• No results found

Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models

N/A
N/A
Protected

Academic year: 2021

Share "Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models"

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Westermann, P., & Evins, R. (2021). Using Bayesian deep learning approaches for

uncertainty-aware building energy surrogate models. Energy and AI, 3, 1-13.

https://doi.org/10.1016/j.egyai.2020.100039.

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

Using Bayesian deep learning approaches for uncertainty-aware building energy

surrogate models

Paul Westermann & Ralph Evins

March 2021

© 2021 Paul Westermann & Ralph Evins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by-nc-nd/4.0/

This article was originally published at:

https://doi.org/10.1016/j.egyai.2020.100039

(2)

ContentslistsavailableatScienceDirect

Energy

and

AI

journalhomepage:www.elsevier.com/locate/egyai

Using

Bayesian

deep

learning

approaches

for

uncertainty-aware

building

energy

surrogate

models

Paul

Westermann

,

Ralph

Evins

Energy and Cities Group Department of Civil Engineering, University of Victoria, Canada

h

i

g

h

l

i

g

h

t

s

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

Developinguncertainty-aware engineer-ingsurrogatemodels.

Comparing deep Bayesianneural net-worksandGaussianprocessmodels.

Uncertaintyestimatescanidentifyand mitigateerrorsinsurrogatemodels.

Aconcepttohybridizeengineering mod-elsanddata-drivenmodels.

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 6 October 2020

Received in revised form 17 November 2020 Accepted 7 December 2020

Keywords:

Surrogate modelling Metamodel

Building performance simulation Uncertainty

Bayesian deep learning Gaussian Process Bayesian neural network

a

b

s

t

r

a

c

t

Fastmachinelearning-basedsurrogatemodelsaretrainedtoemulateslow,high-fidelityengineeringsimulation modelstoaccelerateengineeringdesigntasks.Thisintroducesuncertaintyasthesurrogateisonlyan approxi-mationoftheoriginalmodel.

Bayesian methods canquantifythat uncertainty,anddeeplearning modelsexist thatfollow the Bayesian paradigm.Thesemodels,namelyBayesianneuralnetworksandGaussianprocessmodels,enableustogive predic-tionstogetherwithanestimateofthemodel’suncertainty.Asaresultwecanderiveuncertainty-awaresurrogate modelsthatcanautomaticallyidentifyunseendesignsamplesthatmaycauselargeemulationerrors.Forthese samplesthehigh-fidelitymodelcanbequeriedinstead.ThispaperoutlineshowtheBayesianparadigmallows ustohybridizefastbutapproximateandslowbutaccuratemodels.

Inthispaper,wetraintwotypesofBayesianmodels,dropoutneuralnetworksandstochasticvariationalGaussian Processmodels,toemulateacomplexhighdimensionalbuildingenergyperformancesimulationproblem.The surrogatemodelprocesses35buildingdesignparameters(inputs)toestimate12annualbuildingenergy perfor-mancemetrics(outputs).Webenchmarkbothapproaches,provetheiraccuracytobecompetitive,andshowthat errorscanbereducedbyupto30%whenthe10%ofsampleswiththehighestuncertaintyaretransferredtothe high-fidelitymodel.

1. Introduction

Awealthofconceptsexisttoexplorethedesignofnewandexisting buildingstoimprovethebuildingsector’slargeclimatefootprint[1]. Scalingthemischallenging,asusuallyeachbuildingisdesigned individ-ually,respondingtotheculturalcontext,climaticconditions, surround-ingbuildingsanddesignpreferences.Thisimpedesthedistributionof

Abbreviations:BDL,Bayesiandeeplearning;BNN,Bayesianneuralnetwork;SVGP,stochastic-variationalGaussianProcess;DoE,design-of-experiment;ReLU, rectifiedlinearunit.

Correspondingauthor.

E-mailaddresses:pwestermann@uvic.ca(P.Westermann),revins@uvic.ca(R.Evins).

centrally-deriveddesignparadigmstothelevelofindividualbuilding projects.

Architectsandengineers playa vitalroleinbridgingthegap be-tweenhigh-levelideasandindividualbuildingprojects.Oftentheyuse buildingperformancesimulation(BPS)toolstoassesstheenergyand environmentalperformanceofvariousdesignoptionsandbalancethem againstdesignpreferences.Thecomputationalexpenseandassociated

https://doi.org/10.1016/j.egyai.2020.100039

2666-5468/© 2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(3)

Fig.1.Distributionoferrorsofasurrogatemodel.Theplotshowstheerror ofasurrogatemodelwhichemulatesthesimulationoftheheatingdemandofan officebuilding(seecasestudyinSection4).Whiletheaverageabsoluteerror𝐴𝐸 andabsolutepercentageerror𝐴𝑃𝐸arelow(indicatedbytheredlines),large errorscanoccur.Thisstudyaimstoidentifythelargeerrorsusingestimatesof surrogatemodeluncertainty.

waitingtime,however,prohibitsexhaustive designspaceexploration andoptimization.This hasledresearcherstotrainmachinelearning modelsonsimulationinputandoutputdatatoemulatebuilding simu-lationmodels[2].

Thecomputationalspeedoftheseso-called‘surrogatemodels’has beenthebasisforarangeofinnovationsinthefieldofbuilding simu-lation,forexample,interactiveearly-stagedesigntools(e.g.ELSA[3], BuildingPathfinder[4],Net-ZeroNavigator[5]),fasteroptimization al-gorithms[6],anddetaileddesignsensitivityanduncertaintyanalysis [7][8].Arecentsurveyofbuildingdesignersconfirmedthatthosewho receivedrealtimefeedbackfrom asurrogatemodelarrivedat higher performingbuildingdesigns[9].

Thegrowinguseofsurrogatemodelsturnsattentiontothe robust-nessoftheiraccuracy.Theaccuracyofasurrogatemodelismeasuredby theerrorofthesurrogatemodeltoestimatethephysics-based simula-tionresults,whichisconsideredthegroundtruth.1Studieshaveshown

satisfactoryaverageaccuracyontestdata[11]whichcanbeinfluenced bythetypeandthecomplexityofinputs[12]andtheselectionof out-puts[5].

Nonetheless,averageerrorscomputedontestdatacanbedeceiving (seeFig.1).Testdatausuallyconsistsofdesignsamplesdistributed uni-formlyinthedesignspaceandmaynotreflecttheportionofthespace thebuildingdesignerisinterestedin.Largeerrorsonspecificbuilding designsmayoccur(i.e.heteroscedasticityoftheerrors),affecting impor-tantdesignchoicesandpotentiallyloweringtheenergyperformanceof thefinalbuildingdesign.

Bayesianmethods offer a frameworkto quantify theuncertainty stemmingfromtheinadequacyofanapproximatemodel(epistemic un-certainty)andrecentdevelopmentsin Bayesiandeep learning(BDL)

1 Pleasenote,thatthesurrogatemodelaccuracydoesnotreflecthowwell

theunderlyingsimulationmodelmatchesareal-worldbuilding.Thereaderis referredto[10]andmanyotherstudies,thataddressthegapbetweensimulation modelandtherealbuilding.

managed tointegrateBayesianconceptsinto largemachine learning models[13,14].AsaresultBDL-basedsurrogatemodelscan express forwhichinputstheirestimatesareuncertain.Inourcase,aBayesian surrogatemodelproducesabuildingperformanceestimateasa prob-abilitydistribution,wheretheentropyorvarianceofthatdistribution allowustoquantifytheuncertainty.Thearchitectorbuildingdesigneris thereforeprovidedwithalevelofconfidenceintheperformanceresults andthuscandefineuncertaintythresholdsabovewhichthehigh-fidelity model,heretheBPStool,isqueriedtoguaranteehighconfidenceresults (seeFig.2).

Inthisstudy,weexploretwodifferentBayesianmodels,Bayesian neuralnetworks[15]andstochasticvariationalGaussianprocess mod-els [16], toquantify epistemic uncertaintyin surrogatemodels(see Section2).Bothmodelswerechosenastheyscalewelltolarge sur-rogate modelling problemswith many inputsandoutputswhich re-quirestotrainthemodelsonlargedatasets.Webenchmarkthe over-allaccuracyagainstnon-Bayesiansurrogatemodels,validatethe qual-ityoftheuncertaintyestimate,andquantifyhowahybridizationoffast butapproximateandslowbutaccuratemodelsreducestheerrorofa surrogatemodelwhilecomputationalcostsincreaseonlyslightly(see Section5ff.).

2. Background

2.1. Motivationforsurrogatemodelling

Thecoremotivationtoemulateaphysics-basedhigh-fidelitymodel iscomputationalefficiency;simulationoutputscanbeestimatedmany ordersofmagnitudefaster,effectivelyinreal-time.Thisallowsa holis-ticdesignspaceanalysiswhichwouldbeinfeasiblewithaslow simu-lationmodel.Variousapplicationsofsurrogatemodellingarefoundin thebuildingdomainaswellasotherdomains[18,19]:

Generaldesignspaceexploration:Therelationshipbetweendesign parametersandperformanceisinteractivelyexploredtoimprovethe user’sunderstandingofthedesignproblem [9,20]. Thiscan hap-penonthesinglebuildinglevelorontheurbanlevel[21].Oftena parallel-coordinatesplotisusedtovisualizethemulti-dimensional problemspace[5].

Designoptimization:Thesurrogate modelis trainedandqueried toaccelerateiterativeoptimizationalgorithms[22–24].Adaptively trainingthesurrogatemodelonnewsimulationsamplescollected ateachoptimizationiterationcanfurtherincreaseoptimization per-formance[6].

Sensitivityanalysis:Thesurrogatemodelisusedtoruntheextensive sampling(thousandsofsimulationruns)requiredforglobal sensitiv-ityanalysismethods[7].

Designuncertaintyanalysis:Severaltypesofuncertaintiesexist dur-ingthebuildingdesignprocess-causedbyundetermineddesign pa-rameters,uncertaincontextualparameters(e.g.surrounding build-ings,carbonfactors,etc.),andvaguedesignconstraints[25].This uncertaintyisoftenquantifiedusingMonteCarlosamplingmethods, wheresamplesfrom uncertainparameter distributionsaredrawn andsimulatedtoquantifyhowthatparameteruncertainty propa-gatestobuildingperformanceuncertainty.Withasurrogatemodel, theseuncertaintiescanrapidlybecalculatedandupdated through-outthedesignprocess[8].

