• No results found

Bottlenecks and stability in networks with contending nodes

N/A
N/A
Protected

Academic year: 2021

Share "Bottlenecks and stability in networks with contending nodes"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

International

Journal

of

Electronics

and

Communications

(AEÜ)

j o u r n al hom ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / a e u e

Bottlenecks

and

stability

in

networks

with

contending

nodes

Tom

Coenen

a,∗

, Hans

van

den

Berg

b,c

, Richard

J.

Boucherie

a

,

Maurits

de

Graaf

a,d

,

Ahmad

Al

Hanbali

e aDepartmentofAppliedMathematics,UniversityofTwente,Enschede,Netherlands

bTNOInformationandCommunicationTechnology,Delft,Netherlands

cDepartmentofDesignandAnalysisofCommunicationSystems,UniversityofTwente,Enschede,Netherlands dThalesNederlandB.V.,Huizen,Netherlands

eDepartmentofManagementandGovernance,UniversityofTwente,Enschede,Netherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received24August2010 Accepted14June2012 Keywords: Bottleneck Stability Contention

a

b

s

t

r

a

c

t

Thispaperconsidersaclassofqueueingnetworkmodelswherenodeshavetocontendwitheachother

toservetheircustomers.Ineachtimeslot,anodewithanon-emptyqueueeitherservesacustomeror

isblockedbyanodeinitsvicinity.Thefocusofourstudyisonanalyzingthethroughputandidentifying

bottlenecknodesinsuchnetworks.Ourmodelingandanalysisapproachconsistsoftwosteps.First,

consideringtheslottedmodelonalongertimescale,thebehaviorisdescribedbyacontinuoustime

Markovchainwithstatedependentservicerates.Inthesecondstep,thestatedependentservicerates

arereplacedbytheirlongrunaveragesresultinginanapproximateproductformnetwork.Thisenablesus

todeterminethebottlenecknodesandthestabilityconditionofthesystem.Numericalresultsshowthat

ourapproximationapproachprovidesveryaccurateresultswithrespecttothemaximumthroughput

anetworkcansupport.Italsorevealsasurprisingeffectregardingthelocationofbottlenecksinthe

networkwhentheofferedloadisfurtherincreased.

© 2012 Published by Elsevier GmbH.

1. Introduction

Inspiredbywirelessadhocnetworkswhereinterference pro-hibitsneighboringnodestosimultaneouslytransmitpackets,this paperconsidersaclassofopenqueueingnetworkmodelsinwhich serverscontendforserviceslots.Ineachtimeslotnodesthathave packets available for transmission tryto obtainthechannel to transmittheirpackets.Asnodeswithineachothersinterference rangecannottransmitatthesametime,anallocationmechanism, i.e. a medium access controlprotocol, is used todecide which nodesgettheopportunitytotransmit,i.e.toserveapacket.Once aserverin anodeisallowedtotransmitapacket,itblocksthe serversinaspecifiedsetofothernodescorrespondingtoan inter-ferenceneighborhood.Uponservicecompletion,apacketeither movestoanextnodeforfurtherservice,orleavesthenetwork. The network is called stable when for each node the average service rate exceeds the averagearrival rate of packets. When multipleorlargeflowspassthrougha node,theservicerateof thenode may not suffice, making this node a bottleneck.This paperinvestigates thestability range, thearrival rates offlows atwhich nodesbecomebottlenecks, andthethroughputofthe network.

∗ Correspondingauthor.

E-mailaddress:t.j.m.coenen@utwente.nl(T.Coenen).

Thebehaviorofthesystemunderconsiderationcanbedescribed byastatedependentdiscretetime Markovchainasweassume thatineachslotthecontentionbetweennodestakesplace inde-pendentof previousoutcomes.Inspired byresultsobtainedfor loss-networks,wemakeatwostepapproximationtoanalyzethis network, see Fig.1. As a first step, we considerthe long term averagebehavior, which neglects theeffect of theslottedtime andleadstoacontinuoustimeMarkovchain.However,withthe transitionrates ofthis chain stillbeingstate dependent, analy-sisremainscumbersomeandafurtherapproximationisneeded. Using alongtermaverageservicerate,weintroduce aproduct formnetworkapproximationwhichenablesustofindthe bottle-necksinnetworksofarbitrarysizeandtopologyanddetermine themaximalthroughput.Interestingly,itturnsoutthatwhenthe loadofthenetworkisincreased,abottlenecknodecanbecome stable again as a different node becomes the bottleneck. This surprising behavior is predictedcorrectly by our product form model.

Theremainderofthepaperisorganizedasfollows.First,Section 2givesaliteratureoverview,afterwhichSection3introducesthe discretemodelandcontentionprocess.Section4describesthefirst approximationstepresultinginthecontinuoustimemodelwith statedependentservicerates,followedbythesecond approxima-tionstepinSection5.Section6givestheresultsforthestability analysisandSection7presentsresultsfromsimulationtoillustrate theaccuracyofthemodelpresentedinthispaper.Finally,Section 8concludesthepaper.

1434-8411/$–seefrontmatter © 2012 Published by Elsevier GmbH. http://dx.doi.org/10.1016/j.aeue.2012.06.009

(2)

Fig.1. Approximationsteps.

2. Literatureandcontribution

The stability of networks, as considered in this paper, has receivedconsiderableinterestintheliterature.Alsoinspiredby wirelessnetworks,[1]analyzesadiscretetimeslottedALOHA sys-tem.Boundsonthestabilityregionarefoundusingtheconcept ofdominance.Adifferentapproachispresentedin[2]wherethe ratestabilityandoutputratesarecalculatedforsharedresource networks.Stabilityconditionsforseparatenodesarederivedfor generalallocationfunctionsundermildassumptions.Themodel discussedin this paper however doesnot fallunder theset of allocation functions, as the overall capacity of the network is notconstant.Foranetworkofparallelserverswithcoupled ser-vice rates, necessary and sufficient conditions for stability are derivedin[3].Stabilityandperformanceofnetworkswherethe serviceratedependsonthenetworkstateisalsoanalyzedin[4], where transmissions over links with a fixedcapacity are con-sidered. Opposed to the work presented in these papers, the rate allocated to a server does not depend on the number of packetspresentinthequeue,butonthenumberofnodes com-peting.

Similarassumptionsregardingthecontentionbetweennodes, wherealivenodesblockothernodesasdiscussedinthispaperare madein[5].Thethroughputinamultihoptandemnetworkis con-sideredbothundersaturation,whereeachnodegeneratesitsown trafficandunderasingleflowoverallnodes.Theauthorsconjecture thatarandomaccessschemeseverelydegradesthethroughputof thenetwork.

