• No results found

Determining the electron transport mechanisms from direct heat flux reconstructions

N/A
N/A
Protected

Academic year: 2021

Share "Determining the electron transport mechanisms from direct heat flux reconstructions"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Determining the electron transport mechanisms

from direct heat flux reconstructions

M. van Berkel1,2, T. Kobayashi3, G. Vandersteen2, H.J. Zwart4,5, H. Igami3, S. Kubo3 N. Tamura3, H. Tsuchiya3, M.R. de Baar1,4, and the LHD Experiment Group

1DIFFER-Dutch Institute for Fundamental Energy Research, PO Box 6336, 5600HH Eindhoven, The Netherlands

2Vrije Universiteit Brussel (VUB), Dept. of Fundamental Electricity and Instrumentation, Pleinlaan 2, 1050

Brus-sels, Belgium

3National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu, 509-5292, Japan

4Eindhoven University of Technology, Dept. of Mechanical Engineering, Control Systems Technology Group\*Dynamics

and Control Group, PO Box 513, 5600MB Eindhoven, The Netherlands

5University of Twente, Dept. of Applied Mathematics, PO Box 217, 7500AE, Enschede, The Netherlands

Introduction

The heat flux is one of the key parameters used to quantify and understand transport in fusion devices. A new method is introduced to calculate the heat flux including its confidence with high accuracy based on perturbed measurements [1]. It is based on ideal filtering to optimally reduce the noise contributions on the measurements and piece-wise polynomial approximations to calculate the time derivative. Allowing to:

1. estimate the effective diffusion coefficient in a new way

2. assess the relevant transport mechanisms: convective velocity, temperature (gradient) de-pendencies, etc.

3. non-linear contributions and dependencies.

The methodology is applied to a measurement example using electron cyclotron resonance heat-ing block-wave modulation at the Large Helical Device showheat-ing the merit of the new method.

Direct calculation of the heat flux

The heat flux follows from the conservation of energy (assuming no mass transfer and no radiation):

∂ t(neTe(ρ,t)) = −∇ρqe(ρ,t) + p (ρ,t) (1) + boundary conditions.

(2)

with the electron temperature Te, density ne, heat flux qe, heat source term p (ρ,t) all as function of the dimensionless radius ρ.

Hence, the heat flux can be calculated in cylindrical coordinates by [2, 3]

qe(ρ,t) = 1 ρ Z ρ 0 ρ  ∂ ∂ t(neTe(ρ,t)) − p (ρ,t)  dρ. (2)

Discharge overview and noise reduction

4 4.5 5 5.5 6 6.5 0.5 1 1.5 2 2.5 3 3.5 4 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.5

On axis magnetic field 2.75 T NBI 2 MW steady-state balanced

0 50 100 150 200 250 300 10-4 10-3 10-2 10-1 100 |Te | [k eV] |Te| |Te| filt. σf[sur] σf[caf ] σt[sur] σt[caf ] σt[ca] 0 50 100 150 200 250 300 f [Hz] 0.1 1 5 20 |∂ Te /∂ t| [k eV/s ] --∂Te∂t --filt. ωσf[sur]

Fig. 1: LEFT: Overview of discharge LHD#111121 (a) time evolution of the temperature and density; (b) power density averaged over periods. RIGHT: Spectrum of the time trace of at ρ = 0.47 (LHD#111121). (a) Shows the original signal in grey and the filtered signal with stars. Various estimates of the standard deviation are shown where σf is the standard deviation in the frequency domain and σt time domain

(stationary white noise). The abbreviations stand for sur: surrounding frequency lines used to calculate variance, ca f : variance per frequency line, ca: variance calculated over over windowed time samples. (b) Amplitude of ∇tTe calculated by multiplication with iω and the corresponding standard deviation of

the individual frequency lines in the time derivative spectrum.

Steps taken to increase the accuracy of the heat flux reconstruction:

1. average over periods + use only sparse harmonic content (see Fig. 2(a) and Fig. 1(LEFT), respectively).

2. variances estimated from data (Fig. 2).

3. inverse Fourier transform: time domain one period (Fig. 1(LEFT) and Fig. 2).

4. piece-wise polynomial fit to suppress oscillations (Fig. 2).