Simulationmodelcalibration:Anaccuratecalibrationofa simula-tionmodelisrequiredtoassessretrofitdesignchoicesforan exist-ingbuilding.Thecalibration,i.e.theprocessofdetermining uncer-tainbuildingparameters,oftenrelieseitheroniterative optimizia-tionalgorithms[26],oronBayesiancalibrationoftheseuncertain parameters[27]. Inboth cases simulationsareiteratively run to closelymatchsimulationoutputswithmeasuredsensordataby ad-justingtheunknownparameters.Onecanusesurrogatemodelsto reducethecomputationallimitationsoftheseapproaches.Notethat

(4)

Fig.2. Uncertaintyestimatestolinkhigh-fidelitymodelandasurrogatemodel.Thesurrogatemodelprovidesbothaperformanceestimatê𝑦𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒andan

uncertaintyestimatê𝜎𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒.Iftheuncertaintyislarge,ahigh-fidelitymodel(e.g.abuildingenergysimulation)isqueriedtoproduceaccurateestimates𝑦𝑠𝑖𝑚ofan

engineeringdesign(e.g.abuilding).Pleasecompareto[17]whointroducedasimilarconcept.

simulationmodelcalibrationcanbedonebothforaspecific build-ing[28]ormultiplebuildings[29].Thelattercommonlyrequiresan archetypemodelwhoseparametersarerepeatedlycalibratedusing measurementsoftheconsideredbuildings[30].

2.2. Surrogatemodelderivation

Insurrogatemodelling,wefitamachinelearningmodeltoa simu-lationdataset𝐷={𝑥𝑛,𝑦𝑛}𝑁𝑛

=1=(𝑋,𝑌)consistingof𝑁 samples,where

theinputs𝑥𝑛 correspondtothesimulationparametersand𝑦𝑛 to

real-valuedoutputsofthesimulationrunrecordedforsample𝑛[19].2Inthe

caseofbuildingenergysurrogatemodels,thesimulationparametersare thebuildingdesignparameters(e.g.insulationvalueofthewalls)and theoutputsarethesimulatedbuildingperformancemetricslikethe ag-gregatedannualenergyconsumptionorgreenhousegasemissions[2]. Studiesalsoexistwithtimeseriesoutputs,likehourlyenergydemand [21].

Forderivingthesurrogatemodelthemodellerfirstneedstocarefully specifythedesignproblem,whichincludeschoosingthefreedesign pa-rametersandtheperformanceobjectivesaswellasallotherimportant contextualparameters(surroundingbuildings,etc.).Thensimulations areruntocreatethesimulationdataset𝐷.Theideaistogainmaximum informationaboutthedesignspace(thecollectionofallpossible pa-rametercombinations)persimulationrun.Tailoredsamplingschemes exist,calleddesign-of-experimentmethods[31],e.g. Latin-Hypercube-samplingthatuniformlydistributessamplesinthemultidimensional in-putspace.Thenumberofsamplesmustbespecified(e.g.10-1000 sam-plesperparameterdimension[2])andisadjustedifmodelaccuracyon testsamplesistoolow.

2.3. Accuracyinsurrogatemodelling

Theaccuracyof a surrogatemodelis quantified byhow wellits buildingperformanceestimatesmatchtrue,physics-based simulation outputs.Weassumethesimulationmodelasourground-truthmodel, anddisregardthemismatchbetweenthesimulationmodelandthe real-worldbuildingwhencalculatingthesurrogate’s accuracythroughout thepaper.

Metricslikethecoefficientofdetermination(𝑅2),themeanabsolute

percentageerror (𝑀𝐴𝑃𝐸), or theroot-mean-squared-error (𝑅𝑀𝑆𝐸) can be used to quantify accuracy[32]. Basedon [5,11], accuracies of𝑅2>0.99arefeasiblewhenestimatingannuallyaggregated

perfor-mancemetrics,e.g.heatingdemand,buttheycanbesignificantlylower whenmorecomplexperformancemetricsareestimated.

As mentioned above, surrogatemodel accuracy is commonly re-portedasonemetric,implyinghomoscedasticerrors.Thismaynot al-wayshold,i.e. theerrors maydependon thechoice of inputs (het-eroscedasticity).ByusingBayesiandeeplearning[13],weaimtotrain surrogatesthatareawareofwhereinthedesignspace,i.e.forwhich

2 Alsocategoricaloutputscanbeconsideredbutpracticalexamplesare

lack-inginbuildingsimulationliterature.

buildingdesigns𝑥𝑋,themodelisuncertainandmayproducelarge errors.

2.4. Uncertaintyinsurrogatemodels

Amathematicalfunction𝑓 ofthesimulationisnotexplicitly avail-able. We use thesurrogatemodel tofindan estimate 𝑓̂to approxi-mate thatfunction. Themost importantcause ofuncertaintyin sur-rogate modellingishowplausiblethedetermined𝑓̂is(model uncer-taintyorepistemicuncertainty)[13].Forthemostpart,thisuncertainty is causedbythetrainingset𝐷=(𝑋,𝑌)which containsonlya finite setofpointswithinthespaceofpossiblesimulationparameter combi-nations𝑋 (thedesignspace) andassociatedbuildingperformance𝑌. Theoretically,epistemicuncertaintycanbereducedtozerogivenmore andmoredata[13].

Weconsidertheproblemofsurrogatemodellingasfreeofaleatoric uncertainty,whichrepresentsnoiseorotherunknowns impactingthe observations.3Therefore,weonlydealwithepistemicuncertainty.We

proposethatquantifyingthisuncertaintycanbeapowerfulaidin sur-rogatemodellingasitacknowledgesthatwehavetotrainourmodel withalimitednumberofsimulationsamplesthatrepresentafractionof thedesignspace,whichmakesthesurrogatemodeluncertain.Bayesian modellingnowallowsustoreasonunderthatuncertainty,whilestill benefitingfromtheadvantagesofsurrogatemodelling,i.e.the compu-tationalefficiencyforlargescaledesignspaceexploration.

2.4.1. Othersourcesofuncertaintyinbuildingperformancesimulation

Thescopeofthisstudyisspecificallysetonestimatingthe uncer-taintycausedby trainingasurrogatemodeltoemulateasimulation model(seeFig.3).Itdoesnotconsiderorcomputeanyothersourcesof uncertaintyprevailinginbuildingperformancemodelling,whichmay includeuncertaintyindesignparameterandmodelspecification, uncer-taintyinthepropertiesofthefinalconstructionanduncertainty stem-mingfromassumptionsofinternal(e.g.occupantbehaviour)and exter-nal(e.g.climate)conditions[25].Whereuncertaintyinsurrogate mod-ellingispurelycausedbythemodellingprocess(epistemic),uncertainty inspecifyingasimulationmodelisaleatoric.Formoreinsightsonthe uncertaintiestacklingthemismatchbetweenthesimulationmodeland theconstructedbuilding,thereaderisreferredto[34]instead.

3. Bayesianmodellingforsurrogatemodels

Bayesian probability theory offersus grounded tools toquantify modeluncertainty[35].

To understand thecoreidea of Bayesian modelling, we consider a parametricmodel 𝑦=𝑓(𝑥,Θ), where 𝑥 is the input, 𝑓 isa space of possiblemodels(seeFig.4)andΘisthesetof modelparameters

3Inthecaseofsensordata,thiscancorrespondtosensornoise.Here,we

considersimulationrunstobedeterministic,i.e.theimpactofnumericalnoise tobesmall.Inthecaseofnumericalbuildingsimulation,hereEnergyPlus[33], thiscorrespondstothenumericalnoiseofsolvingthethermodynamic-based differentialequations.

(5)

Fig.3. Uncertaintyinsurrogatemodelling,anduncertaintyinbuildingperformancesimulation.

Fig.4. HeatingdemandestimatedwithaBayesianneural network,andtheassociatedepistemicuncertainty.In par-ticular,theuncertaintyofthesurrogatemodelislargewhenthe buildinghasawallthicknesswiderthan1𝑚,whichiswiderthan allsamplescontainedinthetrainingdata(out-of-sample).

(forexample,theweightsina neuralnetwork). Insteadof findinga singleΘ,inBayesianmodellingwesearchforacollectionofΘ,which likelyhasproducedtheoutput𝑌 given𝑋.Inourcasewesearchfora collectionofsurrogatemodelswithdifferentweights.

TheBayesiantheorem,asshowninEq.(1),isappliedtofinda collec-tionwhichlikelyhasproduce𝑌given𝑋.Basedonourpriorknowledge onthedistributionofthemodelweights𝑝(Θ)andcombinedwiththe likelihoodfunction 𝑝(𝑌|𝑋,Θ)=∏𝑁𝑛=1𝑝(𝑦𝑛|𝑥𝑛,Θ),which quantifiesthe probabilitythataspecificmodelparametersetgeneratedthe observa-tions(𝑋,𝑌),theposteriorofthemodelparameterscanbecomputed.

𝑝|𝑌,𝑋)= 𝑝(𝑌|𝑋,Θ)𝑝(Θ)

𝑝(𝑌|𝑋) (1)

where𝑝(𝑌|𝑋)iscalledthemarginallikelihood.Itrepresentsthe proba-bilityoftheobserveddatagiventhemodel𝑓 withallpossiblemodel pa-rameters.Itisascalarthatnormalizestheposterior.Giventheposterior, wecannowinferaboutfuturedatainformofapredictivedistribution:

𝑝(𝑦|𝑥,𝑋,𝑌)=∫ 𝑝(𝑦|𝑥,Θ)𝑝|𝑋,𝑌)𝑑Θ (2)

Themeanandvarianceorentropycanbederived,wherethelattertwo provideinformationontheuncertaintyintheestimatedvalues.Inthe buildingsurrogatemodellingsetting,wepredictanexpectedbuilding performance,e.g.annualheatingdemand,andanassociateduncertainty givenbuildingdesign parameters,e.g.thethicknessof thewall(see Fig.4).