Analyticresultsforamultihopnetworkwithtwocontending queuesarepresentedin[6].UsingthetheoryofRiemann–Hilbert boundaryvalueproblems,thegeneratingfunctionofthe station-arydistributionisobtained.In[7]someperformancemeasuresof thissystemareanalyzed,focussingonthecomputationalissues thatoccur.Evenforsuchasmallnetworkasconsideredinthese papers,acomplexanalysisisneededtoobtainanalyticalresults. Theapproachwepresentisapplicableforgeneralsizenetworks, howeverwedonotobtainresultsonthestationarydistribution, butonstabilityandthroughput.

Theoptimalthroughputanetworkcansupport,oftenreferredto asthecapacityofthenetwork,isdiscussedin[8],whichhowever doesnotfocusonmulti-hopnetworks.Thisaspectisaddressed in[9],whereforasinglemulti-hopflowanewcapacitylimitis derived.Theseresultsarelimitingresultsforlargenetworks.More detailedmodelsarediscussedin[10]foratandemandlattice net-workwithsaturatednodes.Theycalculatetheoptimalofferedload, preventingpacketlossinanetworkwithhiddennodes.Thisworkis extendedformultiplecrossingflowsin[11].Insteadoffocussingon thespecificparametersoftheMACprotocol,aspresentedinthese papers,wetakeahigherlevelview,providingvaluableinsightsfor generalnetworks.

Nexttolimitingthecapacityofanetwork,contentionbetween nodeshasanimpactonthefairnessofprotocols,asintheequality inrateallocatedtonodesorthethroughputofflows.In[12]the authorsdescribethebordereffectsinaCSMA/CAnetworkandits impactonfairness.Thestabilityandthroughputforaweightedfair queueingmodelwithsaturatednodesisdiscussedin[13]showing thatthethroughput,whiletakingintoaccountthetopology,routing andrandomaccessintheMAClayer,inthissettingdoesnotdepend

ontheloadintheintermediatenodesaslongasthenetworkis stable.

Differentaspectsofimportanceforthestabilityandthroughput ofnetworkshavealsoreceivedmuchattention.Focussingonthe impactofrouting,[14]investigatesthestability andthroughput ofstaticwirelessnetworkswithslottedtime.Theauthorsshow that routing hasa large impactonthe stability properties and thataslongastheintermediatequeuesinanetworkarestable, thethroughputdoesnotdependonthetrafficgeneratedatthese intermediatenodes.In[15]thefocusisonthecalculationofthe interferencetonoiseratioandshowtheinfluenceofthenetwork sizeandthedatarateonthisratioandlinkthistothethroughput ofthenetwork.

Thecontributionofthis paperis thatwe providea compre-hensiblemodelthatveryaccuratelypredictsthebottlenecksand maximal throughputof a network, which alsois applicablefor networkswithunstablenodes.Theresultsprovideinsightinthe impactthatcontentionbetweennodeshasontheperformanceof thenetwork,withouttheneedofacomplexanalysis.

3. Discretetimemodel 3.1. Generalmodel

Consideranetworkconsistingofnqueueswithinfinitebuffers. Duetocontentionbetweennodesnotallnodescantransmittheir packetsatthesametime.WedefinethecontentionsetI(i),i=1,..., n,ofanodeiasthesetofnodesblockedfromtransmissionwhen nodeiistransmitting.Atypicalexampleisthesetofnodeswithina certaininterferencerange.However,forthemodelthereneednot bearelationbetweenthenetworkstructureandthecontention set.Thewaycontentionbetweennodestakesplacewillbe elabo-rateduponbelow.AsetofJtrafficflowsf(tj),j=1,...,J,travelover

multihoppaths,denotedbytheorderedsetstj,fromnodetj(1)to

tj(mj),whereweassumethatnoloopsaremadewithinapath,i.e.

pathsaresimpleandpacketsautomaticallyfollowtheirpath. Traf-ficconsistsofequallysizedpacketsthataretransmittedonepacket pertimeslot.AnexampleofsuchanetworkisdepictedinFig.2.In thisexampleanetworkof8nodesisdepicted.Inthefigurethere arethreeflows:f(t1)fromnode1throughnode2tonode3(i.e.we

havethatt1={1,2,3}),f(t2)fromnode1throughnodes4and6to

node8andf(t3)fromnode7throughnodes6and5tonode3.

(3)

firstcomefirstserved.Anodeiscalledstablewhenitsaverage ser-vicerateexceedstheaveragearrivalrateofpacketsatthenode, andanetworkiscalledstablewhenallitsnodesare.Anodethatis unstableiscalledabottlenecknode.Theaveragenumberof pack-etsofaflowthatreachthedestinationnodepertimeunitisthe throughputofthisflow,whichislimitedbytheservicerateofthe bottlenecknodesofthenetwork.Themaininterestinthispaper isthethroughputoftheflowsandtheidentificationofbottleneck nodes.

Anodeiscalledalivewhenithaspacketstotransmitandthus participatesinthecontention.Ineachtimeslot,allalivenodes con-tendtobeallowedtotransmitapacket.Theprobabilityofanode beingallowedtotransmitdependsonthesetofnodes contend-ing,whichwefocusoninthefollowingsection.Ineachtimeslot anodeiseithernotcontending,blockedorallowedtotransmit.In eachtimeslotthisprocessisrepeated,whereweassumethe selec-tionofnodesbeingallowedtotransmittobeindependentbetween timeslots.

Letpidenotetheprobabilitythatnodeiisaliveandletbea

livelinessvector,suchthati=1ifnodeiisaliveandi=0

other-wise.Thesetofall2npossiblelivelinessvectorsisdenotedby˘.

Theprobabilitythatalivelinessvectoroccursisdenotedbyq.

Theprobabilitythatnodeitransmitsunderlivelinessvectoris denotedbyri,.Thenetworkcanberepresentedbyadiscretetime

Markovchainwiththequeuelengthsateachnodeasthestateofthe system.Actually,aspacketsareforwardedtoanextnode depend-ingontheflowtheybelongto,alsothetypeofthepacketsinthe queueneedstobeincludedinthestatedescription.However,in oursteadystatedescriptionthesetypeswillnotplayaroleandare thereforeomittedfromthestatedescription.Thetransition prob-abilitiesdependonthestateofthesystemviathelivelinessvector only,i.e.thenumberortypeofpacketsinaqueuedoesnotaffect theprobabilityofanodetransmittinginaslot,unlessitisempty.

3.2. Contention

Multiplenodescanonlybetransmittingsimultaneouslyinthe sametimeslotwhentheyareoutsideofeachotherscontention set.Ifmultiplenodeswithineachotherscontentionsetarealive, thecontentionprotocoldecideswhichnodesmaytransmit.The probabilitythatanodeisallowedtotransmitapacketinthe follow-ingslotcanbedeterminedwhenthecontentionsets,theprotocol inuseandthecompetingnodesareknown.Weassumeanideal contentionprotocol,wherenocollisionswilloccurandhenceno packetswillbelost.

