• No results found

Plasmic fabric analysis of glacial sediments using quantitative image analysis methods and GIS techniques - REFERENCES

N/A
N/A
Protected

Academic year: 2021

Share "Plasmic fabric analysis of glacial sediments using quantitative image analysis methods and GIS techniques - REFERENCES"

Copied!
18
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Plasmic fabric analysis of glacial sediments using quantitative image analysis

methods and GIS techniques

Zaniewski, K.

Publication date

2001

Link to publication

Citation for published version (APA):

Zaniewski, K. (2001). Plasmic fabric analysis of glacial sediments using quantitative image

analysis methods and GIS techniques. UvA-IBED.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)

and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open

content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please

let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material

inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter

to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

will be contacted as soon as possible.

(2)

REFERENCES

Acott, T.G., Cruise, G.M. and Macphail, R.I. (1997). Soil micromorphology and high

resolution images. In: S. Shoba, M. Gerasimova and R. Miedema (Editors), Soil

Micromorphology: Studies on soil diversity, diagnostics, dynamics. Moscow-Wageningen, pp.

372-378.

Altemtiller, H,-J. and Van Vliet-Lanöe, B. (1990). Soil thin section fluorescence microscopy.

In: L.A. Douglas (Editor), Soil Micromorphology: A Basic and Applied Science. Elsevier,

Amsterdam, pp. 565-579.

Anderson, D.M. and Binnie, R.R. (1961). Modal analysis of soil. Proceedings of the Soil

Society of America, 25: 499-503.

Babel, U. (1975). Micromorphology of soil organic matter. In: J.E. Gieseking (Editor), Soil

Components. Volume 1. Springer-Verlag, New York, pp. 369-473.

Bal, L. (1973). Micromorphological analysis of soils: Lower levels in the organization of

organic soil materials. Soil Survey Papers, No.6. Netherlands Soil Survey Institute,

Wageningen, 174 pp.

Barratt, B.C. (1969). A revised classification of microscopic soil materials with particular

reference to organic components. Geoderma, 2: 267-272.

Bhatia, S.K. and Soliman. A. (1991). The application of image analysis techniques to

microstructure studies in geotechnical engineering. In: R.H. Bennett, W.R. Bryant and M.H.

Hulbert (Editors), Microstructure of Fine-grained Sediments, from Mud to Shale. Chapter 40.

Springer-Verlag, New York, pp. 367-378.

Bisdom, E.B.A., Tessier, D. and Schoute, J.F.Th. (1990). Micromorphological techniques in

research and teaching (submicroscopy). In: L.A. Douglas (Editor), Soil Micromorphology: A

Basic and Applied Science. Elsevier, Amsterdam, pp. 581-603.

Blokhuis, W.A., Kooistra, M.J. and Wilding, L.P. (1990). Micromorphology of cracking

clayey soils (Vcrtisols). In: L.A. Douglas (Editor), Soil Micromorphology: A Basic and

Applied Science. Elsevier, Amsterdam, pp. 123-148.

(3)

Boardman. J. (1995). Palcosols. Chapter 10. In: J. Menzies (Editor), Past Glacial

Environments; Sediments, Forms and Techniques. Butterworth-Heincmann, Oxford, pp.

301-314.

Boggs Jr., S. (1987). Principles of Scdimentology and Stratigraphy. Merril Publishing

Company, Toronto, 784 pp.

Bons, P. and Jessell, M.W. (1996). Image analysis of microstructures in natural and

experimental samples. In: D.G. DePaor( Editor), Structural Geology and Personal Computers.

Pergamon Press, 527 pp.

Bordonau, J. and van der Meer, J.J.M. (1994). An example of a kinking microfabric in Upper

Pleistocene glaciolacustrine deposits from Llavorsi (Central Southern Pyrenees, Spain).

Geologie en Mijnbouw, 73: 23-30.

Bouma, A.H. (1969). Methods for the Study of Sedimentary Structures. Wiley-Interscience,

New York, 258 pp.

Bresson, L.-M. (1981). Ion micromilling applied to the ultramicroscopic study of soils. Soil

Science Society of America Journal, 45: 568-573.

Brewer, R. (1964). Fabric and Mineral Analysis of Soils, John Wiley and Sons, N.Y, 482 pp.

Brewer. R. (1976). Fabric and Mineral Analysis of Soils. R.E. Kricger, Huntington, N.Y, 482

pp.

Bui, E.N. and Mermut, A.R. (1989). Quantification of soil calcium carbonates by staining and

image analysis. Canadian Journal of Soil Science, 69: 677-682.