3.1. Variationalinference

Thetrueposterioroftheweights𝑝|𝑌,𝑋)however,iscommonly intractable.This isparticularlythecaseinthebigdataregimewhen morecomplexmodelsarerequired[16].Inthesmalldataregime (be-lowafewthousandsamples)posteriorinferencewithastandard Gaus-sianProcessBayesianmodelisfeasibleandwassuccessfullyappliedfor buildingsurrogatemodels[28,36].However,withincreasing complex-ity,forexamplemoreinputsandoutputs(e.g.[12]),standardGPshave majorshortcomings:

Themodelcomplexityislimitedasitonlyconsistsofonelayer,i.e. theoutputsoftheGParenotusedasinputstoanotherGP.This prohibitsmodelinghierarchicalstructuresandabstractinformation [14].

Computationalcostincreasewiththecubically((𝑛3))withthe

num-berofsamples𝑛.Thisprohibitsincreasingthesizeofthesurrogate modeltrainingsettoimprovethemodelaccuracy(forexample,to trainacomplex,tailoredkernelwithmanyhyperparameters[35]). Instead,recentadvancesinvariationalinference(VI)allowusto ap-proximatethetrueposteriorofΘinbigdataproblems[37].Wepick anapproximatevariationaldistributionoverthe(latent)model param-eters𝑞𝜈(Θ)withitsownvariationalparameters𝜈.Nowwesearchfor𝜈

thatminimizesthedivergencetothetrueposteriorwhichisquantified bytheso-calledKullback-Leibler(KL)divergence.Therebythe marginal-ization,i.e.theintegrationrequiredtocalculatethetrueposterior,is turnedintoanoptimizationproblemwhichisofteneasiertosolve.The

(6)

approximativedistributionof𝑞 canbeusedtoformpredictionsabout unseensamples.

3.1.1. Variationalinferencefortrainingscalablesurrogatemodels

Scalablevariational inferencemethodshavebeendeveloped both todoapproximative inferencewithBayesianneuralnetworks(BNN) [13]andwithGaussianprocessmodels[38].Wepickedoneapproach ofeachtype(BNN,GP)thatcanbeused”off-the-shelve”,thatis scal-ableto10’000andmoretrainingsamples, andthathasshownhigh performanceinpreviouspublications[16,17].Theyareintroducedin thefollowingsections.

The interested reader is referred to [39] for an introduction to Bayesiandeeplearningapproaches.Pearceetal.[40]providesa com-parisonof variousBNNtypes;different Gaussianprocessmodeltypes whichrelyonvariationalinferenceareexplainedin[38].

3.2. DeepBayesianneuralnetworks

Theconceptof aBayesianneuralnetwork(BNN) isan extension ofstandard networkarchitectures (e.g.feed-forward neuralnetwork, convolutionalneuralnetwork,orrecurrentneuralnetwork)tofollow theBayesianmodellingparadigm[41].InaBNNwesampletheneural networkweightsfromapriordistributionratherthanhavingasingle fixedvalueasinnormalneuralnetworks,forexample,froma Gaus-sianΘ ∼𝑁(0,𝐼)[39]. Insteadof optimising thenetworkweights di-rectly, we average over all possible weights, called marginalisation. GiventhestochasticoutputoftheBNN𝑓Θ(𝑥),wereceiveamodel

like-lihood𝑝(𝑦|𝑓Θ(𝑥)).Basedonthedataset𝐷,Bayesianinferenceisusedto

computetheposteriorovertheweights𝑝|𝑋,𝑌).Thisposterior cap-turesthesetofallplausiblemodelparameters.Thisdistributionallows predictionsonunseendata.

Asmentionedabove theexactposterior isintractable, and differ-entapproximationsexist[15,40].Intheseapproximateinference tech-niques,theposterior𝑝|𝑋,𝑌)isfittedwithasimpledistribution𝑞(Θ). HereweconsidertheDropoutvariationalinferenceapproachasithas showngreat performancewhenbenchmarkedagainstother methods [15,17].

3.2.1. Dropoutvariationalinference

Dropoutvariational inferenceisa variationalinferenceapproach, i.e.itallowstofinda𝑞

𝜈(Θ)thatminimisestheKullback-Leibler

diver-gencetothetruemodelposterior,thatneitherrequirestochangethe architectureofcommonnetworkarchitecturesnortochangethe opti-misationalgorithmfortrainingthenetwork[39].Theinferenceofthe posteriorisdonebytrainingamodelwhichusesstochasticdropouton everyneuronlayer[42](seeFig.5).Thisstochasticdropoutisalsoused toremoveneuronswhenperformingpredictions.Byrepeatingthe pre-dictions(stochasticforwardpasses),wecreateadistributionofoutputs, whichwasshowntominimizetheKLdivergence[39].

This KL divergence objective is formally given in thefollowing, whereweapproximate𝑝|𝑋,𝑌)with𝑞(Θ)[13,39]:

Ł(Θ,𝑝)=−1 𝑁 𝑁𝑖=1 log𝑝(𝑦𝑖|𝑓̂Θ𝑖(𝑥 𝑖))+12𝑁𝑝||𝜃||2 (3)

with𝑁 datapoints,dropoutprobability𝑝,weightsampleŝΘ𝑖𝑞𝜈(Θ),

and𝜃 thesetofthesampledistribution’sparameterstobeoptimised (weightmatricesinthedropoutcase).Notethatforeachdatapointin thetrainingsetdropoutisapplied,whichprovidesuswith𝑁 samples

ofΘ𝑖.

Whenperformingdropoutvariationalinferencethe𝑇stochastic for-wardpassesprovideuswiththeepistemicuncertaintygivenbythe vari-ance𝑉𝑎𝑟(𝑦): 𝑉𝑎𝑟(𝑦)≈ 1 𝑇 𝑇𝑡=1 𝑓̂Θ𝑡(𝑥)𝑇𝑓̂Θ𝑡(𝑥 𝑡)-𝐸(𝑦)𝑇𝐸(𝑦) (4)

withpredictionsinthisepistemicmodeldonebyapproximatingthe pre-dictivemean:𝐸(𝑦)≈𝑇1∑𝑇𝑡=1𝑓̂Θ𝑡(𝑥).Notethatinthisformulationwe

as-sumednonoiseinherentinthedataandtherefore,𝑉𝑎𝑟(𝑦)iszerowhen wehavenoparameteruncertainty.

3.3. Gaussianprocessesinthebigdataregime

Gaussian Processes models are attractive for non-parametric Bayesian modelling [35]. They use a Gaussian Process prior for a stochastic, latent function 𝑓 to describetherelationship between 𝑋

and𝑌 (seeFig.5).Thefunctionvalues 𝑓(𝑥)areassumedtobe sam-pledfromthatGaussianwithzeromeanandcovariancematrix𝐾,i.e.

𝑓∼(0,𝐾).Thechoiceofcovariancefunctionimpactsvariousaspects of theGP modelandalso determineswhich modelparameters Θto betuned.ThesemodelparametersareoptimizedwhentrainingtheGP model.

However,giventheabove-mentionedlimitationsofstandard Gaus-sianProcessmodels(seeSection3.1),sparseGPapproximationshave beendevelopedtohandlelargedatasetsbyloweringthecomputational complexityto(𝑛𝑚2)[38,43].4Theyrelyontheuseofinducing

vari-ables(orpseudo-inputs),i.e.areducedsetoflatentvariableswithsize

𝑚<<𝑛torepresenttheactualdataset𝐷 with𝑛samples.The𝑚inducing pointsareGPrealisations𝑢=𝑓(𝑧)attheinducinglocations𝑍 whichare inthesamespaceastheobservedinputs𝑋 (butnotnecessarilypartof

𝑋).WhentrainingtheSVGP,thelocationsoftheinducingpoints𝑍 and

thecovarianceparametersΘareoptimallychosentominimizetheKL divergence.Importantisthatthelocations𝑍 areparameterstoshape thevariationalapproximatedistribution𝑞(𝑓),ratherthanbeingpartof themodelparametersΘ,i.e.thecovariancefunctionwithparametersΘ arecalculatedfortheinducinglocations𝑍.

IncomparisontosparseGPs[43],stochasticvariationalGPs[16] al-lowmini-batchtrainingwhichfurtherreducescomputational complex-ityto(𝑛𝑏𝑎𝑡𝑐ℎ𝑚2).Since[16]andothers,multi-layereddeepGaussian

Processmodelshavebeendeveloped,too,butarenotconsideredinthis studyasourcasestudydatasetisstilloflimitedsizeandcomplexity [14,44].However,ourSVGPmodelmayberegardedasaone-layered deepGP[45].

4. Casestudy:surrogatemodelsforthedesignofnet-zeroenergy buildings

4.1. Objective

Weuseacasestudyonapopulartopicinthebuildingdomain,the designof buildingswithnet-zeroenergydemand,totrainandassess thetwoBayesianmodeltypesintroduced above.Itshallserveas an exampleshowcasingtheuseofbothmodeltypesforbuildingsurrogate modelling,butshouldnotbeconsideredasanexhaustivecomparisonof thetwo.Forthatpurposethereaderisreferredtootherstudiesinstead, e.g.[17,44].

4.2. Casestudybuilding

Weemulatethesimulationoutcomesofonearchetypebuilding con-tainedin theNet-Zeronavigatorproject[5]. AspartoftheNet-Zero navigatorproject,buildingsimulationsurrogatemodelsarehostedona web-platformwhichallowsuserstoreceivebuildingenergy consump-tionofarchetypebuildingsgivenalargesetofbuildingdesign param-etersinrealtime.Sofartheplatformreliedoncommondeterministic neuralnetworksurrogates,whosebuildingperformanceestimation ac-curacywasvalidatedonseparatebuildingdesignsnotcontainedinthe

4This blog post provides a summary on the history on sparse

Gaus-sian Process models: https://www.prowler.io/blog/sparse-gps-approximate-the-posterior-not-the-model.

