• No results found

The generation of cytotoxic T cell epitopes and their generation for cancer immunotherapy Kessler, J.

N/A
N/A
Protected

Academic year: 2021

Share "The generation of cytotoxic T cell epitopes and their generation for cancer immunotherapy Kessler, J."

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)The generation of cytotoxic T cell epitopes and their generation for cancer immunotherapy Kessler, J.. Citation Kessler, J. (2009, October 27). The generation of cytotoxic T cell epitopes and their generation for cancer immunotherapy. Retrieved from https://hdl.handle.net/1887/14260 Version:. Corrected Publisher’s Version. License:. Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded from:. https://hdl.handle.net/1887/14260. Note: To cite this publication please use the final published version (if applicable)..

(2) CHAPTER 6.

(3) 6 RETPAHC. Submitted for publication.

(4) Novel antigen-processing pathways for cytotoxic T cell recognition   1! " 1! #$ "%2! "  &'!  (  4! ")  *+, .1, Arnoud de Ru1, Nadine van Montfoort1! 3. 5 *$huijsen1!  ( * $6! 7 8)  6!   :4!  

(5)  ; <)1! => ?  "7! . " B$%7! $ =C, Birgitta Tomkinson9! F>

(6) G10! = (  I2! ;) 3 : )4!  > * 4!  3 ;JK >1, =   ,1#! ? B) 1#!    ( (% 1#. 1 ; % ..> .   ) * ) 7%> ! ) # () ! )! 7.

(7) ) 2 > %O * .+P! () ?> %  >.8 ) # *! *! &. ' = ;" : ! (> &  ! ) () " ! *  ! #" 4 ; % ( > ) > * .! )  %  ">> *  ! # % >$! < ! #" 6  : # > %   ">)! # % *..! *..! #) ) . 6 ; %  B  ! ) # () ! )! 7

(8) ) 7 ) > % .! ) #! )! 7

(9) ) C Laboratory % * .

(10) > )   !  : > % (  S:(U! ( ! ) 9 ; % () * . ) ( 8  ! # #! #! ") 10 Division of Cell *  ! 7

(11) )  >! .).! 7

(12) ) #  8>) F>   >). ABSTRACT   < 7 .  S7U $   >    % . 8  + )  ) ) 8    . >    >% ?  8)    molecules these peptides need to have an appropriate C-terminal anchor residue, which is classi ) 8    .  .<   )%     ) )   ..    .

(13) )  8>     +. 8>  

(14) +.   %    ) ) 7.  ) S7B=U    +. .. ) )     3 )X    .. 8   )    )>  +.> %  >. +X 7   7   % ) ) 7B= 8 )   )   8   + functional protein degradation products into class I ligands, thereby strengthening the immune )%  >   ) . 

(15)          .

(16) INTRODUCTION "  ) SC  U ) 8  class I molecules, called CTL epitopes when  I) 8 ;C+ cytotoxic T lymphocytes S7U!   )>) )>   > > turnover in the cytosol of full length and misfolded proteins into peptides and eventu % . ) [+'\ 7 ))  process is accomplished by the multicatalytic proteasome complex and by cytosolic pepti) [!'\ 7) )  S7==U []\! 7B= [6! \ ) . ) [!\  8 implicated in degradation, but the contribu  %  S) U)  .) >  % .)  ))   )> S   C  U  %> cytosolic destruction through translocation   7=     ) . >>. S5:U!    8 ..)

(17) +. 8 5:=^5:= [!\ ) .8      ). 8%  8  >)    >% The absence of C-terminal excision of CTL epi     .+8)  [_!C\!  gether with a failure to detect C-terminal trim.        5:!  )  the current notion that solely the proteasome 8  < +.> [!\    endopeptidases, however, may also produce )   +.> X %    8)ing from protein degradation products lack >    ))!  )    . 8   < X  % )+ ))    . > [`+'\  >   . >)  $  to not inhibit completely, this suggests the existence of a partially proteasome-independent  %   )   " %  7==  )  )>  +.> %  )X) 7   S% . ,