Bullock, P. andThomasson, A.J. (1979). Rothamsted studies of soil structure II. Measurement

and characterization of macroporosity by image analysis and comparison with data from water

retention measurements. Journal of Soil Science, 30: 391-413.

Bullock, P., Fedoroff, N.. Jongerius. A., Stoops, G. and Tursina, T. (1985). Handbook for Soil

Thin Section Description. Waine Research Publications. Albrighton. 152 pp.

(4)

Environment. Elsevier, Amsterdam, 368 pp.

Cannon, R.L., Jitendra, D.V., Bezdek, J.C. and Trived, M.M. (1986). Segmentation of a thematic mapper image using the fuzzy c-means clustering algorithm. IEEE Transactions on Geoscience and Remote Sensing. GE-24(3), pp. 400-408.

Carpenter, G.A. and Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. IEEE Computer, 21: 77-88.

Chayes, F. (1956). Petrographic Modal Analysis; An Elementary Statistical Appraisal. John Wiley and Sons, New York, 113 pp.

Cheel, R.J. (1993). Introduction to Clastic Sedimentology. Department of Earth Sciences, Brock University, St.Catharines, Canada, 141 pp.

Chiou, W.A., Bryant, W.R, and Bennett, R.H. (1991). Quantification of clay fabric: a simple technique. In: R.H. Bennett, W.R. Bryant and M.H. Hulbert (Editors), Microstructure of Fine-grained Sediments, from Mud to Shale. Chapter 41. Springer-Verlag, New York, pp. 379-387. Clark, B.R. (1970). Mechanical formation of preferred orientation in clays. American Journal of Science, 269:250-266.

Cracknell, A.P. and Hayes, L. W.B. (1991). Introduction to Remote Sensing. Taylor & Francis, London, 293 pp.

Curray, J.R. (1956). The analysis of two-dimensional orientation data. Journal of Geology, 64: 117-131.

Dalrymplc, J.B. and Jim, C.Y. (1984). Experimental study of soil microfabrics induced by isotropic stresses of wetting and drying. Geoderma, 34: 43-68.

Delgado, M. and Dorronsoro, C. (1983). Image analysis. In: M. Bullock and C.P. Murphy (Editors), Soil Micromorphology. AB Academic Publishers, Berhamsted, pp. 71-86.

Derbyshire, E., Edge, M.J. and Love, M.A. (1985). Soil fabric variability in some glacial diamicts. In: M.C. Forde (Editor). Glacial tills '85. Proceedings of the International Conference on Construction in Glacial Till and Boulder Clays. Engineering Technics Press, Edinburgh, pp. 41-59.

(5)

Dorronsoro, C. (1994). Micromorphological index for the evaluation of soil evolution in central Spain. Gcoderma, 61: 237-250.

Dowdeswell, J.A. (1982). Scanning electron micrographs of quartz sand grains from cold environments examined using Fourier shape analysis. Journal of Sedimentary Petrology, 52:

1315-1323.

Feeser. V. (1988). On the mechanics of glaciotectonic contortion of clays. In: D.G. Croot (Editor), Glaciotectonics:. Forms and Processes. A.A. Balkema, Rotterdam, pp. 63-76.

FitzPatrick, E.A. (1970). A technique for the preparation of large thin sections of soils and unconsolidated materials. In: D.A. Osmond and P. Bullock (Editors), Micromorphological Techniques and Applications. Agricultural Research Council Soil Survey, Technical Monograph No.2, Harpenden, pp. 3-13.

FitzPatrick, E.A. (1984). Micromorphology of Soils. Chapman and Hall, New York, 433 pp.

FitzPatrick, E.A. (1993). Soil Microscopy and Micromorphology. John Wiley and Sons, Chichester, 304 pp.

Folk, R.L. and Ward, W.C. (1957). Brazos river bar: a study of the significance of grain-size parameters. Journal of Sedimentary Petrology, 27: 3-26.

Foster, R.H. and De, P.K. (1971). Optical and electron microscopic investigation of shear induced structures in lightly consolidated (soft) and heavily consolidated (hard) kaolinite. Clay and Clay Minerals, 19: 31 -42.

Fox, C.A., Gucrtin, R.K.. Dickson, E., Sweeney, S., Protz, R. and Mermut. A.R. (1993). Micromorphological methodology for inorganic soils. Chaptcr65 in: M.R. Carter (Editor), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, Lewis Publishers, pp. 683-709.

Friedman, G.M. (1958). Determination of sieve-size distribution from thin-sections data for sedimentary petrological studies. Journal of Geology, 66: 394-416.