Aswearenotinterestedinthedetailsofthecontentionprotocol butonlythecorrespondingprobabilitiesfornodestotransmit,we willuseasimpleprotocolgivingeachnodeaninitialequal prob-abilityofwinningacontention.Forotherprotocols,transmission probabilitiescanalsobecalculated.Using

||=

n



i=1

i, (1)

i.e.||equalsthenumberofalivenodesand(takingemastheunit

vectoroflengthn,withallzerosexcepta1onlocationm), ˜

(k)=−



m∈I(k):m=1

em (2)

asthelivelinessvectorremainingafteranodekblocksallnodes initscontentionset(asitwonthecontention),theprobabilityri,

ri,=

0 for i=0 (1+



k/=i:k=1 ri, ˜(k))/|| for i=1 (3)

withri,0=0,where0denotesalivelinessvectorwithnoalivenodes.

Thiscanbeseenasfollows:withequalprobabilityof1/||any non-emptynode(sonodeiitselforanyotheralivenodek)winsthe directcontention.Assumingnodekwinsthecontention,itblocks allnodesinitscontentionregion,reducingthelivelinessstateto

˜

(k),afterwhichallremainingnodescontendagain.Anynodethat didnotwinthecontention,butwasnotblockedhencecancompete againandmightwinthenewcontention,withprobability1/| ˜(k)|. Thisprocesscontinuesuntilallnon-emptynodeseitherareallowed totransmitorareblocked.

Asanexample,considerthenetworkasdepictedinFig.2with contentionsetschosensuchthatnearbynodescontend:I(1)={2,

4},I(2)={1},I(4)={1,5,6},I(5)={4,6},I(6)={4,5,7},I(7)={6}.

Assumethatall6nodeshavepacketstotransmit(asnodes3and 8donottransmitpacketstheyareneveralive),sothat=(1,1, 0,1,1,1,1,0).Theprobabilityr4, thatnode4 willbeallowed

totransmitbydirectlywinningthecontentionis1/||=1/6.Iffor examplenode1winsthecontention,node4isblocked,asitisin itscontentionset.As ˜(1)=(0,0,0,0,1,1,1,0),wegetr4, ˜(1)=0

as ˜4(1)=0.Thesameholdsifnode5or6winsthecontention,

asr4, ˜(5)=0and r4, ˜(6)=0.Ifnode2or7wins thecontention,

node4stillcouldbeallowedtotransmit.Theprobabilitythatnode 4winscontentionafternode2haswonthecontentionisgiven byr4, ˜(2),where ˜(2)=(0,0,0,1,1,1,1,0).Thisprobabilitycan

becalculatedbycalculatingr4,,butwith=(0,0,0,1,1,1,1,0),

showingtherecursion.Asaftereachstep,butwiththenewvalue of,thenumberofzeroesinthelivelinessvectorincreases,the recursionwillstopwhen=(0,0,0,0,0,0,0,0).Forthisexample, theprobabilitythenodesmaytransmitaregivenby[19/48,29/48, 0,14/48,20/48,19/72,53/72,0].Wefurtheranalyzethisnetwork inSection7.2.

Notethattheoverallprobabilityofbeingallowedtotransmit is not equal for all nodes. A similar analysisto obtainri, can

bedoneforanynetwork,withanycontentionsetsandprotocol. More extensivecalculationswillbe neededforlargernetworks withdifferenttopologies,buttheprinciplewillnotchange.Inthe remainderofthispaper,wewillassumethatthecontentionregions andprotocolareknown,suchthatallconditionalratesri, ofthe

nodescanbecalculated.

4. Approximationstep1:continuoustime

Weareinterestedinthelongtermaveragebehaviorofthe net-work,especiallythethroughputandstabilityissues.Considering thesystemonahigherlevelandalargertimescale,thediscrete characterduetothetimeslotsfadesandthemodelcanbeseen asacontinuoustimeMarkovprocess.Thestateofthesystem con-sistsofthenumberandtypeofpacketsateachqueue,butasthe stateofthesystemonlyinfluencesthetransitionratesthroughthe livelinessofthenetwork,wedonotfocusonthequeuelengths. Theflowapacketbeingservedbelongstodeterminesthedirection inwhichitwillbeforwarded.Weincorporatethisintothemodel asdescribedbelow.Inthefollowingwewilldenoteparameters usedforthecontinuoustimeapproximationbyaddingahattothe equivalentparameterintheoriginaldiscretetimemodel.

Whenaqueuehaspacketsavailableandthelivelinessisgivenby ,theprobabilityofapacketbeingsentisgivenbyri,.Onaverage,

thenumberofpacketssentperslotunderstatehenceisri,.For

(4)

understateofthenodeusingtheexponentialdistributionwith rate ˆri,=ri,.Theprobabilityofanodebeingaliveornotdepends

onthearrivalrateofpacketsandtheservicerateatthenode.We firstfocusonthearrivalrateofpackets.

Wheneverthenodesonamultihoppathtj precedinganode

tj(i)arestable,thearrivalratefromthisflowwillbej,theexternal

arrivalrateoftheflow.Thetotalarrivalrateoftrafficaiatnodeiis

givenby ai=



j:i∈tj

j(i) (4)

wherej(i)is thearrivalrateatnodeiforflow f(tj).Whenthe

networkisstable,thissimplifiestoai=



j:i∈tjj.Whenthereare

unstablenodesinthenetwork,thearrivalrateofpacketsateach queuecanbedeterminedasfollows.Duetothemultihopfeed for-wardstructureofthenetworkwehavethatthearrivalratej(i)is

determinedbyitsprecedingnodes.Ifoneormoreofthe preced-ingnodesareunstable,theaveragearrivalrateforthenodesafter thebottleneckonthispathwilldependontheservicerateofthe unstablenodes.Theprobabilityptj(i−1)tj(i)thataservedpacketat nodetj(i−1)continuestonodetj(i),thepacketisofflowf(tj),is

givenby ptj(i−1)tj(i)=

j(tj(i−1))

atj(i−1) . (5)

Thearrivalratej(tj(i))fromflowf(tj)atnodetj(i)isgivenby

j(tj(i))=min(j(tj(i−1)),ptj(i−1)tj(i)ˆrtj(i−1)), (6)

wherej(tj(1))=j,theexternalarrivalrateofpacketsatthefirst

nodeinpathtj.Thiscanbeseenasfollows:eitherthepreceding

nodecanserveallitsincomingtraffic,oritsservicerateistoolow. Inthelattercase,thefractionoftheservicerateofnodetj(i−1)that

isusedforflowf(tj),equaltoptj(i−1)tj(i),determinesthearrivalrate

atthenextnodeforthisflow.Here ˆrtj(i−1)denotestheaveragestate

independentservicerateofnodetj(i−1),whichwillbedetermined

inthenextsection.Assumingthisrateisknown,Eqs.(5)and(6)give asystemofequationsthatcaneasilybesolved,givingthearrival rateperflowateachnode.Weusethesearrivalratesintheanalysis ofthelivelinessofthesystem,whichinfluencestheservicerateof thenodes.