(7)

Fig. 5. Considered variational-inference approachestoturnexistingsurrogate mod-ellingarchitecturesintoscalableBayesian models[15,16].

trainingdata.Allthesimulationrunsfortrainingandtestingwere col-lectedusingthewell-knownbuildingperformanceassessmentprogram EnergyPlus[46].Currently,deterministicsurrogatemodelsareused.

Inthiscasestudy,webuildasurrogatemodelofamediumoffice archetypebuilding,where35designparametersarefreetochooseand thebuildingenergyperformanceisquantifiedby12 separate perfor-mancemetrics(seeFig.6).Theofficearchitectureisbasedonworkfrom theUSDOECanmet-Energywhichderivedcommercialprototype build-ingmodels.Thedevelopmentoftheparameterset,thechoiceof per-formancemetrics,andsoftwaretogeneratethe(parametric)simulation dataset,however,wasdevelopedindividuallyforthatproject,where theparameterrangesaredirectlybasedonrequirementsinthe Cana-dianbuildingsector[47].Themechanicalsystemsareparametrizedto captureawidevarietyofconfigurationsallowingdirectmanipulation oftheair-sidesystem(incl.heatrecoveryventilation,variouspump ef-ficiencies)andplantequipmentperformanceofvarioussystems(heat pump,electricresistance heater,biogasfurnace,natural gasfurnace, airconditioningsystem).ThisallowsustoexplorealargeHVACsystem designspaceonahigh-level(incl.multi-systemsetups).Alldetailson thebuildingmaybefoundin[5].

4.2.1. Datasetandtransformations

Wesamplethedesignspaceusing10’000simulationruns,wherethe individualparametercombinationsinthedatasetarepickedusingthe space-fillingLatin-Hypercube-sampling(LHS) [31]. Similarly,werun additional3000simulationsanduseitasaseparatetestset.Thenumber

ofsimulationsrunsrequiredtofitanaccuratesurrogatemodelwas pre-viouslystudiedin[5],whereitwasfoundthat10’000runsaresuitable fortheconsideredbuilding.Eachbuildingsimulationruntook approxi-mately2minand10susing1CPUand4GBRAM,butvarieddepending ontheparameterchoices.

Priortotraining,westandardizedtheuniformlydistributedinputs withdifferentrangestobenormallydistributedwithzeromean. Fur-thermore,wetransformedthe12outputvariablestoalsobeclosetoa normaldistribution.Therefore,adaptiveBox-Coxtransformationswas applied[48].Itadaptivelyfindstransformationparameterstotransform variouskindsofdistributions(hereof12differentoutputs)tonormal distributions.This,inparticular,increasedtheaccuracyofthe multi-outputneuralnetworkcomparedtoothertransformations.

4.3. Modelarchitectures

InthissectionweprovidedetailsonthedropoutBayesianneural net-workandthestochasticvariationalGaussianProcessmodelwetrained toemulatethesimulationmodelofthecasestudybuilding.

4.3.1. BNNmodelarchitectureandimplementation

WeimplementedadropoutneuralnetworkusingtheKeras Tensor-flow API[49,50] basedon thework fromGalandGahramani[15]. Our network is a feed-forward neural network with 2 hidden lay-ers of 512 neurons which are activated with a leaky rectified lin-ear(ReLU) function. Trainingwasdonewithin 1200epochs usinga

(8)

Fig.6. Overviewofthecasestudybuilding.Thebuildingdesignparameterscorrespondtothesurrogatemodelinputsandtheannualperformancemetricstothe surrogatemodeloutputs.

batch sizeof 128 samples. A dropout rateof 5% was set.All men-tionedparameters (𝑛𝑙𝑎𝑦𝑒𝑟𝑠∈ [1,2,3], 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠=[256,512,1024], dropout

rate∈ [5%,10%,20%])wereanalysedina5-foldcross-validation.The modelwiththehighestaccuracyonthetestsetwaspicked. Further-more,weanalysedtheimpactofthedropoutrateontheuncertainty quality(seeSection4.4),butnosignificantchangeintheperformance wasobserved,whichagreeswiththeobservationfrom[15],thatthe un-certaintyestimatesofmodels,thatusedifferentdropoutrates,converge withthetrainingprogress.

4.3.2. GPmodelarchitectureandimplementation

We built a stochastic variational Gaussian Process model based on [16]using theGPy implementation[51]. Thefinal modelhas a Matern32covariancefunctionwithafixednoiseterm(≈ 0.001%ofthe meanabsolute valueoftherespectiveoutput)anditusesaGaussian likelihoodfunction.Weappliedoneseparatelengthscaleperoutputfor thecovariancefunction.OursparseGaussianprocessmodelused400 in-ducingpoints,whichweinitializedrandomlydrawingfromauniform distribution.Trainingwasperformedonmini-batchesof100samples usingtheAdadeltaoptimizer.

Thecovariancefunctionwaspickedafterrunninga5-foldcross val-idation(bothsquared-exponential,andMatern32kernelswere consid-ered).Althoughtheobserveddatasetisdeterministic,weconsidereda fixednoiselevelin themodel(≈ 0.001%of themeanabsolutevalue oftheoutputs)asitproducedmuch moreaccuratemodels.This im-pliesthatvarianceoftheonelayeredGaussianprocessmodelin[16]is toosmallandadeepGaussianprocessmaybeabetterchoiceforour problem.

4.4. Evaluationcriteria

Weevaluatethemodelswithregardtomultipleobjectives:(i)the model accuracy, (ii) uncertainty accuracy, (iii) the effectiveness of uncertainty-estimate-basedissue-raising.

4.4.1. 𝑅2score,𝑀𝐴𝑃𝐸 and𝐴𝑃𝐸

90scoretoquantifypredictionaccuracy

Ourerrormetricscovertwooftenusedmetricsinthefield,i.e.the R2[11]andtheMeanAbsolutePercentageError(MAPE)[52].

R2(𝑌,̂𝑌)=1 -∑𝑛 𝑖=1(𝑦𝑖-̂𝑦𝑖) 2 ∑𝑛 𝑖=1(𝑦𝑖-̄𝑌)2 (5) MAPE(𝑌,̂𝑌)=1 𝑛 𝑛𝑖=1 |𝑦𝑖-̂𝑦𝑖| 𝑦𝑖 (6)

where ̂𝑌 correspondstothematrixofpredictedvalues,𝑌 isthematrix of simulatedbuildingperformancevalues.Whentheerrorterm,𝑌-̂𝑌 approacheszero,R2approachesone,andMAPEgoestozero.

Thegiventwoerrormetricsprovideinsightintotheoverall perfor-manceofthemodels.However,theymaydisguiselargeerrorswhich occurfor fewsamples.Therefore,weaddedthe𝐴𝑃𝐸90 error.It

rep-resentsthe90thpercentileoftheabsoluteerrorssortedbyascending magnitude,andtherefore,allowstoestimatemaximummodelerrors whileaccountingforpossibleoccurrencesofoutliers.

4.4.2. Accuracyoftheuncertaintyestimate

Inawell-calibratedBayesianmodeltheuncertaintyestimates cap-turethetruedatadistribution,forexample,a95%posteriorconfidence

(9)

intervalalsocontainsthetruesimulationoutcomein95%ofthetimes [53]. Quantifyingthelevelofcalibrationis awell-knownconceptin classification[54]buthasalsobeenusedforregressionproblems re-cently[53,55].

Formally,we say that theuncertainty estimatesof thesurrogate modelarewell-calibratedif

𝑁 𝑛=1{𝑦𝑡𝐹

-1 𝑡 (𝑝)}

𝑁 → 𝑝forallp∈ [0,1] (7)

where 𝐹𝑡 is the cumulated density function targeting 𝑦𝑡 and 𝐹𝑡-1=

𝑖𝑛𝑓{𝑦𝑝𝐹𝑡(𝑦𝑡)}isthequantilefunction.Hereweconsidereach pre-dictionasastandard,symmetricGaussiandistribution(𝜇(𝑋),𝜎(𝑋)).5

Theconfidenceintervalscanbecomputedusingtheinversecumulated densityfunction.Toassessthecalibrationquality,wecountthe frac-tionofobservationsinthetestdatafallinginthepredictionconfidence intervalsderivedfromthequantilefunction(seeFig.8,left).

We show the level of calibration of the Bayesian models in Fig.8(left),whereperfectlycalibrateduncertaintyestimateswouldbe alignedwiththediagonal.Toquantitativelycomparedifferent calibra-tioncurves,onecanalsocomputetheabsolutedifferencebetweenthe confidencecurveandthediagonal,calledthecalibrationerrororthe areaunderthecurve(AUC)[55].Theproblemofassessingthe calibra-tionqualitybasedonthecalibrationplotisthatitcansuggestperfect qualitywithhomoscedasticuncertaintyestimates,i.e.constant uncer-taintyestimatesforanyinput.Therefore,wealsoquantifythesharpness

oftheuncertaintyestimatesbycalculatingtheoverallvarianceinthe uncertainty[53](seeSection5).

4.4.3. Discard-rankingtoquantifytheeffectivenessofuncertainty estimatesforsurrogatemodelapplication

While havingaccurate uncertaintyestimates is the one thing,in buildingsurrogatemodellingwearemostly concernedwithwarning modelusers,whenthemodelisuncertainandrecommendtoratherrun asimulationinstead(seeFig.2).Therefore,wederivearankingofthe samplesinthetestsetbasedonthemagnitudeoftheiruncertainty.This providestwoconclusions.First,ifitstronglyoverlapswiththeactual surrogatemodelerrortheuncertaintyestimatesareaneffective het-eroscedasticwarningmechanism.Second,we canuse therankingto calculatehowmuchtheaverageerrorcanbereducedwhenreferring acertainpercentageofmostuncertainsamples(here10%or20%)to thehigh-fidelitysimulationprogramthanprocessingitwithasurrogate model.

Bothaspectsareaddressedwhenplottingthemeanerrorcomputed ondiscretepercentiles ofthetestdata,wherethetestdataissorted bythemagnitude oftheuncertainty. Wecan comparethat curveto themeanerrorcomputed usingtestdatasortedbythemagnitudeof thecomputederror(oracleranking).Alargedistancebetweenthetwo curvescantellusthatthesurrogate’suncertaintyestimatesarenot help-fultopredictwhenitisinaccurate.Furthermore,bylookingattheslope ofthecurve,wecanseebyhowmuchthemeanerrorcanbereducedif wediscardallsampleswithuncertaintiesaboveacertainthreshold.