Goodchild, J.S. and Fueten, F. (1998). Edge detection in petrographic images using the rotating polarizer stage. Computers and Geosciences, 24: 745-751.

(6)

Greene-Kelly, R. and Mackney, D. (1970). Preferred orientation of clay in Soils: the effect of drying and wetting. In: D.A. Osmond and P. Bullock (Editors), Micromorphological Techniques and Applications. Agricultural Research Council Soil Survey, Technical Monograph No.2, Harpenden, pp. 43-51.

Ham, N.R. and Mickclson, D.M. (1995). Micromorphology of basal till. Burroughs Glacier, Alaska. In: D.R. Engstrom (Editor), Proceedings of the Third Glacier Bay Science Symposium,

1993. National Park Service, Anchorage, Alaska, pp. 82-86.

Hiemstra, J.F. (1999). Microscopic evidence of grounded ice in the sediments of the CIROS-1 core, McMurdo Sound, Antarctica. Terra Antartica, 6: 365-376.

Hiemstra, J.F. and van der Meer, J.J.M. (1997). Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills. Journal of Glaciology, 43: 446-454.

Hiemstra, J.F. and Rijsdijk, K.F. (In press). Development of microstructures in an artificial clay during triaxial compression: towards a better understanding of soft sediment deformation.

Hiemstra, J.F., Powell, R.D., Zaniewski, K. and Cowan, E.A. (In prep.). Kinematic analysis of microshears of different origin in glacial lithofacies.

Hill, I.D. (1970). The use of orientation diagrams in describing the plasmic fabrics in soil materials. Journal of Soil Science, 21: 184-187.

Ismail, S.N.A. (1975). Micromorphometric soil porosity characterization by means of electro-optical image analysis (Quantimet 720). Soil Survey Papers, No. 9. Netherlands Soil Survey Institute, Wageningen, 104 pp.

Jensen, J.R. (1986). Introductory Digital Image Processing; A Remote Sensing Prospective. Prentice-Hall, Englewood Cliffs, N.J., 379 pp.

Jensen, J.R. (1996). Thematic information extraction: Image classification. Chapter 8. In: Introductory Digital Image Processing; A Remote Sensing Prospective (2nd Edition).

Prentice-Hall, Englewood Cliffs, N.J.. pp. 236-238.

Jim, C.Y. (1990). Stress, shear deformation and micromorphological clay orientation: a synthesis of various concepts. Catena, 17: 431-447.

(7)

Johnston, R.L. (1978). Discriminant analysis. Chapter 8. In: Multivariate Statistical Analysis in Geography: A Primer on the General Linear Model. Longman, New York, pp. 234-252.

Jongerius, A. (1963). Optic-volumetric measurements on some humus forms. In: J. Doeksen and J. van dcr Drift (Editors), Soil Organisms. North-Holland Publishing Co., Amsterdam, pp. 137-148.

Jongerius, A. (1964)(F.ditor). Soil Micromorphology. Proceedings of the Second International Working Meeting on Soil Micromorphology. Arnhem, The Netherlands. Elsevier, Amsterdam, 540 pp.

Jongerius, A. (1974). Recent developments in soil micromorphomctry. In: G.K. Rutherford (Editor), Soil Microscopy. The Limestone Press, Kingston, 857 pp.

Jongerius, A. and Hcintzbcrger, G. (1975). Methods in soil micromorphology. A technique for the preparation of large thin sections. Soil Survey Papers, No. 10. Netherlands Soil Survey Institute, Wageningen, 35 pp.

Jongerius, A. and Rutherford, G.K. (1979)(Editor). Glossary of Soil Micromorphology. English, French, German, Spanish and Russian. PUDOC. Wageningen. 138 pp.

Jongerius, A., Schoonderbeek, D., Jager, A. and Kowalinski. St. (1972). Electro-optical soil porosity investigation by means of Quantimet-B equipment. Geoderma, 7:177-198.

Kjcer, K.H and Kriiger, J. (1998). Does clast size influence fabric strength? Journal of Sedimentary Research, 68: 746-749.

Korina, N.A. and Faustova, M.A. (1964). Microfabric of modern and old moraines. In: Jongerius, A. (Editor) Soil Micromorphology. Elsevier, Amsterdam. 540 pp.

Kubiëna, W.L. (1938). Micropedology. Collegiate Press. Ames Iowa, 243 pp.

Kubiëna, W.L. (1967)(Editor). Die micromorphomctrische Bodenanalysc. Enke, Stuttgart, 196 pp.

Lafcber, D. (1967). The optical determination of spatial (three-dimensional) orientation of platy clay minerals in soil thin-sections. Geoderma, 1: 359-369.