(18) %U []\! 8>  8 )   % 7==     %   )   )) >$ [6\. Other peptidases liberating the C-terminus of    )    $  7 )X such peptidases, we began an in-depth investigation of the generation of a CTL epitope with an unambiguously proteasome-independent +.>.  Cleavage C-terminally to a lysine is not readily  .) 8   . [ \    ! <  % +'!    . > that binds peptides with a C-terminal lysine, is particularly insensitive to proteasome in8  [`!\ 7% !  ) %   CTL epitope with a proteasome-independent +.> )  +' 7  . 5?"z5 S=:`{+`C) from tumor )   =:(5 [_\  ) by binding prediction and bound with high }  +' S"> ? U ;  % _+. =:C+{C  >X) {"  somes showed no cleavage after the epitope’s +. +`C      ~$  +.>   ! 

(19) +.>  8) 8  }   .  8%  &>+`{ S? U 7). .  . S("^("U )X)  5?"z5 )  ) >) % . +'   >% %   6 +' S 6 ! =:(5+! %)  +'U S"> ? U  !  7   )   =:`{+`C epitope exogenously  ))  +'! }  I) 6 +' )  >.    < =:(5 ) +' S? *U  X. >   %    7 7  recognized the exogenously loaded 11-, 12- and '+. +. <))  %    S5?"z5 , ^:^ U! 8>  )    +' 8) } S"> ? U    > ) S"> ? U 3 >)  %> %  7.   

(20)        .

(21) 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208. A. FLKEGACDELFSYLIEKVKRKKNVLRL C K562-A3 MZ1257 94.15 K562-A2. 75. IFNγ prod. (pg/ml). % Specific lysis. B. 50. 25. 30000. 9-m er c-prot. 20000. i-prot. m ock. 10000. 0. 0 0. 25. ET ratio. 50. 1 μM. 200 nM. Digest concentration loaded. Figure 1. PRA!"!#

(22) $%%&' 

(23) ( ' ' ) *' + 

(24) '

(25)

(26) ( terminus. ƒ =  . )  % _+. =:C+{C S5?"z5 ! 8 )U ;  S  >8 U 8 ..> +   > >. {"   .   .8 > * )   )  %X  8%  &>+`{ ?.   +C`   +.>   .. %. ))) >  „_ %  )) . S  )U  ).) 8 .  .  ;   )  .  . > *ƒ :   8 7 +5?"z5 %  >$.   6 +' )    . S:U  (†6_ ) `]6 S =:(5+ ) +'+U 6 + S++U     I) ƒ 8 %    % 6+. =:190-214 S5?"z5 , :

(27) ,:  !   

(28) + .>U )) %     ..> +   >   . S"5( %  U ;  )!  ))  5 :  S+'+U )  +>8)  7 +5?"z5  *$ >)     6+. >8 >8)  '_‡  > I. S. $ )U!        F> ) 5?"z5 ) S`+.U. to monitor the generation of the epitope and its C-terminally extended variants in digests %   =:(5 ) 7   . ) % 6+. =:190-214 S5?"z5  

(29) +.>U  ))  =:(5+ +'+ cells were not recognized by the CTL S? U!  X.   .+)) %   € +.>.

(30)  

(31) 

(32)  

(33) 7% !  ) %   )SU   +.> %  5?"z5   ?! 7       8)  6 +'   ) with the metallopeptidase inhibitor o-phenanthroline, whereas other inhibitors had no  S? U "  7== 8  8>-. 8))  8 ) 8 >. []\!  further excluded the potential involvement of 7== []!C\ 8 )   ) :

(34)  % S:

(35) U S"> ? 'U " )!  )  )%  )!  < )   F>) ~>  6+. >8   , :S+?U

(36) S=:190-204, epitope in bold) to digestion     %  S) 8   <  . U % 6 +'  ?  ‚'_ )!    +  % ! 8  F> )8  +`6 )  ~>  S?U  >     {! 8  ~>  S? *U 7 %   ) )    ) .  X   )X) 8 ("^(" S? *! "> ? ]U

(37) )-. 

(38)          '.