5. Approximationstep2:productformnetwork

TheMarkov chainwith statedependentservice rates is not amenibleforanalysis.Foranetworkwithonlytwoqueuesin tan-dem,thisequalsthemodelpresentedin[6]underdeterministic servicetimes.Evenforsuchasmallnetwork,acomplexanalysis isneededtoobtainanalyticalresults.Therefore,foranarbitrary network,weapproximatethecontinuoustimeapproximationby obtainingan appropriatestate independentservicerateforeach nodetoanalyzethebehaviorofthenetwork.

Thestateindependentservicerate ˆriisobtainedbyconsidering

thelongtermaveragepercentageoftimethesystemisinastate withlivelinessvector.Theprobabilityofnodeibeingaliveisgiven by

ˆpi=min(

ai

ˆri

,1). (7)

Forthefinalapproximationstep,let ˆq denotethesteadystate

probabilitythatthelivelinessvectoris(tobecalculatedlater)

andassumethestateindependentaverageservicerateofanodei inthenetworktobegivenby,

ˆri=



∈˘

ˆri,ˆq

ˆpi (8)

WeobtainEq.(8)byconsideringalargetimescaleandweighingthe servicerateoverthepossiblelivelinessofthesystem,i.e.by uncon-ditioningontheliveliness,butconditioningonthenodebeingalive. Thestateindependentservicerate ˆricanbeseenastheaveragerate

atwhichanodeservicespackets,giventhatitisalive.

Theorem1. Thesteadystateprobability ˆqthatthesystemisina

statewithlivelinessvectorisgivenby ˆq= n



i=1 (1− ˆpi)(1−i)ˆpii. (9) 

Proof. Summarizingtheabove,wehavethefollowing assump-tionsforthestateindependentcontinuoustimeapproximation: 1.TheexternalarrivalprocessoftrafficatqueuesisaPoisson

pro-cess.

2.Thereisinfinitewaitingspaceatallthequeues.

3.Theservicetimeatthequeueshasanexponentialdistribution andisindependentofthestateofthesystemandarrivalprocess. 4.Aftercompletionofserviceatqueueiapacketinstantaneously movestothenextqueuekwithprobabilitypik,k=1,...,n,for

additionalserviceorwithprobabilitypi0thepacketcompletes

serviceandleavesthesystem,wherewehavethat



nk=0pik=1. Theroutingprobabilitiesareindependentofthehistoryofthe system.

Anetworkforwhichtheassumptions(1)–(4)holdisaproduct formnetwork(c.f.[16]).Hence,theprobabilityofacertainstateof thesystemoccurringistheproductoftheprobabilitiesofnodes containingacertainnumberofpackets.Asthestateofthesystem directlyimpliesacertainliveliness,alsothelivelinessvectorcanbe foundastheproductofthelivelinessofseparatenodes,showing (9)holds. 

WewillnowuseEqs.(4)–(9)asanapproximationforthe dis-cretetimemodel.Thisrathercoarseapproximationwillprovide quiteaccurateresults,asweareinterestedintheinfluenceofthe loadonaveragebehaviorofthenetwork.

6. Stability

Theaverageservicerate ˆriatwhicheachnodeoperates

deter-minestheloadunderwhichthenetworkisstable.Aspresented earlier,theaverageservicerateofanodeiisgivenby(8)andthe probabilitythatanodeisaliveby(7).Writingouttheexpression for ˆq andinserting(7)into(8),weobtainnequations,with2n

unknowns,whicharetheaiand the ˆri.Assumingthatallnodes

arestable,thatiswhenallai< ˆri,thearrivalrateateachnodeis

known.Thevaluesfor ˆricanhencebecalculatedforastablesystem.

However,itisstilltobedeterminedforwhichvaluesofj(andthus

ai)thenetworkisstable.

AspresentedinSection4,thearrivalrateforacertainflowjat nodetj(i)isgivenby(6)andthetotalarrivalrateby(4).Usingthen

Eq.(4)forai,itispossibletosolvethesystemof2nunknown

vari-ables,whichentailssolvingpolynomialsofdegreesthatincrease exponentiallywiththenetworksize. Solutionscan beobtained numerically,however,usingforinstancethefollowingalgorithm toobtainthevaluesof ˆri.

(5)

1.Setallvalues ˆrito1,i=1,...,n 2.Calculatej(k),j=1,...,Jandk=tj(1),...,tj(mk) 3.Calculateai=



j:i∈tjj(i),i=1,...,n 4.Calculate ˆpi=min(ai/ˆri,1),i=1,...,n 5.Calculate ˆq=

ni=1(1− ˆpi)(1−i)ˆpii,∈˘ 6.Calculatenew ˆri=



∈˘(ˆri,ˆq/ˆpi),i=1,...,n

7. Calculatethedifference



i= ˆri(new)− ˆri(old),i=1,...,n

8. Repeatstep2till7untilconvergenceoccurs,thatis|



|≤ıforan appropriatevalueofı.



WehavenumericallyestablishedthatAlgorithm2convergestoa uniquesolution ˆriforanyvaluesofj,j=1,...,J.Forananalysisof

thealgorithmwereferAppendixA.

UsingAlgorithm2,theservicerateofallnodescanbecalculated foranysetofflowsthroughthenetwork.Thecorrespondingarrival ratesatthedestinationnodesoftheflowsgivethethroughputof thenetwork.Wheneverthenetworkisstable,thetotal through-putwillequal



jj.Forageneralnetwork,thecalculationofthe

throughput,independentofthetopologyofthenetwork,involves solvingnequationsinnunknowns.UsingAlgorithm2,thearrival rate(s)canbechosenarbitrarily.Todeterminethestabilityrangeof thenetwork,weseparatelyconsidereachflowinthenetwork. Fix-ingthearrivalratesofallbutoneflow(suchthatthesystemwith theseflowsisstable),thereexistsavalueopt fortheremaining

flowsuchthatak= ˆrkforatleastonek∈1,...,n,whichprovidesthe

maximalthroughputoptofthisflow.Nodekisthenthebottleneck

ofthenetwork.Inthismannerthestabilityrangeofthenetwork canbecalculated(examplesareshowninthefollowingsection). 7. Examplesandvalidation

7.1. Multihoptandemnetwork

Inthefollowingweanalyzeamultihoptandemnetwork.When consideringageneralnetwork,theanalysisofthestabilityregion involvesconsideringflowsseparately.First,weshowhowfora spe-cificcontentionprotocolthetransmissionprobabilitiesri,canbe

calculatedinthisnetwork,whichcorrespondstoasingle multi-hoptransmissioninanetwork.Next,weusesimulationtovalidate resultsobtainedbyouralgorithmfordifferentsizesofthenetwork. Somesurprisingresultsareobtained,whicharecorrectlypredicted byourmodel.

work.Asindirectlyallnodesinthenetworkinfluenceeachother, thetotallengthofthenetworkhasanimpact.Thisimpactwhen allnodesarealiveisshown,usingacontentionprotocolselecting anodetotransmitwithequalprobabilityamongallalivenodes.