5. Results

Inthissection,weshowtheresultsofthecasestudywherewe de-riveduncertainty-awaresurrogatemodelstoreplacedbuildingenergy simulationmodels.

Inthecasestudy,wetrainedtwodifferentBayesianmachine learn-ing models to provide epistemic uncertainty estimates, i.e. a deep Bayesiandropout neural network(here abbreviated byBNN) and a stochasticvariational Gaussian Process model(SVGP) approach. We scrutinizetheperformanceofbothapproachesbycomparingtheir pre-dictiveaccuracy,bycomparingthequalityoftheuncertaintyestimates,

5 Thisisnotnecessarilytrueandpossiblyarecalibrationstepisrequired[53].

andbyquantifyinghoweffectivelytheuncertaintyestimatesallowus toidentifypossiblesurrogatepredictionerrors.

5.1. Modelaccuracyanduncertaintyquality 5.1.1. Accuracy

Webenchmarktheaccuracyofthetwomodeltypes,dropoutneural networksandSVGPmodels.Theperformancewasquantifiedusingthree performancemetricsasintroducedabove(seeSection4.4).Eachmodel wastrainedfivetimestogeneraterobustresults.Theresultsareshown inFig.7andTable1intheAppendix;detailsonthemodellayoutand trainingprocesscanbefoundinSections4.3.1and4.3.2).

Bothconsideredmodelsreachanaccuracyof𝑅2>0.97onallthe

outputs,whenpredictingbuildingperformanceofbuildingscontained in thetestdata. TheBNN is more accuratewith𝑅2⩾ 0.99(also see

Table1).Meanpercentageerrorsof𝑀𝐴𝑃𝐸<13.2%fortheGPmodel and𝑀𝐴𝑃𝐸<9.82%forBNNwerefound.Thelargesterrorsoccurwhen estimatingtheenergydemandprovidedbydifferentheatingsources(i.e. thedifferentfueltypes),andtheair-sidesystemenergydemand.Small surrogatemodelerrorsarefoundfortheotherbuildingperformance tar-getslikethephotovoltaic(PV)generation,orenergydemandforinterior lightsandequipment.

Toproverobustnessof surrogatemodelestimates,wespecifically lookatthelargesterrorsitproduces.Therefore,wecomplementour analysisofthemeanabsolutepercentageerrorwithananalysisofthe distributionoftheabsolutepercentageerrorsobservedforeachsample inthetestdata.Weextractthe90-thpercentileofthedistributionasa proxyofthelargesterrorfoundwhileignoringoutliers.Weabbreviate thismetricwith𝐴𝑃𝐸90.𝐴𝑃𝐸90errorsarefoundreachingupto22.3%

(30.5%)fortheBNN model(GPmodel),highlightingthedemandfor increasingtherobustness.

5.1.2. Uncertaintycalibration

Whenuncertaintyestimatesareperfectlycalibrated,thederived con-fidenceinterval,e.g.the90%confidenceinterval,containsthetrue out-comeintherightnumberofcases,i.e.90%ofthetimesforthegiven example.ThisisillustratedinFig.8,wherewecountedforhowmany timesthetruesimulationoutcomewascontainedintheestimated confi-denceinterval.WithaperfectlycalibratedBayesianmodeltheestimated confidenceandfractionofthetestsampleswithinthatintervalshould perfectlyalign(dashedline).Theregionbelowthedashedlineindicates anoverlyconfidentmodel(i.e.confidencebandsaretoonarrow),the regionabovethedashedlinemeansthatthemodelistoocarefulhaving toolargeconfidencebands.

WefindthattheBNNmodeliswell-calibrated,whiletheGPmodelis overlyconfident(Fig.8,left).Thelowqualityofuncertaintyestimates oftheGPmodelcanalsobeseenontheright,wherewedisplaythe distributionofalluncertaintyestimatescollectedforpredictionsofthe testdatasamples.TheaveragemagnitudeofuncertaintyintheGPmodel indicatesitstoohighconfidence,andthesmallwidthofthedistribution indicatesthattheuncertaintyestimatestendtobehomoscedastic,i.e. asimilar uncertaintyispredictedindependentlyofthemodelinputs. Thiswidthofthedistributionisalsocalledthesharpnessofuncertainty estimates(seeSection4.4).IncaseoftheBNN,thesharpnessisbetter anduncertaintyestimatesdepictasignificantlevelofvariance.

WecanconcludethattheuncertaintyestimatesoftheBNNare well-calibratedandprovideheteroscedasticuncertaintyestimates.

5.1.3. Usinguncertaintyestimatestoincreaserobustness

Inthissectionwestudyhoweffectivetheepistemicuncertainty es-timatesaretopredictinaccuraciesofthesurrogatemodel.

Theconceptisasfollows.Wesorttheuncertaintyestimatesonthe testdatabyscale,whereweassumethatsurrogatemodelestimatesare moreinaccuratewhenitisuncertain.Thesampleswithhighuncertainty willbeevaluatedbythehighfidelitysimulationprograminsteadofthe surrogatemodel(seeFig.2).Asa consequence,thesurrogatemodel

(10)

Fig.7.Summaryofresultsontheuseofdeep,uncertainty-awaresurrogatemodels.Theplotshowstheaccuracy,quantifiedusingthreedifferenterrormetrics, ofbothBayesianlearningapproachesforalltwelveoutputsconsideredinthecasestudy.Thefiguresalsoincludeperformancemetricswhenweusetheuncertainty estimatestoidentifyerror-pronesamplesinthetestdata(texturedbars,fordetailsseeSection5.1.3).

Fig.8. VisualizationofthequalityofuncertaintyestimatesoftheBNNandtheSVGP.Thequalityisquantifiedbyhowwell-calibratedandsharptheuncertainty estimatesare.Inbothregards,theBNNoutperformstheSVGPinthisstudy.

user,hereabuildingdesigner,isprovidedwithestimatesproducedby thesurrogatemodelonlywhenithashighconfidence,andwithactual simulationresultswhenthesurrogatemodelhaslowconfidence.The numberofsamplesprocessedbythecomputationallyexpensive simula-tionmodelshouldbetraded-off againstanincreaseinruntime.Here,we

handlethistrade-off bydefininganuncertaintythresholdabovewhich thesimulationprogramisqueried.

Wedefinethisthresholdasthe90th-or80th-percentileofall uncer-taintiesobservedonourtestdataset.Therationalebehindthatchoice is thatonly10%(or20%) ofallsamplesaretransferredtotheslow

(11)

Table1

ResultsoftheaccuracyoftheBayesianmodels.

𝑅 2 𝑀𝐴𝑃 𝐸 𝐴𝑃 𝐸90

BNN SVGP BNN SVGP BNN SVGP

Pumps [MWh/y] 0.990 ± 0 . 001 0 . 983 ± 0 . 001 7.180 ± 0 . 180 8 . 530 ± 0 . 260 14.830 ± 0 . 510 17 . 950 ± 0 . 610 Heating supply, Other [MWh/y] 0.990 ± 0 . 003 0 . 977 ± 0 . 001 9.820 ± 0 . 350 12 . 490 ± 0 . 430 22.300 ± 0 . 750 29 . 300 ± 1 . 480 Fans [MWh/y] 0.991 ± 0 . 004 0 . 988 ± 0 . 001 8 . 630 ± 0 . 380 8.530 ± 0 . 250 18.120 ± 0 . 770 18 . 280 ± 0 . 540 Heating supply, Elec. [MWh/y] 0.992 ± 0 . 001 0 . 986 ± 0 . 000 7.150 ± 0 . 290 8 . 670 ± 0 . 360 15.130 ± 0 . 290 18 . 260 ± 0 . 900 Heating supply, Gas [MWh/y] 0.992 ± 0 . 002 0 . 973 ± 0 . 001 9.400 ± 0 . 380 13 . 230 ± 0 . 220 21.440 ± 0 . 620 30 . 480 ± 0 . 520 Cooling supply, Elec. [MWh/y] 0 . 992 ± 0 . 002 0.998 ± 0 . 000 3 . 550 ± 0 . 200 2.820 ± 0 . 100 7 . 490 ± 0 . 560 5.820 ± 0 . 200 Heating demand [MWh/y] 0 . 995 ± 0 . 001 0.996 ± 0 . 000 3 . 960 ± 0 . 330 3.710 ± 0 . 080 8 . 040 ± 0 . 710 7.800 ± 0 . 250 Cooling demand [MWh/y] 0.997 ± 0 . 000 0.997 ± 0 . 000 2 . 440 ± 0 . 050 2.270 ± 0 . 060 4 . 980 ± 0 . 090 4.700 ± 0 . 110 Interior lights [MWh/y] 0 . 998 ± 0 . 000 0.999 ± 0 . 000 2 . 410 ± 0 . 100 1.590 ± 0 . 080 5 . 050 ± 0 . 160 3.150 ± 0 . 270 Interior equipment [MWh/y] 0.998 ± 0 . 000 0.998 ± 0 . 000 2 . 790 ± 0 . 100 1.410 ± 0 . 120 5 . 650 ± 0 . 200 2.600 ± 0 . 250 Water heating, Gas [MWh/y] 0 . 999 ± 0 . 000 1.000 ± 0 . 000 1 . 220 ± 0 . 130 0.250 ± 0 . 070 2 . 590 ± 0 . 260 0.430 ± 0 . 090 PV Generation [MWh/y] 0.999 ± 0 . 000 0.999 ± 0 . 001 3 . 030 ± 0 . 090 1.290 ± 0 . 090 6 . 040 ± 0 . 100 2.200 ± 0 . 150

Fig.9. Recordedsurrogatemodelerrorreductionaftertransferringuncertainsamplestothehigh-fidelitysimulationmodel.Thedatashowstheerrorif either100%,90%or80%ofthebuildingdesignsamplesareprocessedbythesurrogatemodelandtherestprocessedbythehigh-fidelitymodel.Inthatway,the averageerrorofsamplesprocessedbysurrogatemodelscanbedecreased(herequantifiedbythe90-percentileabsolutepercentageerror).

simulationprogram.Findingasuitablethresholdismoredifficultand shouldalsobebasedonthepreferencesofthebuildingdesigner.