(39) B fluorescence (OD). 100. % CTL recognition. Fr. 37 1200. 75 50 25. 900. 2500. FL-pep. + Phen. % KCl. 2000 1500. 600 1000 500 0 25 27 29 31 33 35 37 39 41 43 45 47. u + ntre Br a + efe ted Bu ld ta in bi A n + Ph did e + ena Le n t u h + pep . C a tin + pto C a pri + lpep l Ap ti ro n t + inin In su lin. C. 5 4 3 2 1. 300 0. 0. mM KCl. A. Fraction number. 1 2 3. D. Western NRD. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25. ELFSYLIEKVKRKKNVLRLCCKKLK IFNγ prod. (pg/ml). 6000 4000 2000 0 200 nM. 40 nM. 8 nM. Digest concentration loaded. siRNA siRNA control NRD. IFNγ prod. (pg/ml). m ock dig. c-proteas. dig. i-proteas. dig. nardilysin dig.. 8000. 3000 2500 2000 1500 1000 500 0 si-Control si-NRD. K562-A3. 900 600 300 0 si-Control si-NRD. HeLa-A3. Figure 2. Nardilysin produces C-terminal extended precursors of the PRA!"!# epitope. ƒ 6 +'  ) ) >) S{{   U  )  )) 8  S   ) !  . )  U )  +>8)   7   S"5( %  <.U *ƒ    %  >) % .    <  >. S +) ))ˆ  ( ) %  )U % 6 +'   +>8) %  '{ .  ~>   >8 5?"zS+)8U 5 , :S+?U

(40)   8 SF> .8 U   SU %   S .(U 7 . >8   X   8 ;+€  8 $

(41) +. ..  )   )>) ~>  S)    U ?    '_  ) 8 ";"+=&5 )  8)   ) =   )X) 8 ("^(" ƒ S8) U  . 8  ! SU $! S'U ‰+ Š ‹+>8>! S]U  . ) S6U ) S "> ? ]U ƒ ;  % 6+. =:190-214 S ! 8 )U  >X) )! ..> +  .   >   . %  '{ .

(42) )    ƒ }  8)  +.    ''` % ) +%. S  U! 8)  +.  ] %  %. S  U ) 8)  '+.   ` %  %. S  'U ; S)!   .! . $U  )!  ))  +'+ cells and co-incubated with the CTL to assess gen  %  +>  ;ƒ 7    % 6 +' ) +'  8 %)  < :

(43)  > ) S

(44) :;U   +    :

(45)  S"5( %   %  <.U ..> 8   ) 8 ) % 6 +' %   . ]  

(46)        .

(47) lysin, hitherto not implicated in class I antigen processing, is a cytosolic endopeptidase of the pitrilysin family of zinc-metalloproteases and  >8F> > <) S % ` )  #& )8 ƒ ƒ^^8.  ^#&^5"7= X,Œ> 6C]_CU 7)!  ) % 6+. =:190-214 S , :

(48) ,:  U  >X) )  )  }  )>  % +. <)) +! + ) '+.  %    8 }  % +{{! +{ ) +{ S? U!   )    X of nardilysin before or between two basic )> [{!\  >8 >  Ž'{    ))!  7 }  I) the nardilysin-digest, due to the presence of  5?"z5 , ^:^ %.!  the proteasomal digest was not recognized S? U ? >! )  F>)  cells for epitope generation because small in8  :

(49)  S:

(50) U+.)) >  % )  6 +' ) +' S! =:(5+!  +'U   )>)     8  7 S? ;U! ) <  % )  +'  ) 7    S"> ? 6U 7 !  X) . )  indispensable for the endogenous C-terminal +  %  =:`{+`C epitope by producing cleavages after Lys-200, Arg-201 and Lys-202, but it does not excise the exact C.> S+`CU.