Considerthetandemnetworksuchthatnodescannottransmit andreceiveatthesametime.Anodethatisallowedtotransmit henceblocksitsdirectneighbor(s).Whenallnnodesarealive,each nodehasaprobability1/nofobtainingthechanneldirectlyand blockingitsneighbor(s).Theremainingnodescontinuecontending forthechanneluntiltheyareeitherblockedorallowedtotransmit. Therateri,1(n)foranodeatpositioniinafullyalivetandemnetwork

oflengthncanbecalculatedusing

ri,1(n)= 1 n

i−2



k=1 ri−k−1,1(n−k−1)+1+ n



k=i+2 ri,1(k−2)

. (10)

Therighthandsideof(10)followsfromthenodewinningthe con-tention:ifthefirstnodein thenetwork winsthecontention,it blocksthesecondnodeandtheremainingn−2nodescompete, withnodeinowatpositioni− 2.Otherwise,inasimilarmanner, anodebefore(butnotaneighboring)nodeiwinsthecontention, nodeiwinsthecontentionitself,eitherofnodei’sneighborswins thecontentionoranodekbehindnodeiwinsthecontention.Each oftheseeventsoccurswithaprobabilityof1/n,togethergivingthe recursiveformula.

Note that amultihop tandemnetwork (in thissetting) with nodesthat arenotalive canbedecomposedintomany smaller multihopnetworks.Forafullyalivetandemnetworkwherenodes cannottransmitandreceiveatthesametime,Table1showsthe ratesfordifferentlengthsofthenetwork.

Theorem3. Forthemultihoptandemnetworkwithallalivenodes, the rate allocatedto the nodes converges when the networksize increases,whereinparticular

lim n→∞r1,1(n)=1− 1 e and nlim→∞r2,1(n)= 1 e. (11) 

Proof. FortheproofwerefertoAppendixA.2. 

OtherlimitsareobservedinTable1,showingthattheborder effects fadefor themiddle nodesas thelengthof thenetwork increases,inaccordancewith[12].Thisbordereffectalreadystarts tofadefornetworksofsize12.

Wenotethatthecalculationoftheratesri,forthelinear

set-tinghasthepleasantpropertythattherateofacertainnodeiunder livelinessisonlydependentonthenumberofnodesthatarealive anddirectlyconnectedtoeachother.Whenconsideringdifferent Table1

Transmissionprobabilityforafullyalivetandemnetwork.

Size/node 1 2 3 4 5 6 7 8 9 10 11 12 1 1 – – – – – – – – – – – 2 0.5 0.5 – – – – – – – – – – 3 0.6666 0.3333 0.666 – – – – – – – – – 4 0.625 0.375 0.375 0.625 – – – – – – – – 5 0.6333 0.3667 0.4667 0.3667 0.6333 – – – – – – – 6 0.6319 0.3681 0.4444 0.4444 0.3681 0.6319 – – – – – – 7 0.6321 0.3679 0.4488 0.4262 0.4488 0.3679 0.6321 – – – – – 8 0.6321 0.3679 0.4481 0.4297 0.4297 0.4481 0.3679 0.6321 - – – – 9 0.6321 0.3679 0.4482 0.4291 0.4334 0.4291 0.4482 0.3679 0.6321 – – – 10 0.6321 0.3679 0.4482 0.4292 0.4328 0.4328 0.4292 0.4482 0.3679 0.6321 – – 11 0.6321 0.3679 0.4482 0.4292 0.4329 0.4322 0.4329 0.4292 0.4482 0.3679 0.6321 – 12 0.6321 0.3679 0.4482 0.4292 0.4329 0.4323 0.4323 0.4392 0.4292 0.4482 0.3679 0.6321

(6)

0 2 4 6 8 10 12 14 16 18 20 0.3 0.35 0.4 0.45 0.5 0.55 0.6 Arrival rate

Average queue length

Node 1 Node 2 Node 3

Fig.3.Simulatedaveragequeuelengthina3hopnetworkwiththeinstabilityratescalculatedbythemodel.

contentionsetsandprotocolornetworklayout,thisproperty how-evermaynolongerbepresent.

Tovalidatetheresultspresented in thispaper, a simulation modelhasbeenconstructedthatmimicsthebehaviorofthe dis-cretetimenetworkunderconsideration.Thearrivalandprocessing ofthepacketsismodeled,withasimulationforeachparameter settinglastingonemillionsimulatedtimeslotsafterawarmup periodof100.000slots.Theresultsarecomparedwiththe stabil-ityrangesandthethroughputofthenetworkcalculatedwiththe stateindependentcontinuoustimeapproximation,usingthe pro-videdalgorithm.Forsomesettings,weprovidetheexactderivation oftheresults.

Considerthemultihoptandemnetworkforn=3.Theaverage serviceratesatwhichthenodesoperatearegivenby(using(8) and(9)) ˆr1=(1− ˆp2)+ 1 2ˆp2(1− ˆp3)+ 2 3ˆp2ˆp3 (12) ˆr2=(1− ˆp1)(1− ˆp3)+ 1 2ˆp1(1− ˆp3)+ 1 2(1− ˆp1)ˆp3+ 1 3ˆp1ˆp3 ˆr3=(1− ˆp2)+ 1 2(1− ˆp1)ˆp2+ 2 3ˆp1ˆp2.

Obviously,thesecondnodewillbethebottleneckofthenetwork as ˆr2 issmallerthan ˆr1 and ˆr3,asitistheonlynodecontending

withtwoneighbors.Whennode2isunstable,wehavethat ˆp2=1.

Todetermineatwhatarrivalratethiswilloccur,weusethat =ai= ˆr2,sothat ˆp1= ˆr2 ˆr1 and ˆp3= ˆr2 ˆr3 . (13)

CombiningEqs.(12)and(13)with ˆp2=1wefindthat ˆp1= ˆp3=

(9−√57)/2, resultingin thecritical arrivalrate of= ˆr2=8−

57.Fromthis valueofonthesecondnodewillbeunstable. Ifweincreasethearrivalrateevenmore,thefirstnodewillalso becomeunstable.Thethirdnodehoweverwillalwaysremain sta-ble,asitsserviceratewillalwaysbehigherthantheservicerate atthesecondnode,whichdeterminesthearrivalrateatthethird node.Tofindfromwhichvalueofonthefirstnodewillalsobe unstable,wesubstitute ˆp1= ˆp2=1in(12)whichleadsto ˆp3=0.6,

andtherateatwhichnode1becomesunstableequals= ˆr1=0.6.

Alsonotethattherateofthesecondnodehasnowfallentoavalue of ˆr2=0.4,sothatthethroughputofthenetworkhasdecreased.

Forthethreenodetandemnetwork,Fig.3showstheaverage queuelengthatthethreenodesforincreasingloadofthesystem andFig.4showsthethroughputofthesystem.Thecalculated val-uesofarrivalratesforwhichqueuesbecomeunstablearedepicted asdottedverticallinesinthefigures.