InFig.9,thedecreaseintheerror ofthesurrogatemodel predic-tionsisillustratedforthethreetargetvariablescoveringtheheatsupply ofdifferentfuelsources.Thesetargetsproducedthelargesterrors(see Section5.1.1)andthus,wefocusonincreasingthesurrogaterobustness particularlyforthem.Discardingthe10%sampleswiththehighest un-certaintyonthetestdata,wecandecreasethe𝐴𝑃𝐸90errorinestimating

theannualheatingsupplywithagasfurnacefrom21.44%to16.66%.6

Thisisequivalenttoareductionof≈ 22%.

The𝑀𝐴𝑃𝐸 errorontheothersurrogatemodeloutputswasreduced by4%to18%,andthe𝐴𝑃𝐸90by5%to25%(seeFig.9).Inparticular,

thesignificantreductionofthe𝐴𝑃𝐸90errorproofstheincreaseinthe

robustnessofthesurrogatemodelpredictions.

6. Discussion

Surrogatemodelshaveshowntohelparchitectsandbuilding de-signerstorapidlyassesstheenergyperformanceoftheirdesigns[9]. However,bybeingonlyapproximative,concernsabouttherobustness

6 Tocalculatetheseerrors,weexcludethe10%or20%mostimportant

sam-plesfromEqs.5and6.Forexample,the16.66%errorwascomputedonthe 90%remainingsamplesinthetestset.

ofthesurrogatemodelaccuracyarise.ABayesianapproachfor surro-gatemodelling,allowstonotonlyprovideaperformanceestimatebut alsoinformabouttheconfidenceoftheapproximatingsurrogatemodel andpotentially,toidentifypartsofthedesignspacewherethesurrogate modelmayprovideinaccurateresults.

ThisfirstanalysisoftheuseofBayesiansurrogatemodelsrevealed essential properties on therobustnessof surrogatemodels,and how Bayesianmodellingcanbeanaidforeffectivereasoningontheenergy performanceofbuildingsundertheepistemicuncertaintyofsurrogates. Thegoalwastoaugmentsurrogatessuchthatwecanmaintainthe ben-efitsofsurrogatemodelswhileminimizingtheriskassociatedwiththe uncertaintyofsurrogatemodels.

6.1. Lackingrobustnessofsurrogatemodels

Surrogatemodelaccuracyisoftenreportedwitherrormetricslike the𝑅2 or𝑀𝐴𝑃𝐸 scores.Theyareimportantbutcanbedeceiving.A

highcoefficientofexplainedvariance(𝑅2)oralowmeanabsolute

per-centage error 𝑀𝐴𝑃𝐸,may disguisethat thesurrogatemayproduce quitelarge errorsin certainfractions ofthedesignspace. For exam-ple,wefoundthatthe90-percentileabsolutepercentageerrorcanbe ashighas22.3%althoughan𝑅2=0.99suggestsveryhighperformance

(seeTable1).Thismotivates,thatindeedmeasurestoidentifysurrogate inaccuraciescouldlessentheriskassociatedwithsurrogatemodelling.

(12)

Fig.10. ConvergenceofBNNestimateswithanincreasingnumberofMonteCarlodropoutsamples.TheplotshowsBNNheatingdemandestimatesand uncertaintyestimateswithincreasingnumberofMCsamples(seecasestudyinSection4).Bothapproximatelyconvergeafterconducting30randomdropoutruns, whichtakesaround0.8s(withoutparallelization).

6.2. Bayesianlearningtoexpresssurrogateconfidence

Resultsonthequalityofuncertaintyestimatesofthedropoutneural networkvalidatedthatitcanbeusedtoeffectivelyexpressconfidence onitspredictions,e.g.onecanformulatethattheheatingdemandfor abuildingwithawallof1𝑚thicknessisbetween220𝑀𝑊ℎ𝑦𝑒𝑎𝑟and 230𝑀𝑊ℎ𝑦𝑒𝑎𝑟witha90%confidence(seeFig.4).

Ontheotherhand,whilebeingalmostasaccurateastheneural net-workmodel,wefoundthatthestochasticvariationalGaussianProcess modelproducesmiscalibrateduncertaintyestimates.Pleasenote,that thisfindingcannotbegeneralizedasmethodsexisttocalibrate uncali-bratedestimates[53],andinotherstudiesdeepGaussianprocess mod-elswerefoundtoproducealargervarianceintheuncertaintyestimates [44].Nonetheless,theresultsontheSVGPmodelshighlightthat assess-ingthequalityofBayesianuncertaintyestimatesisimportant.

6.3. PracticalissuesofBayesiansurrogatemodels

WeleveragedtheuncertaintyestimatesoftheBNNtoraisewarnings whenthesurrogatemodelishighlyuncertain.Bydefiningathreshold, herethe90-percentileor80-percentileoftheuncertaintyestimateson thetestdata,wecouldreducethe𝐴𝑃𝐸90errorbyupto40%.Thisisa

significantfirststeptowardsthehybridizationoffast,low-fidelity,and slow,high-fidelitymodels.

Still,practicalissueshavetobesolved.Forexample,thequestion arisesonhowtoimplementtheroutingbetweenthesurrogatemodel andhigh-fidelitymodelruns.Simulationscouldbecarriedoutinthe backgroundwhiletheuserwouldbeworkingwiththeuncertain surro-gatemodelestimatesasastart.Inourcasetheresultswouldbeupdated after2minutesand10seconds,whichcorrespondstotheapproximate runtimeofonesimulation.

AnotherissueisthatthecomputationalcostofevaluatingaBayesian modelincreasescomparedtoadeterministicsurrogatemodel.When us-ingdropoutBNNs,weperformMonteCarlo(MC)dropout,i.e.we re-peatedlyevaluatetheBNNwhereasineachrunthesetof”dropped” neu-ronschangesandtherewith,theoutputsofthenetworkchange.Mean

𝜇 andstandarddeviation𝜎 oftheestimatesconvergewithincreasing numbersofMCevaluations,whichisshowninFig.10.Weperformed between10and2000MCevaluationsandreportedthemeanandthe standarddeviationoftheresultingestimates.Weconsiderbothmean

andstandarddeviationtohaveconverged,whentheyremainwithina bandof±1%ofthemeanweobservedafter2000MCdropoutruns.

Intheplotwevisualizedtheconvergenceoftheheatingdemand estimatesforasinglebuildingdesign.Theplotimpliesthatittakes ap-proximately0.8s,whichcorrespondsto30MCdropoutruns,forboth themeananduncertaintyestimatestoconverge.Without paralleliza-tion,thiswouldmeanthatMCdropoutsamplingofaBNNis30times slowerthantheevaluationofacommonfeed-forwardneuralnetwork, anditwouldpreventinteractivebuildingdesignprocesses.However, theindependentMCdropoutrunscaneasilybeparallelizedto multi-plecores.Pleasenotethattheconvergenceratedependsonthespecific buildingdesignparameters(surrogatemodelinputs)ortheconsidered buildingperformanceoutput(surrogatemodeloutputs).Afirst heuris-ticcheckforvariousinputsandoutputsindicatedthatestimatesalways convergedwithin100orlessMCdropoutruns.

Theseandotherquestionshavetobestudiedinmoredetailbefore integratingBayesiansurrogatemodelsintosoftwareproductsfor build-ingdesigners.

6.4. AccuracyoftheBayesianmodelcomparedtoadeterministicsurrogate model

Wecan comparetheresultsof thisstudytoa non-Bayesian feed-forwardneuralnetworktrainedonthesamedataset(seeTable2inthe Appendix).Detailsonthenon-bayesiannetworkusedcanbefoundin [5].IthasaverysimilarlayouttothedropoutBNN(2hiddenlayers with512neurons,leakyrectifiedlinearunitactivationfunction)and wastrainedusingthesamecostfunctionandoptimizer(1200training epochswithAdamoptimizer).

The𝑅2,𝑀𝐴𝑃𝐸 and𝐴𝑃𝐸

90scoresofthedeterministicmodel

com-putedonthetestdataarebetterformostoutputswhennouncertainty basedsamplefilteringisapplied(seeTable2).However,whenusing uncertaintythresholdstheBayesianmodelproduceslower𝑀𝐴𝑃𝐸 and 𝐴𝑃𝐸90errorsproposingthattheBNNisausefulmeanstoincreasethe

robustnessofsurrogatemodels.7

7Here,weusedauniformlydistributedsetofbuildingdesignsamplesasour

testdata.However,thismaynotberepresentativeofactualdesignprocesses.In future,acomparisonofbothneuralnetworktypes(Bayesiansurrogatemodel,

(13)

Table2

ComparisonofBayesiandropoutneuralnetwork(BNN)andnon-bayesiandeterministicneural network(ANN).Theperformanceofthedropoutneuralnetwork(BNN)isprovidedwithandwithout theapplicationofuncertainty-basedthresholding(90%/80%).

