & Singhi, N. M. (1981). Bounds on sets with few distances modulo a prime in metric spaces of strength t. (Eindhoven University of Technology : Dept of Mathematics : memorandum; Vol. 8116). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1981 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

Memorandum 1981-16 December 1981

Bounds on sets with few distances modulo a prime in metric spaces of strength t

by

A. B10khuis - N.M. Singhi

"

Technological University Department of Mathematics &

Computing Science PO Box 513, Eindhoven The Netherlands

(3)

Bound on sets with few distances

modulo a prime in metric spaces of strength t

by

A. Blokhuis - N.M. Singhi

r~

O. Abstract

.~

In this paper we prove an extension and slight generalization of a theorem of FRANKL and WILSON. [3J

Theorem: Let (X,d) be a metric space of strenght t, and B c X. For a prime p and integer s let

(i) d (a,b) 2 E IN for all a,b

(ii) d (a,b) ; 0 (mod p) 2 for

(iii)

#

{d2 (a, b)(mod p)

I

b E B}

s

Then card B::; L dim Harm(s). i==O

t. Preliminaries

E B

all a,b E B

::; s ::; !t for all a E B.

All statements, propositions and definitions in this section are quoated from [tJ (chapter 9).

Let (X,d) be a metric space of finite diameter

18.

Call c xy whence 0 ::; c ::;

o.

Let w denote a finite measure on X, with

xy w(X) =

J

dw x w < 00 2 d (x,y),

then w induces a measure W on X x X. Let S be the set {c I x, Y E X} •

(4)

.e

2

-Then

w

induces a finite measure II on S. For A € S

ll(A)

=

l

@{{x,y}

I

c € A} •

w xy

The set of polynomials l;x;x ; ... 2 can be orthonormalized w.r.t. the inner-product

<f,g> =

J

f(a)g(a)dll(a)

S

to give a set of polynomials {q.}oo 1 i=O

f

q.(a)q.(a)dll(a) 0 ••

1 J 1J

S

such that

where q. is a polynomial in one variable of degree i.

1

Definition: A metric space (X,d,w) has strength t if

J

ci cj dw(x) = f .. (c b)

ax bx 1J a

v ..

1,]

X

where f .. denotes a polynomial of degree S min{i,j} • 1J

[Comment: A metric space of strength t for all t is called a Delsarte space. Delsarte spaces of finite degree (i.e. where S is a finite set) are essentially the Q-polynomial schemes. Other examples are the compact symmetric spaces of rank 1, the real sphere, a real, complex or quaternion projective space, or the Cayley projective plane. A t-design, or spherical t-design, considered

as a metric space by itself, is a metric space of strength t (cf. [IJ , page 66)J.

Proposition:

J

q.(c )q.(cb )dw(x)

=

q.(O)q.(c b)o .. if i + j S t .

1 ax J x 1 1 a 1J

(5)

.e

3

-Definition: Harm(i) is the space of functions on X generated by the set

{x + q.(c )

I

a E X} . 1 ax

Remark:

By

the proposition above we have Harm(O) i ••• l Harm(rt / Z') with respect to the nondegenerate innerproduct:

<f,g>

I

f(x)g(x)dw(x)

X

Proposition: For i ~ r!t' dim Harm(i) = q. (x) 2 W 1

Remark: The actual values of dim Harm(i) for the projective spaces can be found in HOGGAR [4J.

Notation: H(s) := Harm(O) EII ••• EII Harm(s) •

2. Some lemma's

Lemma J: Let s ~

!to

For all X.E X

3x

E H(s) s.t. Vf E H(s): <i,f> = f(x).

Proof: H(s) is finite dimensional, hence isomorphic to its dual. Further-more the innerproduct is nondegenerate.

Lemma 2: Let M be a nonempty finite set of real numbers. Let 7lM be the set of all 7l -linear combinations of elements from M.. Then 7lM c p71M for some prime p implies M = {a} •

(6)

4

-~: This is a consequence of Krull's theorem [5J, page 10. We'll give a proof for the sake of completeness.

~M is a finite dimensional vector space over ~. Write the elements of M as vectors over some fixed basis of this vectorspace. For ~ E ~M let p(~) := the minimal exponent of p in all coordinates of m (where

p(Q) :'"

+ 00).

Now obviously p(~ + ~) ~ min{p(~),p(~)}. Therefore:

min mE?lM hence M :: {O} •

3. Proof of the theorem

'"" min mEM p(~)

=

min p(~) '" ~EpM I + min p(~) mEM

We will show that B (where'" is as in Lemma 1) is an independent subset of H(s). Now suppose this is not the case. We then have a dependency relation

A

I

~b

=

0 •

bEB

s For a E B define F (u)

a IT (a. -~ u) and fa(x)

i=1 {cab (mod p)

I

b E B}. This yields Since Fa is a polynomial Now:

L

~ < b, fa > '" 0 • bEB <b,f > _ 0 (mod p) a if

<a,f >

=

ITa.

i

a

(mod p)

a ~

b f: a

So we get ma E p?lM. where M

=

{~

I

bE B}.

=

F (c ) here a ax {al, .. ·,as}

=

of degree s we have f E H{s).

(7)

.e

5

-since a was arbitrary we get llM € P llM but from Lermna 2 this implies

~ 0 Vb€B.

This finishes the proof of the theorem.

4. Final remarks

The theorem (and it's proof, with some minor adjustments) is still valid

i f we replace ]N and II by a unique factorization domain D c :R; and <Q in the

proof of Lermna 2 by <Q QII D •

5. References:

[IJ A. Neumaier; Combinatorial configurations in terms of distances, THE memorandum 81-09.

[2J A. Neumaier; Distances, Graphs & Designs,

Europ. J. of Combinatorics (1980) I, 163-174.

[3J P. Frankl & R.M. Wilson; Intersection theorems with geometric conse-quences - to appear in the Europ. J. of Comb.

[4J S.G. Hoggar; t-designs in proj. spaces - to appear in the Europ. J. of Comb. [5J M. Nagata; Local Rings. Interscience tracts in pure and applied

Referenties

GERELATEERDE DOCUMENTEN

In de aardappelteelt komt een nieuwe Dickeya-soort voor (D. solani) die sterk virulent is. Stammen van verschillende Dickeya-soorten zijn gemerkt met een groen fluorescent

Er is hier ook veel water, waar de ganzen zich veilig terug kunnen trekken?. In maart en april trekken ze weer terug naar hun broedgebieden rond

Uit de resultaten van de incubatie bleek dat zowel bij Meloidogyne als Pratylenchus in respectie- velijk 5,2% en 1,8% van de besmette monsters de aaltjes wel in de

Block copolymers, containing blocks with different physical properties have found high value applications like nano-patterning and drug delivery. By gaining control over the

Voor de belangrijkste bladluissoorten die PVY kunnen overbrengen is in het verleden bepaald hoe efficiënt deze bladluizen PVY kunnen overbrengen.. De mate van efficiëntie wordt

Dus door het TAN om te zetten tot nitraat kan men uit met minder water- verversing, echter er wordt nog steeds een vergelijkbare hoeveelheid stikstof geloosd als

Voor het monitoren van zuurgraad in habitatgebieden zou de volgende procedure gebruikt kunnen worden: - vaststellen welke habitattypen in principe gevoelig zijn voor bodemverzuring

Die veranderingen van normen en waarden begrijpen we niet of nauwelijks, maar die bepalen straks het succes van de heront - worpen veehouderij.. In dat onbegrip schuilt wel