(8)

Lagerlund, E. and van der Meer, J.J.M. (1990). Micromorphological observations on the Lund

Diamicton. LUNDQUA Report, 32: 37-38.

Lee, J. and Kemp, R. (1992). Thin sections of unconsolidated sediments and soils: a recipe.

CEAM Technical Report No.2. Royal Holloway, London, 32 pp.

Lillesand, T.M. and Kiefer, R.W. (1987). Remote Sensing and Image Interpretation. John

Wiley&Sons, Toronto, 721 pp.

Love, M.A. and Derbyshire, E. (1985). Microfabric of glacial soils and its quantitative

measurement. In: M.C. Forde (Editor), Glacial Tills 85. Engineering Technics Press,

Edinburgh, pp. 129-135.

Macdonald, I.F., Kaufmann, P. and Dullien, F.A.L. (1986). Quantitative image analysis of

finite porous media. I. Development of genus and pore map software. Journal of Microscopy,

144: 277-296.

Mahaney, W.C. (1995). Glacial crushing, weathering and diagcnetic histories of quartz grains

inferred from Scanning Electron Microscopy. Chapter 15. In: J. Menzies (Editor), Modern

Glacial Environments; Processes, Dynamics and Sediments. Butterworth-Hcinemann, Oxford,

pp. 487-506.

Maltman, A.J. (1977). Some microstructures of experimentally deformed argillaceous

sediments, Tectonophysics, 39: 417-436.

Maltman, A.J. (1987). Shear zones in argillaceous sediments - an experimental study. In: M.E.

Jones and R.M.F. Preston (Editors), Deformation of Sediments and Sedimentary Rocks.

Geological Society Special Publication, 29, pp.77-87.

Maltman, A.J. (1988). The importance of shear zones in naUirally deformed wet sediments.

Tectonophysics, 145: 163-175.

McBratney, A.B. and Moran, C.J. (1990). A rapid method of analysis for soil macropore

structure: II. Stereological model, statistical analysis and interpretation. Soil Science of

America Journal, 54: 509-515.

(9)

evidence of illuvial clay in horizons designated Bt in the field. Canadian Journal of Soil Science, 58: 179-189.

McKeague, J.A., Gucrtin, R.K., Valentine, K.W.G., Bélisle, J., Bourbeau, G.A., Howell. A.. Michalyna, W., Hopkins, L., Page, F. and Bresson. L.M. (1980). Estimating illuvial clay in soils by micromorphology. Soil Science, 129: 386-388.

McKeague, J.A., Wang, C., Ross, G.J., Acton, C.J.. Smith, R.E., Anderson. D.W., Pettapiece, W.W., and Lord, T.M. (1981). Evaluation of criterial for argillic horizons (Bt) of soils in Canada. Geoderma, 25: 63-74.

Meade, R.H. (1964). Removal of water and rearrangement of particles during compaction of clayey sediments - Review. Geological Survey Professional Paper, 497 - B.

van der Meer, J.J.M. (1982). The Fribourg area. Switzerland. A study in Quaternary geology and soil development. Ph.D. Thesis University of Amsterdam. Publicaties van het Fysisch en Bodemkundig Laboratorium 32, Amsterdam, 203 pp.

van der Meer, J.J.M. (1987). Micromorphology of glacial sediments as a tool in distinguishing genetic varieties of till. Geological Survey of Finland. Special Publication. 3: 77-89.

van der Meer, J.J.M. (1992). Micromorphology of Pleistocene sediments from the southern North Sea. Boreholes BH 89.2 and BH 89.3. Report Fysisch Geografisch en Bodemkundig Laboratorium, Universiteit van Amsterdam, 82 pp.

van der Meer, J.J.M. (1993a). Micromorphology of glacial sediments, a workshop. Fysisch Geografisch en Bodemkundig Laboratorium, University of Amsterdam, pp. 1-40.

van der Meer, J.J.M. (1993b). Microscopic evidence of subglacial deformation. Quaternary Science Reviews, 12: 553-587.

van der Meer, J.J.M.(1996). Micromorphology. Chapter 12. In: J. Menzies (Editor), Past Glacial Environments: Sediments, Forms and Techniques. Butterworth-Hcinemann, Oxford, pp. 335-355.

van der Meer, J.J.M. (1997). Particle and aggregate mobility in till: Microscopic evidence of subglacial processes. Quaternary Science Reviews, 16: 827-831.