(i) 𝑅 2 -score

ANN BNN BNN 90% BNN 80%

Pumps [MWh/y] 0.992 ± 0 . 000 0 . 990 ± 0 . 001 0 . 989 ± 0 . 001 0 . 989 ± 0 . 001 Heating supply, Other [MWh/y] 0.995 ± 0 . 001 0 . 990 ± 0 . 003 0 . 989 ± 0 . 004 0 . 988 ± 0 . 004 Fans [MWh/y] 0.994 ± 0 . 002 0 . 991 ± 0 . 004 0 . 990 ± 0 . 004 0 . 989 ± 0 . 004 Heating supply, Elec. [MWh/y] 0.994 ± 0 . 000 0 . 992 ± 0 . 001 0 . 992 ± 0 . 001 0 . 992 ± 0 . 001 Heating supply, Gas [MWh/y] 0.995 ± 0 . 001 0 . 992 ± 0 . 002 0 . 992 ± 0 . 002 0 . 991 ± 0 . 002 Cooling supply, Elec. [MWh/y] 0.994 ± 0 . 001 0 . 992 ± 0 . 002 0 . 993 ± 0 . 001 0 . 992 ± 0 . 002 Heating demand [MWh/y] 0.996 ± 0 . 000 0 . 995 ± 0 . 001 0 . 995 ± 0 . 001 0 . 993 ± 0 . 002 Cooling demand [MWh/y] 0.997 ± 0 . 000 0 . 997 ± 0 . 000 0 . 996 ± 0 . 000 0 . 995 ± 0 . 000 Interior lights [MWh/y] 0.999 ± 0 . 000 0 . 998 ± 0 . 000 0 . 997 ± 0 . 000 0 . 997 ± 0 . 000 Interior equipment [MWh/y] 0.999 ± 0 . 000 0 . 998 ± 0 . 000 0 . 998 ± 0 . 000 0 . 997 ± 0 . 000 Water heating, Gas [MWh/y] 1.000 ± 0 . 000 0 . 999 ± 0 . 000 0 . 998 ± 0 . 000 0 . 998 ± 0 . 001 PV Generation [MWh/y] 1.000 ± 0 . 000 0 . 999 ± 0 . 000 0 . 998 ± 0 . 000 0 . 998 ± 0 . 000

(ii) 𝑀𝐴𝑃 𝐸

ANN BNN BNN 90% BNN 80%

Pumps [MWh/y] 6 . 480 ± 0 . 170 7 . 180 ± 0 . 180 6 . 200 ± 0 . 130 5.850 ± 0 . 130 Heating supply, Other [MWh/y] 8 . 550 ± 0 . 630 9 . 820 ± 0 . 350 8 . 380 ± 0 . 310 7.480 ± 0 . 410 Fans [MWh/y] 7 . 610 ± 1 . 000 8 . 630 ± 0 . 380 7 . 300 ± 0 . 470 6.690 ± 0 . 540 Heating supply, Elec. [MWh/y] 6 . 530 ± 0 . 370 7 . 150 ± 0 . 290 6 . 070 ± 0 . 270 5.670 ± 0 . 320 Heating supply, Gas [MWh/y] 8 . 040 ± 0 . 220 9 . 400 ± 0 . 380 7 . 880 ± 0 . 370 7.190 ± 0 . 400 Cooling supply, Elec. [MWh/y] 3 . 280 ± 0 . 260 3 . 550 ± 0 . 200 3 . 320 ± 0 . 200 3.150 ± 0 . 170 Heating demand [MWh/y] 3 . 710 ± 0 . 290 3 . 960 ± 0 . 330 3 . 550 ± 0 . 370 3.410 ± 0 . 370 Cooling demand [MWh/y] 2.240 ± 0 . 160 2 . 440 ± 0 . 050 2 . 310 ± 0 . 050 2 . 250 ± 0 . 060 Interior lights [MWh/y] 1.830 ± 0 . 170 2 . 410 ± 0 . 100 2 . 290 ± 0 . 090 2 . 180 ± 0 . 070 Interior equipment [MWh/y] 2 . 810 ± 0 . 390 2 . 790 ± 0 . 100 2 . 290 ± 0 . 080 2.130 ± 0 . 090 Water heating, Gas [MWh/y] 0.660 ± 0 . 060 1 . 220 ± 0 . 130 1 . 110 ± 0 . 130 1 . 050 ± 0 . 120 PV Generation [MWh/y] 1.650 ± 0 . 120 3 . 030 ± 0 . 090 1 . 900 ± 0 . 150 1 . 660 ± 0 . 180

(iii) 𝐴𝑃 𝐸 90

ANN BNN BNN 90% BNN 80%

Pumps [MWh/y] 12 . 450 ± 0 . 530 14 . 830 ± 0 . 510 12 . 280 ± 0 . 310 11.480 ± 0 . 230 Heating supply, Other [MWh/y] 20 . 400 ± 1 . 480 22 . 300 ± 0 . 750 17 . 160 ± 0 . 580 15.240 ± 0 . 610 Fans [MWh/y] 15 . 810 ± 1 . 540 18 . 120 ± 0 . 770 14 . 950 ± 0 . 910 13.800 ± 1 . 050 Heating supply, Elec. [MWh/y] 13 . 790 ± 0 . 810 15 . 130 ± 0 . 290 12 . 470 ± 0 . 490 11.670 ± 0 . 640 Heating supply, Gas [MWh/y] 18 . 320 ± 0 . 640 21 . 440 ± 0 . 620 16 . 660 ± 0 . 610 14.970 ± 0 . 690 Cooling supply, Elec. [MWh/y] 6 . 780 ± 0 . 560 7 . 490 ± 0 . 560 6 . 920 ± 0 . 460 6.540 ± 0 . 320 Heating demand [MWh/y] 7 . 670 ± 0 . 550 8 . 040 ± 0 . 710 7 . 260 ± 0 . 740 6.940 ± 0 . 770 Cooling demand [MWh/y] 4 . 620 ± 0 . 300 4 . 980 ± 0 . 090 4 . 710 ± 0 . 090 4.610 ± 0 . 090 Interior lights [MWh/y] 3.840 ± 0 . 330 5 . 050 ± 0 . 160 4 . 790 ± 0 . 170 4 . 560 ± 0 . 170 Interior equipment [MWh/y] 5 . 320 ± 0 . 960 5 . 650 ± 0 . 200 4 . 780 ± 0 . 200 4.450 ± 0 . 240 Water heating, Gas [MWh/y] 1.340 ± 0 . 100 2 . 590 ± 0 . 260 2 . 350 ± 0 . 270 2 . 210 ± 0 . 250 PV Generation [MWh/y] 2.460 ± 0 . 320 6 . 040 ± 0 . 100 4 . 120 ± 0 . 300 3 . 530 ± 0 . 350

7. Conclusionandoutlook

Inthisstudyweproposedtoaugmentandhybridizephysics-based simulation software with Bayesian (deep) learning surrogate mod-els.Byquantifying thesurrogate model(epistemic) uncertainty, the Bayesianparadigmacknowledgesthat surrogatemodelsare approxi-mations of original simulationmodels, andit offersa tool to effec-tivelyreasonunderthatincurreduncertaintywhileexploitingthemuch fasterruntimeofsurrogatemodelstoproduceengineeringperformance estimates.

Ina casestudy weshowcased the applicationof Bayesian surro-gatemodelsforthedesignofnet-zeroenergybuildings.Wefoundthat dropoutneuralnetworkmodelsprovidedwell-calibrateduncertainty es-timates,whichcanbeusedtoidentifybuildingdesignchoicesforwhich thesurrogatemodelproduceslargeerrors.Thelatterenablesusto re-ferthosedesignstothehigh-fidelityenergysimulationtooltoassure accurateestimatesforthearchitectorbuildingdesigner.Thatreferral processsignificantlyloweredtheerrorsincomparisontoacommon de-terministicsurrogatemodel.

non-bayesiansurrogatemodel)thattakesarchitecturaldesignpreferencesinto accountwhenchoosingthetestdatashouldbeconsidered.

Althoughallfindingsareboundtothecasestudyofabuilding sim-ulationsurrogate,resultsmotivatetoapplyBayesianlearningtoother fieldswheresurrogatemodelsarecommonlyused[19].

Infuture,weforeseethatBayesianmodelswillallowustohybridize

data-drivensurrogatemodelsandhigh-fidelitysimulationmodels[18]. This particularlyrequiresstudiesonhowhybridmodelscanworkin practiceinasurrogatemodel-baseddesignprocess.

Apartfromthat,futureresearchcouldmakeuseofBayesian surro-gate modelsforgeneralizingsurrogatemodelstocovermorebuilding designproblems[12,56].TheBayesianparadigmcouldhelp identify-ingwhenthesurrogatemodelisusedfordesignproblemsitwasnot trainedfor.Finally,Bayesianlearningformsafoundationforadaptively samplingsimulationruns,forwhichthesurrogatemodelisparticularly uncertain.Thisprogress,calledactivelearning,willbeexploredinan upcomingstudy[57].

CodeandDataavailability

Theentiresourcecodeofthiswork,theEnergyPlusdescriptionfile (.idf)ofthebuildingtemplate,andinstructionsonhowtodownloadthe datausedinthisstudyareavailableinaGitLabrepository.8

(14)

DeclarationofCompetingInterest

Theauthorswishtoconfirmthattherearenoknownconflictsof in-terestassociatedwiththispublicationandtherehasbeennosignificant financialsupportforthisworkthatcouldhaveinfluenceditsoutcome.

Acknowledgement

ThisresearchwassupportedbygrantfundingfromCANARIEviathe BESOSproject(CANARIERS-327).

References

[1] John Dulac CD, Abergel T. Tracking buildings. Tech. Rep.. Internation Energy Agency; 2019 . URL: https://www.iea.org/reports/tracking-buildings

[2] Westermann P, Evins R. Surrogate modelling for sustainable building design – a review. Energy Build 2019;198:170–86. doi: 10.1016/j.enbuild.2019.05.057 .

[3] Jusselme T . Data-driven method for low-carbon building design at early stages. EPF Lausanne; 2020. Ph.D. thesis .

[4] Open Technologies. The building pathfinder. URL http://www.buildingpathfinder. com/ .

[5] Paul Westermann, David Rulff, Kevin Cant, Gaelle Faure, Ralph Evins. Net-zero navigator: a platform for interactive net-zero building design using surrogate mod- ellingURL http://www.enerarxiv.org/page/thesis.html?id = 1975 .

[6] Waibel C , Wortmann T , Evins R , Carmeliet J . Building energy optimization: an ex- tensive benchmark of global search algorithms. Energy Build 2019;187:218–40 .

[7] Rivalin L , Stabat P , Marchio D , Caciolo M , Hopquin F . A comparison of methods for uncertainty and sensitivity analysis applied to the energy performance of new commercial buildings. Energy Build 2018;166:489–504 .

[8] Hester J, Gregory J, Kirchain R. Sequential early-design guidance for residential single-family buildings using a probabilistic metamodel of energy consumption. En- ergy and Buildings 2017;134:202–11. doi: 10.1016/j.enbuild.2016.10.047 . URL < Go to ISI > ://WOS:000390624800018

[9] Brown NC . Design performance and designer preference in an interactive, data– driven conceptual building design scenario. Des Stud 2020 .