AscanbeseeninFigs.3and4,thearrivalratesatwhichthe firstandsecondnodebecomeunstablecoincidewiththe calcu-latedvalues.Additionalsimulationsforthearrivalratesnearthe onescausinginstabilityofnodeswereperformedtoconfirmthe results,butarenotshowninthefigurestomaintainreadability.The throughput,whichreachesamaximumof8−√57≈0.4501when thesecondnodebecomesunstable,decreasesafterthisvalue.This decreaseinthroughputiscausedbythedecreaseinservicerate atthesecondnode,asthefirstnodebecomesmorehighlyloaded. Thiscausesthefirstqueuetobealivealargerfractionofthetime, blockingthesecondnode.Thethroughputsettlesat0.4afterthe firstnodehasbecomeunstableatanarrivalrateof0.6,whichisin agreementwiththevaluescalculated.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.3 0.35 0.4 0.45 0.5 0.55 0.6 Arrival rate Throughput

Simulated throughput Calculated throughput

(7)

0 2 4 6 8 10 12 14 16 18 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Arrival rate

Average queue length

Fig.5. Simulatedaveragequeuelengthina5hopnetworkwiththeinstabilityratescalculatedbythemodel.

Next, considering a larger network with 5 hops, one might expectthatitisthesecondnodethatbecomesthebottleneck.Using thepresented modelandsetting ˆp2=1howevershowsthat no

realvalued solutionexists,meaning thatnode2 cannotbethe nodetobecomeunstablefirst.It actuallyisthethirdnodethat becomesthebottleneckfirstatanarrivalrateof0.4323,whichis themaximumthroughputofthenetwork.Increasingthearrival rateto0.4448causesthesecondnodetobecomeunstableaswell. Increasingthearrival ratefurther, thethird nodebecomes sta-bleagain.Thepresentedmodelalsodeterminesthearrivalrateat whichthisoccursbymakingasmalladjustmenttotheequations. Asthethirdqueuewillbecomestableassoonasitsaverageservice rateislowerthanthesecondqueue’srate,wenowset ˆr2= ˆr3.As

bothqueuesarestillunstablewehavethat ˆp2= ˆp3=1andthat

ˆp4= ˆr2/ˆr4and ˆp5= ˆr2/ˆr5.Usingthestandardequationsforthe ˆri’s

andsetting ˆp1=/ˆr1,wesolvethesystemtoobtain=0.4803

and ˆr2= ˆr3=0.4306.Finallyincreasingthearrivalrateto0.6108

causesthefirstnodetobecomeunstable,resultinginathroughput of0.3892.Simulationofthenetworkunderconsiderationprovided theresultsaspresentedinFigs.5and6wheretheverticallines showthecalculatedvaluesforwhichnodesbecome(un)stable.

Thatitisqueue3thatisthefirstnodetobecomeunstablecan becalledsurprising.Whenallqueuesarealive,theaverageservice rateofqueue2islowerthanthatofqueue3.However,whenqueue 1and/orqueue5areempty,thethirdqueuehasthelowestrate (seeTable1fora3–5nodenetwork).AscanbeseeninFig.5,the averagequeuelengthatnodes1and5arelowfortheloadwhen queue2and3arealreadyreachinginstability.Thisindicatesthat theyfrequentlywillnotbealive,whichisinthedisadvantageofthe thirdnode,makingitthebottlenecknode.However,asthearrival rateincreases,nodes1and5willbealivemoreoften,whichis

beneficialfornode3,resultinginthequeuebecomingstableagain. Surprisingasthisbehaviormaybe,itispredictedcorrectlybythe model.

7.2. Generaleightnodenetwork

ConsiderthenetworkasdepictedinFig.2.Notethatanysetof interferingnodescanbeused,mimickingthebehaviorofanyaccess controlprotocol,i.e.tomimicanRTS/CTSprotocolallnodeswithin transmissionrangeofthesendingandreceivingnodecanbeused asthecontentionset.Toavoidtrivialresultswesettheinterference rangesforthisexampletobe(onlyshowingthenodesthatneedto transmit)I(1)={2,4},I(2)={1},I(4)={1,5,6},I(5)={4,6},I(6)={4,

5,7},I(7)={6}.Firstflowf(t1)issetup,withrate1=0.1.Obviously

thenetworkcanhandlethisflow.Second,flowf(t3)issetup,with

rate3=0.1aswell.Again,thenetworkremainsstable(notethat

eventhoughbothflowshavenode3asendpoint,thisdoesnotcause problemsasweassumeperfectreceptionofalltransmissions).Now flowf(t2)isinitiatedandtheopenquestioniswhichratecanbe

achievedforthisflow.Thearrivalratesoftrafficatthenodes,as longasthenetworkisstable,isgivenby

Node 1 2 3 4

Arrivalrate 2+0.1 0.1 0.2 2

Node 5 6 7 8

Arrivalrate 0.1 2+0.1 0.1 2

andtheprobabilitiesqofallpossiblelivelinessvectorscaneasily

becalculated.UsingthesevaluesinEqs.(7)and(8)givesasetof8 equationswith9unknowns(allthe ˆriand2),whichcanbesolved

whenitisknownwhichnodebecomesthebottleneck.Using2= ˆri

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Arrival rate Throughput

Simulated throughput Calculated throughput

(8)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Arrival rate flow 2

Throughput

Flow 1 Flow 2 Flow 3 Flow 1 sim Flow 2 sim Flow 3 sim

Fig.7.Simulatedandcalculatedthroughputinthe8nodenetworkwiththeinstabilityratescalculatedbythemodel.

fori=1,4,6andsolvingshowsthatitisnode4thatbecomesthe bottleneckatanarrivalrateof2=0.3789.Increasingthearrival

rate2furthercausesnode1tobecomeunstableaswell,

influ-encingthethroughputofthefirstflow.Usingthemodel,this is calculatedtohappenatanarrivalrateof2=0.5092.Fig.7shows

thethroughputoftheseparateflowsforanincreasingarrivalrate ofthesecondflow.Boththevaluescalculatedbythemodelandthe simulationresultsareshown.

Numericalevaluationshowsthatthemodelgivesveryaccurate predictionsofthethroughput,wheretheerrorateachcalculated pointstaysbelow1%.Theloadatwhichnode1and4become unsta-blecanberecognizedasthepointswheretheslopeofthegraph changes,wherethesimulationagainshowsthatthisisatthepoint predictedbythemodel.