(10)

van der Meer, J.J.M and Hiemstra, J.F. (1998). Micromorphology of Miocene diamicts,

indications of grounded ice. Terra Antartica, 5: 363-366.

van der Meer, J.J.M, and Laban, C. (1990). Micromorphology of some North Sea till samples,

a pilot study. Journal of Quaternary Science, 5: 95-101.

van der Meer, J.J.M., Rappol, M. and Semeijn, J.N. (1983). Micromorphological and

preliminary X-ray observations on a basal till from Lunteren, The Netherlands. Acta Geologica

Hispanica, 18: 199-205.

van der Meer, J.J.M., Rabassa, J.O. and Evenson, E.B. (1990). Sedimcntology and

micromorphology of glacigenic deposits in northern Patagonia, Argentina. LUNDQUA Report,

32: 6-8.

van der Meer, J.J.M., Rabassa, J.O. and Evenson, E.B. (1992). Micromorphological aspects

of glaciolacustrine sediments in northern Patagonia, Argentina. Journal of Quaternary Science,

7:31-44.

van der Meer, J.J.M., Mücher, H.J. and Höfle, H.Ch. (1992). Micromorphological

Observations on till samples from the Shackleton Range and North Victoria Land, Antarctica.

Polarforschung, 62: 57-65.

van der Meer, J.J.M., Mücher, H.J. and Höfle, H.Ch. (1994). Micromorphological observations

on some till samples from Antarctica. In: F.M. van der Wateren, A.L.L.M. Verbers, F.

Tessensohn (Editors), Landscape Evolution in the Ross Sea Area, Antarctica Rijks

Geologische Dienst, Haarlem, pp. 143-145.

van der Meer, J.J.M., Verbers, A.L.L.M, and Warren, W.P. (1994). The micromorphological

character of the Ballycroneen Formation (Irish Sea Till): A first assessment. In: Warren, W.P.

and Croot, D.G. (Editors), Formation and Deformation of Glacial Deposits. Balkema,

Rotterdam, pp. 39-49.

Mcnzies, J. (1990). Sand intraclasts within a diamicton mélange, southern Niagara Peninsula,

Ontario, Canada. Journal of Quaternary Science, 5: 189-206.

Mcnzies, J. (1995)(Editor). Modern Glacial Environments; Processes, Dynamics and

Sediments. Butterworth-Heinemann, Oxford, 621 pp.

(11)

Mcnzies, J. (1996) (Editor). Past Glacial Environments; Sediments, Forms and Techniques. Butterworth-Heinemann. Oxford, 598 pp.

Menzies, J. (1998). Microstructures within subglacial diamictons. In: A. Kostrzewski (Editor), Rzczba i osady czwartorzcdowe obszarow wspolczesnego i plcjstocenskicgo zlodowacenia polkuli polnocnej. Wydawnictwo Naukowe Uniwersytetu Adama Mickiewicza, Poznan. pp.

153-166.

Mcnzies, J. and Maltman, A.J. (1992). Microstructures in diamicton - evidence of subglacial bed conditions. Gcomorphology, 6: 27-40.

Menzies, J. and Woodward, J. (1993). Preliminary study of subglacial diamicton microstructures as reflected in drumlin sediments at Chimney Bluffs, New York. In: J.S. Aber (Editor), Glaciotectonics and Mapping Glacial Deposits. Canadian Plains Research Center, University of Rcgina, pp. 36-45.

Menzies. J.. Zaniewski, K. and Dreger, D. (1997). Evidence, from microstructures, of dcformable bed conditions within drumlins. Chimney Bluffs, New York State. Sedimentary Geology, 111: 161-175.

Mcrmut, A.R. and Dasog, E.S. (1986). Nature and micromorphology of carbonate glaebules in some vertisols in India. Soil Science of America Journal, 50: 382-391.

Mermut, A.R. and Norton, L.D. (1992) (Editors). Digitization, processing and quantitative interpretation of image analysis in soil science and related areas. Geoderma, Special Issue, 53.

Micdcma, R. and Slager, S. (1972). Micromorphological quantification of clay illuviation. Journal of Soil Science, 23: 309-314.

Moran. C.J., McBratney, A.B. and Koppi, A.J. (1989a). A rapid method for analysis of soil macropore structure. I. Specimen preparation and digital binary image production. Soil Science Society of America Journal, 53: 921-928.

Moran, C.J., McBratney, A.B., Ringrose-Voase, A.J., and Chartres, C.J. (1989b). A method for the dehydration and impregnation of clay soil. Journal of Soil Science, 40: 569-575.

(12)

orientation in clays and its application to the study of microstructure in consolidated kaolin. I. Proceedings of the Royal Society of London. Series A, 300: 218-234.