[10] De Wilde P . The gap between predicted and measured energy performance of build- ings: a framework for investigation. Autom Constr 2014;41:40–9 .

[11] Ostergard T, Jensen RL, Maagaard SE. A comparison of six metamodeling techniques applied to building performance simulations. Applied Energy 2018;211:89–103. doi: 10.1016/j.apenergy.2017.10.102 . URL < Go to ISI > ://WOS:000425075600008 [12] Westermann P , Evins R . Using a deep temporal convolutional network as a

building energy surrogate model that spans multiple climate zones. Appl Energy 2020;264:114715 .

[13] Kendall A , Gal Y . What uncertainties do we need in Bayesian deep learning for computer vision?. In: Advances in neural information processing systems; 2017. p. 5574–84 .

[14] Damianou A , Lawrence N . Deep Gaussian processes. In: Artificial intelligence and statistics; 2013. p. 207–15 .

[15] Gal Y , Ghahramani Z . Dropout as a Bayesian approximation: representing model un- certainty in deep learning. In: International conference on machine learning; 2016. p. 1050–9 .

[16] Hensman J , Fusi N , Lawrence ND . Gaussian processes for big data. In: Uncertainty in artificial intelligence. Citeseer; 2013. p. 282 .

[17] Filos A, Farquhar S, Gomez AN, Rudner TG, Kenton Z, Smith L, et al. A systematic comparison of Bayesian deep learning robustness in diabetic retinopathy tasks. arXiv preprint arXiv:1912.10481 2019.

[18] Reichstein M , Camps-Valls G , Stevens B , Jung M , Denzler J , Carvalhais N , et al. Deep learning and process understanding for data-driven earth system science. Nature 2019;566(7743):195–204 .

[19] Wang GG , Shan S . Review of metamodeling techniques in support of engineering design optimization. J MechDes 2007;129(4):370–80 .

[20] Ritter F , Geyer P , Borrmann A . Simulation-based decision-making in early design stages. In: 32nd CIB W78 conference, Eindhoven, The Netherlands; 2015. p. 27–9 .

[21] Vazquez-Canteli J , Demir AD , Brown J , Nagy Z . Deep neural networks as surro- gate models for urban energy simulations. Journal of Physics: Conference Series 2019;1343:012002 . IOP Publishing

[22] Prada A , Gasparella A , Baggio P . On the performance of meta-models in building design optimization. Appl Energy 2018;225:814–26 .

[23] Eisenhower B, O’Neill Z, Narayanan S, Fonoberov VA, Mezic I. A method- ology for meta-model based optimization in building energy models. Energy and Buildings 2012;47:292–301. doi: 10.1016/j.enbuild.2011.12.001 . URL < Go to ISI > ://WOS:000301989800034

[24] Bre F , Roman N , Fachinotti VD . An efficient metamodel-based method to carry out multi-objective building performance optimizations. Energy Build 2020;206:109576 .

[25] Hopfe CJ , Hensen JL . Uncertainty analysis in building performance simulation for design support. Energy Build 2011;43(10):2798–805 .

[26] Coakley D , Raftery P , Keane M . A review of methods to match building energy sim- ulation models to measured data. RenewSustainEnergy Rev 2014;37:123–41 .

[27] Manfren M, Aste N, Moshksar R. Calibration and uncertainty analysis for computer models - a meta-model based approach for integrated building energy simulation. Applied Energy 2013;103:627–41. doi: 10.1016/j.apenergy.2012.10.031 . URL < Go to ISI > ://WOS:000314669500059

[28] Heo Y , Choudhary R , Augenbroe G . Calibration of building energy models for retrofit analysis under uncertainty. Energy Build 2012;47:550–60 .

[29] Sokol J , Davila CC , Reinhart CF . Validation of a Bayesian-based method for defining residential archetypes in urban building energy models. Energy Build 2017;134:11–24 .

[30] Kristensen MH , Hedegaard RE , Petersen S . Hierarchical calibration of archetypes for urban building energy modeling. Energy Build 2018;175:219–34 .

[31] Garud SS , Karimi IA , Kraft M . Design of computer experiments: a review. Comput Chem Eng 2017;106:71–95 .

[32] Roman ND , Bre F , Fachinotti VD , Lamberts R . Application and characterization of metamodels based on artificial neural networks for building performance simulation: a systematic review. Energy Build 2020:109972 .

[33] Crawley DB , Lawrie LK , Winkelmann FC , Buhl WF , Huang YJ , Pedersen CO , et al. En- ergyplus: creating a new-generation building energy simulation program. Energy Build 2001;33(4):319–31 .

[34] Tian W , Heo Y , De Wilde P , Li Z , Yan D , Park CS , et al. A review of uncertainty anal- ysis in building energy assessment. Renew Sustain Energy Rev 2018;93:285–301 .

[35] Rasmussen CE . Gaussian processes in machine learning. In: Advanced lectures on machine learning. Springer; 2004. p. 63–71 .

[36] Østergård T, Jensen RL, Maagaard SE. Building simulations supporting de- cision making in early design–a review. Renewable and Sustainable Energy Reviews 2016;61:187–201 . URL https://www.sciencedirect.com/science/article/ pii/S136403211600280X

[37] Blei DM , Kucukelbir A , McAuliffe JD . Variational inference: a review for statisticians. J AmStat Assoc 2017;112(518):859–77 .

[38] Bauer M , van der Wilk M , Rasmussen CE . Understanding probabilistic sparse Gaus- sian process approximations. In: Advances in neural information processing systems; 2016. p. 1533–41 .

[39] Gal Y . Uncertainty in deep learning. University of Cambridge 2016;1(3) .

[40] Pearce T, Zaki M, Brintrup A, Anastassacos N, Neely A. Uncertainty in neural net- works: Bayesian ensembling arXiv preprint arXiv:1810.05546

[41] Neal RM . Bayesian learning for neural networks, 118. Springer Science & Business Media; 1995 .

[42] Srivastava N , Hinton G , Krizhevsky A , Sutskever I , Salakhutdinov R . Dropout: a simple way to prevent neural networks from overfitting. JMachLearnRes 2014;15(1):1929–58 .

[43] Titsias M . Variational learning of inducing variables in sparse gaussian processes. In: Artificial intelligence and statistics; 2009. p. 567–74 .

[44] Salimbeni H , Deisenroth M . Doubly stochastic variational inference for deep Gaus- sian processes. In: Advances in neural information processing systems; 2017. p. 4588–99 .

[45] Svendsen DH , Morales-Álvarez P , Ruescas AB , Molina R , Camps-Valls G . Deep Gaus- sian processes for biogeophysical parameter retrieval and model inversion. ISPRS J Photogramm Remote Sens 2020;166:68–81 .

[46] Crawley DB , Pedersen CO , Lawrie LK , Winkelmann FC . Energyplus: energy simula- tion program. ASHRAE J 2000;42(4):49 .

[47] National Energy Code of Canada for Buildings 2017. National Research Council Canada (NRCan); 2017. URL https://nrc.canada.ca/en/certifications-evaluations- standards/codes-canada/codes-canada-publications/national-energy-code-canada- buildings-2017 .

[48] Box GE , Cox DR . An analysis of transformations. J R Stat Soc 1964;26(2):211–43 .

[49] Chollet F., et al. Keras. 2015.

[50] Abadi M , Barham P , Chen J , Chen Z , Davis A , Dean J , et al. Tensorflow: a system for large-scale machine learning.. In: OSDI, 16; 2016. p. 265–83 .

[51] GPy. GPy: A gaussian process framework in python. URL http://github.com/ SheffieldML/GPy , since; 2012.

[52] Edwards RE, New J, Parker LE, Cui B, Dong J. Constructing large scale surrogate models from big data and artificial intelligence. Applied Energy 2017;202:685–99. doi: 10.1016/j.apenergy.2017.05.155 . URL < Go to ISI > ://WOS:000407188500055 [53] Kuleshov V , Fenner N , Ermon S . Accurate uncertainties for deep learning us- ing calibrated regression. In: International conference on machine learning; 2018. p. 2796–804 .

[54] Platt J , et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. AdvLarge Margin Classifiers 1999;10(3):61–74 .

[55] Scalia G , Grambow CA , Pernici B , Li Y-P , Green WH . Evaluating scalable uncertainty estimation methods for deep learning based molecular property prediction. J Chem Inf Model 2020 .

[56] Geyer P , Singaravel S . Component-based building performance prediction using sys- tems engineering and machine learning. Appl Energy 2017;228:1439–53 .

[57] Westermann P, Evins R. Adaptive sampling for building simulation surro- gate model derivation using the Lola-Voronoi algorithm. In: International Building Performance Association (IBPSA), editor. Proceedings of the inter- national building performance simulation association, 16; 2019. p. 1559–63. doi: 10.26868/25222708.2019.211232 .

Referenties

GERELATEERDE DOCUMENTEN

A signal processing and machine learning pipeline is presented that is used to analyze data from two studies in which 25 Post-Traumatic Stress Disorder (PTSD) patients

lnisiering in die sin dat daar meningsopnames in Promosa gemaak moet word na die behoeftes wat daar onder die inwoners bestaan.. Die behoeftes word bepaal

This table presents the summary statistics of the 10 seconds ADR spread returns, S&amp;P500 index returns, local market index returns, currency rate returns, volatility in the

The business model of G2G relies heavily creating a unique value proposition by reimagining many facets of a traditional service platform within the context of

The study aimed to determine the knowledge level of registered midwives with regards to basic neonatal resuscitation, in the Chris Hani Health District Hospitals in the Eastern

In het noorden (sleuven 15-17) en oosten (sleuf 9) van het onderzoeksterrein bevinden zich enkele greppels die op basis van het verzamelde aardewerk kunnen

In Paulus se briewe in die Nuwe Testament is sy konstante, eksplisiete aansprake op en subtiele eggo’s van die Geskrifte van Israel (min of meer die Ou Testament/ Hebreeuse Bybel)

psychopharmacology in particular. The dissertation begins by heuristically contrasting two broad approaches towards a range of questions in the philosophy of science, language,