8. Conclusion

Inspiredbywirelessadhocnetworks,whereinterference lim-itsthecapacity,networkswithcontendingnodesareanalyzedin thispaper. Eachtime slot,nodes competetotransmita packet fromtheirqueue, where awinning nodeblocksothernodes in itsneighborhood.The timeslot systemisapproximatedin two steps.First,byconsideringthelongrunaveragebehaviorofthe discretetimesystem,acontinuoustimemodelisobtained.Asthe secondstep,appropriate stateindependentserviceratesforthe nodesinthenetworkaredetermined.Combiningrelationsbetween thearrivaland serviceratesof thenodes,bottlenecknodesare identifiedwhichdeterminethethroughputofamultihopwireless network.Usingthetworathercoarseapproximationsteps,we pro-poseaproductformnetworkapproximation.Takingadvantageof thepropertiesofproductformnetworks,equationsforthe liveli-nessvector(whethernodeshavepacketsintheirqueuesornot)and theaverageserviceratesofthenodesarederivedandsolvedusing asimplealgorithm.Surprisingly,thecontinuousapproximationfor thelongtermaveragebehaviorturnsouttogiveaccurateresults concerningthestabilityandthroughputofthenetwork.Other per-formancemeasures,asthequeuelengthandwaitingtime,havenot beenconsidered.

Our approach provides very accurate resultsfor the lowest arrivalrateofaflowatwhichoneofthenodesbecomesunstable, thusgivingthemaximalthroughputfor thisflow.Also, increas-ingthe arrival rate further, instabilityof the restof the nodes isanalyzed.Ourmodelcorrectlypredicts surprisingbehavior in amultihoptandemnetwork,whereaqueueatfirstturningout tobethebottleneck,returnedtostabilityagainafterincreasing thearrivalrate.Theapproachpresentedisapplicableforgeneral networks,withvariouscontentionsettingsandprotocols.Using simulationsofthediscretetimesystem,resultswerecompared

withthecontinuoustimemodel,showingthatthemodelprovides veryaccurateresults.

AppendixA.

A.1. AnalysisofAlgorithm2

ToanalyzetheconvergenceofAlgorithm2,weconsiderthe sep-aratestepsandtherecursion.Theinitialvalueof ˆri=1corresponds

toanetworkwithoutcontention,immediatelygivinganindication whetherthenetworkisstableornot.Tocalculateallj(k)’sinstep

2,Eqs.(6),(4)and(5)needtobecombined,givingJmequations withequallymanyunknownvariableswhichcanbesolved.From thesevalues,obviouslysteps3–6canbecalculated,leadingtothe recursion.

Letg(r)denotethefunctionthatcalculates thenewvalueof rusingthestepsdescribed.Thefunctiong(·):RnRnisa

con-tinuousfunctionontheconvexcompactsubset[0,1]n.Following

Brouwersfixedpointtheorem(c.f.[17]),weconsidertheequation g(r)=r,whichhasasolution,whichwe needtoshowtobethe uniquefixedpoint.Toachievethis,weusetheContraction Map-pingTheorem(CMT,c.f.[17]),sayingthattheequationg(r)=rhas auniquesolutionifandonlyif

• Thefunctiong(·)maps[0,1]nto[0,1]n

• ThereisaconstantG<1suchthat||g(x)−g(y)||≤G||x−y||forall x,y∈[0,1]n

First,thealgorithmneedstobeshowntomapanystartingvalue forrtoanothervalueofrthatiswithinthepossiblerangeof[0,1]n.

Forthistobethecase,weneedthat 0≤





ˆri,ˆq≤ ˆpi.

Thefirstinequalityisobvious,forthesecondonewenotethat ˆri,=

0forallsuchthati=0andthat ˆri,≤1.Thisgivesthat



 ˆri,ˆq ≤



:i=1 ˆq =



:i=1 n



j=1 (1− ˆpj)1−jˆp j j = ˆpi



:i=1



j/=i (1− ˆpj)1−jˆp j j = ˆpi,

(9)

contractionmappingtheorem.

Thesecondpartismoreinvolved.Weprovideacompleteproof foratwonodenetworkandindicatewhythesecondconditionis conjecturedtoholdforlargernetworks.

Whenfollowingthestepsofthealgorithmforatwonode tan-demnetwork,wehavethat

a(1)=(1)= and a(2)=(2)=min(, ˆr1)

ˆp1 = min

 ˆr1 ,1

and ˆp2=min



min(, ˆr1) ˆr2 ,1



ˆr1 = 1− 1 2ˆp2 and ˆr2=1− 1 2ˆp1.

Notethatas0≤ ˆpi≤1wehavethat ˆri∈[(1/2),1].Firstassuming

wearedealingwithastablenetwork,thearrivalrateatbothnodes equals.Wenow(bysubstitutingpi)havethefunctionalvector

g(ˆr)=

1−  2ˆr2 ,1−  2ˆr1

.

Thisgives,forx=(x1,...,xn),

||g(x)−g(y)||2=

 2x2y2

2 (x2−y2)2+

 2x1y1

2 (x1−y1)2,

and for this to be smallerthan ||x−y||2 we need to have that

(/2xiyi)2<1.Asweassumedastablenetwork,wehavethat<xi,

sothat  2x2y2 < 1 2yi≤ 1

sinceyi∈[(1/2),1]andsoindeedthesecondconditionholds

prov-ingthatforastablesystemthealgorithmconverges.Ifthesystem wouldbeunstable,wehavethat

g(ˆr)=



1−min((min(, ˆr1)/ˆr2),1) 2 ,1− min((/ˆr1),1) 2



,

wherethefollowingsituationscanoccur:≥ ˆr1or ˆr2≤< ˆr1.In

thefirstcasewehavethat

g(ˆr)=



1−12min



ˆr1 ˆr2 ,1



,1 2



whichwithintwostepsofthealgorithmleadstog(ˆr)=(1/2,1/2) andthusconvergestothisuniquesolution.Inthesecondcasewe havethat g(ˆr)=

12,1−  2ˆr1

, ||g(x)−g(y)||2=

 2x1y1

2 (x1−y1)2

and(/2x1y1)2<1asshownearliercompletingtheproofthatthe

algorithmconvergesforthistwonodenetwork.

g(r) =

1−min((min(,r1)/r2),1) 2 +min((min(,r1)/r2),1)min((min(min(,r1),r2)/r3),1) 6 , 1−min((/r1),1) 2 − min((min(min(,r1),r2)/r3),1) 2 +min((/r1),1)min((min(min(,r1),r2)/r3,1) ) 3, 1−min((min(,r1)/r2),1) 2 + min((/r1),1)min((min(,r1)/r2),1) 6

. As we have that g(p)=(1− (p2/2)+(p2p3/6), 1−(p1/2)−(p3/2)+(p1p3/3), 1−(p2/2)+(p1p2/6)), starting in

([(1/2),1],[(1/3),1],[(1/2),1]),g(·)willalsoprojectonthisrange. FortheCMTtohold,wefirstconsiderthestablesystemagain,so that<ri.Inthiscasewehavethat

g(r)=



1−12r 2+ 1 6 2 r2r3 ,1−12r 1− 1 2  r3 + 1 3 2 r1r3 , 1−1 2  r2 + 1 6 2 r1r2



.