Morgenstern, N.R. and Tchalenko, J.S. (1967b). The optical determination of preferred orientation in clays and its application to the study of microstructure in consolidated kaolin. II. Proceedings of the Royal Society of London. Series A, 300: 235-250.

Morgenstern, N.R. and Tchalenko, J.S. (1967c). Microscopic structures in kaolin subjected to direct shear. Geotechnique, 17: 309-328.

Murphy, C.P. (1983). Point counting pores and illuvial clay in thin section. Geoderma, 31: 133-150.

Murphy, C.P. (1986). Thin section preparation of soils and sediments. AB Academic Publishers, Berkhamsted, 149 pp.

Murphy, C.P. and Kemp, R.A. (1984). The over-estimation of clay and the undcr-estimation of pores in soil thin sections. Journal of Soil Science, 35: 481-495.

Murphy, C.P., Bullock, P. and Turner, R.H. (1977a). The measurement and characterisation of voids in soil thin sections by image analysis. Part I. Principles and Techniques. Journal of Soil Science, 28: 498-508.

Murphy, C.P., Bullock, P. and Biswell, K.J. (1977b). The measurements and characterisation of voids in soil thin sections by image analysis. Part II. Applications. Journal of Soil Science, 28:509-518.

Oda, M. (1976). Fabrics and their effects on the deformation behaviours of sand. Special Issue, Department of Foundation Engineering, Faculty of Engineering, Saitama University, Japan.

Ostry, R.C. and Deanc, R.E. (1963). Microfabric analyses of till. Geological Society of America Bulletin, 74: 165-168.

Page, F. and Richard, G. (1990). A rapid method for making soil thin sections. In: L.A. Douglas (Editor), Soil Micromorphology: A Basic and Applied Science. Elsevier, Amsterdam, pp. 627-630.

(13)

Pettijohn. F.J.. Potter, P.W. and Siever, R. (1973). Sand and Sandstone. Springer-Verlag, New York, 618 pp.

Protz, R. Shipitalo, M.J., Mermut, A.R. and Fox, C A . (1987). Image analysis of soils - present and future. Geoderma, 40: 115-125.

Protz, R., Sweeney, S.J. and Fox. C A . (1992). An application of spectral image analysis to soil micromorphology, 1. Methods of analysis. In: A.R. Mermut and L.D. Norton (Editors). Digitization, Processing and Quantitative Interpretation of Image Analysis in Soil Science and Related Areas. Geoderma, 53: 275-287.

Rappol, M., Haldorsen, S., Jorgensen, P., van der Meer, J.J.M, and Stoltenberg, M.P. (1989). Composition and origin of petrographically-stratified thick till in the northern Netherlands and a Saalian glaciation model for the North Sea basin. Mededelingen Werkgroup fur. Tertiare und. Kwartair. Geologic, 26: 31-64.

Retallack, G.J. (1990). Soils of the Past: An Introduction to Paleopedology. Allen and Unwin, London, 520 pp.

Richards, J.A. (1986). Remote Sensing Digital Image Analysis; An Introduction. Springer-Verlag, Berlin, 281 pp.

Riezebos, P.A. and Rappol. M. (1987). Gravel- to sand-sized vivianite components in a Saalian till layer near Borne (The Netherlands). Geologie en Mijnbouw, 66: 21-34.

Ringrose-Voase. A.J. (1987). A scheme for the quantitative description of soil macrostructure by image analysis. Journal of Soil Science, 38: 343-356.

Ringrose-Voase, A.J. and Bullock. P. (1984). The automatic recognition and measurement of soil pore types by image analysis and computer programs. Journal of Soil Science. 35:673-684.

Ross, C M and Ehrlich, R. (1991). Objective measurement and classification of microfabrics and their relationship to physical properties. In: R.H. Bennett, W.R. Bryant and M.H. Hulbert (Editors). Microstructure of Fine-grained Sediments, from Mud to Shale. Chapter 38. Springer-Verlag, New York. pp. 353-358.

(14)

857 pp.

Singh, P., Kanwar, R.S. and Thompson, M.L. (1991). Measurement and characterization of macropores by using autocad and automatic image analysis. Journal of Environmental Quality, 20: 289-294.

Sitler, R.F. and Chapman, C.A. (1955). Microfabrics of till from Ohio and Pennsylvania. Journal of Sedimentary Petrology, 25: 262-269.

Smart, P. and Tovey, N.K. (1981). Electron Microscopy of Soils and Sediments: Examples. Oxford University Press, Oxford, 177 pp.

Smart, P. and Tovey, N.K. (1982). Electron Microscopy of Soils and Sediments: Techniques. Clarendon Press, Oxford, 264 pp.