(3)

Heat flux reconstruction 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 2.2 2.25 2.3 2.35 2.4 2.45 ˆ T[ke eV]

average over periods ideal filter local polynomials 0.005 0.01 0.015 0.02 0.025 0.03 0.035 t[s] -0.01 0 0.01 C on f. b n d . [k eV] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 -10 0 10 ∂ ˆ T/∂e t [k eV/s ] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 t [s] -0.05 0 0.05 C on f. b n d . [k eV/s ] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 ∂ ˆ T/∂e ρ [k eV/-] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 t [s] -0.05 0 0.05 C on f. b n d . [k eV/-] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 t [s] 4 6 8 10 12 14 qe /n e [k eVm /s ] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 t [s] -0.5 0 0.5 C on f. b n d . [k eVm /s ]

Fig. 2: Time evolution of average over periods of discharge LHD#111121 at ρ = 0.47 (a) temperature; (b) time derivative of the temperature; (c) spatial derivative of the temperature; and (d) perturbative heat flux. The different lines are the average over periods (light grey), harmonic reconstruction using ideal filtering (black), and piece-wise polynomials (red and blue). In the bottom subfigures are the confidence bounds (conf. bnd. 1.96σ ) in dashed (dotted) lines and the difference between the harmonic reconstruc-tion and the piece-wise polynomials (full lines).

Resulting perturbative heat flux and estimation of χeusing slopes Errors due to

• synchronization errors between RF and ECE measurements

• sensor dynamics

• deposition profile

can break the straightness of the lines and/or cause errors in the estimate of the diffusion coef-ficient χe. However, for the estimation of χeknowledge of the heat source is not required when

(4)

it is constant. Removing the perturbation from equation (2) results in extraordinary straight slopes. These slopes are a measure of the diffusion coefficient [4], i.e., qe(ρ,t) = χe ∂ T /∂ ρ .

2 2.5 3 3.5 −∂T /∂ρ[keV/-] 2 4 6 8 10 12 14 16 qe /n e [k eVm /s ] 2 2.5 3 3.5 −∂T /∂ρ[keV/-] -10 -5 0 5 10 q∂T / ∂ t /n e [k eVm /s ] ρ= 0.470 harmonic recontruction χeff= 4.71 ± 0.0117 [m2/s] χeff= 5.41 ± 0.0113 [m2/s]

LEFT: Perturbative heat flux based on (2) versus−∂ T /∂ ρ based on piece-wise polynomial (color) and harmonic reconstruction (grey). RIGHT: Perturbative heat flux based on temperature only (p(ρ,t) = 0) in (2) versus−∂ T /∂ ρ based on piece-wise polynomial (color) and harmonic reconstruction (grey).

Conclusion

A new methodology has been presented to assess the heat flux and diffusion coefficient re-sulting for this discharge and operating point in

• accurate estimates of diffusion coefficient (relative errors between heat source on and off extremely small confidence bounds, absolute errors can be larger than given due to calibration errors).

• no dependency of ∂ T /∂ ρ on χe(∂ T /∂ ρ) observed.

• no convective velocity observed.

• apparent dependency of χeon the total heating power.

References

[1] M. van Berkel, T. Kobayashi, et al., (under revision) Nucl. Fusion, 2018. [2] U. Stroth et al., Plasma Phys. Control. Fusion, vol. 38, no. 4, p. 611, 1996. [3] S. Inagaki, et al., Nucl. Fusion, pp. 113006, 2013.

[4] N.J. Lopes Cardozo, Plasma Phys. Control. Fusion, vol. 37, p. 799, 1995.

Acknowledgments: ECRH system is supported under grants ULRR701, ULRR801, ULRR804 by NIFS. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Referenties

GERELATEERDE DOCUMENTEN

PERSONAL Subjectiveness CROSS - MODAL Tactile perception Audative perception Olfactory perception Visual perception EXTENDED Affection Calmth.. Intensity and danger Indifference

Dit heeft diverse oorzaken: • er is een verschil in groeisnelheid, bij meer bemesting groeit het gras sneller en zal het in een jonger stadium al oogstbaar zijn; • de percelen

De videocamera wordt op een statief geplaatst en vóór het oculair van de stereomicroscoop gebracht en wel zodanig.. dat de afstand tussen de lens van het oculair en de lens van

Misschien is deze ontsluiting al bij enkelen onder u bekend, want ze wordt ook genoemd in de ’Guides geologiques régionaux: Bassin de Paris, Ile-de-France et Pays de Bray (19T**)*

This observation may allow some deeper insight into the thermalization dynamics of the electron gas in a gold nanoparticle during the arrival of short laser pulses, if it were

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Using data from a township near Cape Town, South Africa, where the prevalence of HIV is above 20% and where the TB notification rate is close to 2,000 per 100,000 per year, we

Ek het al vir haar gesê, sy dink nie daaraan dat elke aand die kos wat sy in haar mond sit, en die Tab wat daar moet wees vir haar om te drink, sy dink nie daaraan dat ek betaal