Checkingwhether||g(x)−g(y)||<||x−y||provestobecumbersome, evenforsuchasmallnetwork.Thereforewenumericallyanalyzed thefunctionh(x,y)=||g(x)−g(y)||(||x−y||)−1 whichprovedtobe smallerthanoneforallvaluesofxandy.Asinthetwonode net-work,itiseasytoshowthatforaninstablenetwork,eitherthereis anobviousdirectconvergencetotherates(2/3,1/3,2/3)or conver-genceisprovenbyusingpartsoftheapproachforthestablecase. Wepostulatethatforanynetworkasimilaranalysiswillshowthat thealgorithmconstitutesacontraction,andthusconverges. A.2. ProofofTheorem3

Theformulafortherateri,1(n)ofanodeonpositioniinann

nodenetworkthatisfullyaliveisgivenby

nri,1(n)= i−2



k=1 ri−k−1,1(n−k−1)+1+ n−2



k=i ri,1(k) (14)

asdescribedinthepaper.Duetosymmetryofthenetworkwealso havethat

ri,1(n)=rn−i+1,1(n) i=1,...,n.

Therateofanodecannever exceedone,but willbeoneifthe nodeistheonlyalivenodewithinitsinterferenceregion,i.e.its neighborsarenotalive.Theminimalrateofanodeis1/naswith thisprobabilityitwinsthecontentionoverallothernodes.

Inthefollowingweomitthe1denotingthefullyalivenetwork. Tofindanexpressionforri(n),notethat

nri(n)−(n−1)ri(n−1)=ri(n+2) + i−2



k=1 [ri−k−1(n−k−1)−ri−k−1(n−k−2)]

andlettingci(n)=ri(n)−ri(n−1)thisgives

ci(n)= 1 n

i−2



k=1 ck(n+k−i)−ci(n−1)

.

(10)

As−1≤ci(n)≤1foranyvalueofiandn,wehavethat ci(n)≤ 1 n[(i−2)−ci(n−1)]≤ 1 n(i−1) sothatfor each iwehave that lim

n→∞ci(n)=0, proving thatri(n)

convergesforn→∞. Fori=1thisleadsto c1(n)=− 1 nc1(n−1) whichgives c1(n)= (−1)n−1 n! , r1(n)= n



i=1 (−1)i−1 i! . Similarly,wehavethat

c2(n)= (−1)n n! , r2(n)= n



i=1 (−1)i i! . Takingthelimitshowsthat

lim n→∞r1(n)=1− 1 e, n→∞limr2(n)= 1 e

Unfortunately,forlargervaluesofi,noniceexpressionsarefound forci(n)orri(n),butthelimitingvaluescanbecalculatedusingthe

sameapproach.TheresultsarepresentedinTable1.

References

[1]RaoRR,EphredimesA.Onthestabilityofinteractingqueuesinamultipleaccess system.IEEETransInformTheory1988;34(5):918–30.

[2]JonckheereM,vanderMeiRD,vanderWeijW.Ratestabilityandoutputratesin queueingnetworkswithsharedresources.TechnicalReport,CWI,PNA-R0712; 2007.

[3]BorstSC,JonckheereM,LeskeläL.Stabilityofparallelqueueingsystemswith coupledservicerates.DiscreteEventDynSyst2008;18(4):447–72.

[4]deVecianaG,LeeTJ,KonstantopoulosT.Stabilityandperformanceanalysisof networkssupportingelasticservices.IEEE/ACMTransNetw2001;9(1):2–14. [5]DenteneerD,BorstS,vandeVenP,HiertzG.IEEE802.11sandthePhilosophers’

problem.StatNeerl2008;62(3):283–98.

[6]ResingJAC,ÖrmeciL.Atandemqueueingmodelwithcoupledprocessors.Oper ResLett2003;31:383–9.

[7]vanLeeuwaardenJSH,ResingJAC.Atandemqueuewithcoupledprocessors: computationalissues.QueueingSyst2006;51:29–52.

[8]GuptaP,KumarPR.Thecapacityofwirelessnetworks.IEEETransInformTheory 2000;46(2):388–404.

[9] GastparM,VetterliM.Onthecapacityofwirelessnetworks:therelaycase.In: ProceedingsofINFOCOM2002,.2002.p.1557–66.

[10] NgPC,LiewSC.OfferedloadcontrolinIEEE802.11multi-hopad-hocnetworks. In:ICC2002,vol.2.2002.p.1074–9.

[11]FujiwaraT,SekiyaH,NambaK,LuJ,YahagiT,SakataS.Throughputan.onstring multi-hopnetworkswithmultipleflow.In:NCSP‘06.2006.p.417–20. [12] DurvyM,DousseO,ThiranP.Bordereffects,fairness,andphasetransitionin

largewirelessnetworks.In:ProceedingsofINFOCOM2008.2008.p.601–9. [13]El-KhouryR,El-AzouziR.Stability-throughputanalysisinamulti-hopadhoc

networkswithweightedfairqueueing.In:45than.allertonconf.2007.p. 1066–73.

[14]KheraniA,ElAzouziR,AltmanE.Stability-throughputtradeoffandroutingin multihopwirelessad-hocnetworks.ComputNetw2008;52(5):1365–89. [15]HekmatR,vanMieghemP.Interferenceinwirelessmulti-hopad-hocnetworks

anditseffectonnetworkcapacity.WirelNetw2004;10(4):389–99. [16]KellyFP.Reversibilityandstochasticnetworks.Chichester:Wiley;1979. [17]IstratescuVI.Fixedpointtheory:anintroduction.Mathematicsandits

Referenties

GERELATEERDE DOCUMENTEN

Doel van het project is te achterhalen welk beleid in andere gebieden binnen de EU (lidstaten of delen daarvan) met een vergelijkbare milieudruk op natuur als in Nederland bestaat

Since resveratrol can be extracted from solid winery waste with a tartrate-PEG 8000 ATPS and partitioned to the PEG top phase, a method to recover resveratrol from the PEG

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

bouwarcheologische sporen en –structuren: de afdruk van een tongewelf dat een ouder tongewelf heeft vervangen, een achtermuur van anderhalfsteense dikte bestaande uit baksteen en

Uit de onderzoeksresultaten is gebleken dat het terrein gelegen aan het Melkerijpad reeds lang geleden bewoond werd. Hoewel de matige tot slechte conservatie van de sporen

Onderzocht moet worden of deze data gebruikt mogen worden voor een applicatie als de website daarmoetikzijn?. Tevens moet onderzocht worden of er nog andere GIS-data op

Nog afgezien van het feit dat Dohmen en Said over een ander tijdperk en andere wes- terse taalgebieden spreken, rijst de vraag of Dohmen hier niet teveel blijft steken op het niveau

Misschien zie ik hier de mogelijkheden te rooskleurig, het zal ook.. nog wel een poosje duren, voordat een volledig in detail uitgewerkte opbouw in deze geest ter beschikking staat.