Smart, P., Tovey, N.K., Leng, X, Hounslow, M.W. and McConnochie, I. (1991). Automatic analysis of microstructure of cohesive sediments. In: R.H. Bennett, W.R. Bryant and M.H. Hulbert (Editors), Microstructure of Fine-grained Sediments, from Mud to Shale. Chapter 38. Springer-Verlag, New York, pp. 359-366.

Stoops, G. (1974). Optical and electron microscopy. A comparison of their principles and their use in micropcdology. In: G.K. Rutherford (Editor), Soil Microscopy. The Limestone Press, pp. 101-118.

Stroeven, P., Stroeven, A.P., Dalhuiscn, D.H. and van der Meer, J.J.M. (1999). Stereological analysis of ice flow-induced preferred orientation of small clasts in Tertiary tillite matrix of Mt. Feather. Acta Stereol. 18: 49-60.

Sugden, D.E. and John, B.S. (1976). Glaciers and Landscape - A Geomorphological Approach. Edward Arnold, London, 320 pp.

Tchalenko, J.S. (1968). The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics, 6: 159-174.

Tchalenko, J.S. (1968). The microstructure of London Clay. Quaternary Journal of Engineering Geology, 1: 155-168.

(15)

Tcrribile, F. and FitzPatrick, E.A. (1992). The application of multilayer digital image processing techniques to the description of soil thin sections. Geoderma, 55: 159-174.

Terribile, F., Wright, R. and FitzPatrick, E.A. (1997). Image analysis in soil micromorphology: from univariate approach to multivariate solution. In: S. Shoba, M. Gerasimova and R. Miedcma( Editors), Soil Micromorphology: Studies on Soil Diversity, Diagnostics, Dynamics. Moscow-Wageningcn, pp. 397-417.

Thompson. M.L.. Singh. P., Corak. S. and Straszheim, W.E. (1992). Cautionary notes for the automated analysis of soil pore-space images. Geoderma, 53: 399-415.

Tippköttcr. R. and Ritz, K. (1996). Evaluation of polyester, epoxy and acrylic resins for suitability in preparation of soil thin sections for in situ biological studies. Geoderma, 69: 31-57.

Tippkötter, R.. Ritz, K. and Darbyshire, J.F (1986). The preparation of thin sections for biological studies. Journal of Soil Science, 37: 681-690.

Tou, J.T. and Gonzales, R.C. (1974). Pattern classification by distance functions. Chapter 3. In: Pattern Recognition Principles "a Simple Cluster-Seeking Algorithm". Addison-Wesley, Reading, MA, pp. 90-92.

Tovey, N.K. (1991). The microfabric of some Hong Kong marine soils. In: R.H. Bennett, W.R. Bryant and M.H. Hulbcrt (Editors), Microstructure of Fine-grained Sediments, from Mud to Shale. Chapter 55. Springer-Verlag, New York, pp. 519-530.

Tovey, N.K. and Wong. K. Y.( 1974). Some aspects ofquantitative measurements from electron micrographs of soil structure. In: G.K. Rutherford (Editor), Soil Microscopy. Limestone Press, Kingston. Ontario, pp. 207-222.

Tovey. N.K. and Wong, K.Y. (1980). The microfabric of deformed kaolin. Journal of Microscopy, 120: 329-342.

Tovey, N.K., Smart. P. and Hounslow, M.W. (1990). Quantitative orientation analysis of soil microfabric. In: L.A. Douglas, (Editor), Soil Micromorphology: A Basic and Applied Science. Elsevier, Amsterdam, pp. 631 -639.

(16)

Tovey, N.K., Smart, P., Hounslow, M.W. and Leng, X.L. (1992a). Automatic orientation mapping of some types of soil fabric. In: A.R. Mermut and L.D. Norton (Editors), Digitization, Processing and Quantitative Interpretation of Image Analysis in Soil Science and Related Areas. Geoderma, 53: 179-200.

Tovey, N.K., Krinsley, D.H., Dent, D.L. and Corbett, W.M. (1992b). Techniques to quantitatively study the microfabric of soils. In: A.R. Mermut and L.D. Norton (Editors), Digitization, Processing and Quantitative Interpretation of Image Analysis in Soil Science and Related Areas. Geoderma, 53: 217-235.

Unitt, B.M. (1975). A digital computer technique for revealing direction information in images. Journal of Physics E: Scientific Instruments, 8: 423-425.

Van Vliet-Lanoe, B. (1980). Approche des conditions physico-chimiques favorisant I'autofluorcscence des minéraux argileux. Pédologie, 3: 369-390.

VandenBygaart, A.J. and Protz, R. (1997). Relationship of void parameters to area of measurements by image analysis. In: J. Caron, D.A. Angers and G.C. Topp (Editors), Proceedings of the Eastern Canada Soil Structure Workshop. Colloque Canadien sur la Structure du Sol, Sainte-Foy, Quebec, Canada, pp. 35-43.

VandenBygaart, A.J., Protz, R , Tomlin, A.D. and Hamilton, G.G. (1997). Quantitative measurement of management-induced changes in soil structure by image analysis. In: J. Caron, D.A. Angers and G.C. Topp (Editors), Proceedings of the Eastern Canada Soil Structure Workshop. Colloque Canadien sur la Structure du Sol, Sainte-Foy, Quebec, Canada, pp. 249-258.

Wagner, H.L. and Suits, G.H. (1980). A low cost classification algorithm for developing

countries. Proceedings of the 14th International Symposium on Remote Sensing of the

Environment. Environmental Research Institute of Michigan, V.3., Ann Arbour, MI, pp. 1525-1529.

Walker, P.J.C. and Trudgill, S T . , (1983). Quantimet image analysis of soil pore geometry comparison with tracer breakthrough curves. Earth Surface Processes and Landforms, 8:465-472.

(17)

Press, London.

Wells, N.A. (2000). Are there better alternatives to standard rose diagrams? Journal of

Sedimentary Research, 70: 37-46.

Whalley, W.B. (1978) (Editor). Scanning Electron Microscopy in the Study of Sediments - a

symposium. Geoabstracts, Norwich. 414 pp.

Whalley, W.B. (1982). A preliminary scanning electron microscope study of quartz grains

from a dirt band in the Tuto Ice tunnel. Northwest Greenland. Arctic and Alpine Research, 14:

355-360.

Whalley, W.B. (1996). Scanning Electron Microscopy. Chapter 13. In: J. Menzies (Editor),

Past Glacial Environments; Sediments, Forms and Techniques. Buttcrworth-Heinemann,

Oxford, pp. 357-376.

White, T.L. and King. D.J. (1997). Image analysis of frost affected soil with an inexpensive

GIS system. In: S. Shoba, M. Gcrasimova and R. Miedema (Editors), Soil Micromorphology:

Studies on Soil Diversity, Diagnostics. Dynamics. Moscow-Wageningen, pp. 445-452.

Wilding. L.P. and Drees. L.R. (1990). Removal of carbonates from thin sections for

microfabric interpretations. In: L.A. Douglas (Editor), Soil Micromorphology: A Basic and

Applied Science. Elsevier, Amsterdam, pp. 613-620.

Wisniewski, E. (1965). O metodzie badania mikrobudowy gliny moreny dennej. Czasopismo

Geograficzne, 36:291-294.

Zaniewski. K. (1994). The application of GIS (IDRISI) in sediment void analysis. Unpublished

undergraduate thesis. Brock University, Geography Department, 100 pp.

Zaniewski, K. (1996). Micromorphology of Antarctic Sediments; Selected Samples.

Unpublished project report for Fysisch Geografisch Bodcmkundig Laboratorium, Universiteit

van Amsterdam, 80 pp.

Zaniewski, K. (1997). Micromorphology of Antarctic Sediments; Selected Samples II.

Unpublished project report for Fysisch Geografisch Bodcmkundig Laboratorium, Universiteit

van Amsterdam, 90 pp.

(18)

Referenties

GERELATEERDE DOCUMENTEN

GMS-NP implements a global page directory entirely on embedded network processors in a Myrinet gigabit net- work. Compared to GMS's host-based approach,

The host tool can be a popular office tool or a software engineering tool, which will be applied in the development of the new reverse engineering tool and should

As is indicated in the literature review, much of the merit of fine arts integration is attributed to the semiotic nature of the arts, providing students with a multitude of

Specifically, the intervention enhanced knowledge of added sugar content in foods and beverages, the maximum amount of added sugar in a healthy diet, food group servings in a

Specifically, the intervention enhanced knowledge of added sugar content in foods and beverages, the maximum amount of added sugar in a healthy diet, food group servings in a

Walker and Mathewes (1987, 1988) indicate cool, oligotrophic conditions in the late-glacial portion of chironomid records from coastal lakes in Haida Gwaii, Vancouver Island and

Detection and Ranging (LiDAR) data which collectively host more than 4,000 kilometres of potential paleo-coastline. Fifteen new archaeological sites were found during this study,

To evaluate our techniques we report performance, wakeup activity, average issue delay, average number of in-flight instructions, power dissipation and how often