(51)  

(52)  *+ ,' '  

(53) <  >>) )X  %  dase that generates the correct C-terminus of    *> %       ! >8F> > <  ) X! . ))  7B=! >  ) >+)) I. B  :

(54) +. .)) >  % 7B=  6 +' strongly reduced CTL recognition, whereas suppression of the other peptidases had no  S? 'U! ) 7B=€  .   )  >   % 5?z"5  (  ! >X) 7B= ) } directly behind the epitope’s C-terminal Lys`C   )+)) + ) '+. >  S=:190-201/202ˆ 5?"z5 , :^ U 7>! 7B= )   % > +. residues, in accordance with its cleavage pref [!'\! 8 }  )>  <  .   S? '*U ))!  7B=+) % +. =:190-201 loaded on     I) .   }   ..   S? 'U    its preference for peptides 6 to 17 aa in length []\!   )    ) 8 7B= S"> ? *! ) )    U! )ing that pre-processing by nardilysin into the +. ) '+.  F>)  .$  + >  >8  7B= 7   X.)    +)  % 6+. =:190-214  ) ) 7B=!  >)    )>  % 5?"z5 S)X) 8 .  .! )    U  )!  ) >8+)   I) .  }ciently by the CTL – due to the presence of the epitope – than the digest with nardilysin alone   )   >  S"> ? *U 7>!  +.> %  5?"z5    )  > F>  8 ) ) 7B= Generation of the N-terminus of the PRA!"!#-epitope The N-terminus of the epitope is generated by  } +$   .  8%  &>+`{ S? U 7    . 8 $) 8  X 8  =

(55) >,"B [6\ %  +$ proteasome activity as shown in a digestion of. 

(56)          6.

(57) % CTL recognition. A 100. 75 50. 75 50 25 0 si-Control si-TOP K562-A3 (si-stable). 0. Western TOP. -C on tro l + si + -T si -N OP eu ro ly s. + si -ID E K5 62 -A 2. 25. +. si. % CTL recognition. 100. B 1. 2. 3. 4. 5. 6. 7 8. 9 10 11 12 13. ELFSYLIEKVKRK ELFSYLIEKVKR ELFSYLIEKVK IFNγ prod. (pg/ml). C 5000 4000. siRNA Control. siRNA TOP. 9-mer 25% 11.1% 0.8%. 12-m er, m ock dig. 12-m er, 10 m in dig. 12-m er, 1 h dig. 9-m er. 3000 2000 1000 0. 16 nM 3.2 nM 640 pM Digest concentration loaded. _+. =:_+`C S"> ? _!*U ))! CTL recognition of cells treated with this in8     )>) S"> ? _U The general proteasome inhibitor epoxomycin only partially inhibited cleavage before the

(58) +.> S"> ? _!*U ! when cells were treated with epoxomycin the   % 5?"z5  .$) ) S"> ? _U! $ )>  )>)  .    < .+ + ' ) TAP-dependence of PRA!"!# Thus, together, the proteasome, nardilysin and 7B=  )>  ..        S.  "> ? CU  <)! presentation of the epitope was completely. Figure 3. TOP produces the C-terminus !# *  ' ' / ƒ %ƒ 7 r   % 6 +' siently transfected with pools of siRNA )>< > 7B=! >  ) > )) I. S;5U   +     :

(59)  S{{ %   U :ƒ 7    % 6 +' 8 %)  < :

(60)  > 7B=   +    :

(61)  "5( %   % > <. ..> 8   7B= 8 ) % 8 %) 6 +'     *ƒ ;  % '+! + ) +. >8 =:190-202/201/200 S5?"z5 , ^:^ !   8 )U  >X) 7B=ˆ  >8    * )   )  %X  8) +`C ? .  >8  % %.   ) S>)  +)) >8U  .  5?"z5 +  % '{ . )   ) ƒ 7    % +. =:190-201 S5?"z5 , :U )) 8 7B= %  { .    7 )  ) )  ))  +'+ 5 :  7  +)) +. S. $ )U     I)      :   % F> ) 5?"z5 ) S`+.U     %. ))      5: 8 7= S"> ? `U 7 5?"z5 )  }  ) 8 7=   5:!   +! ) '+.  +>    }  ) S"> ? `*U 7% !  )+ )>) cursors are available in the cytosol for process 8 7B=!   ..   % its production – can rapidly escape from cyto  )>  8      5: General roles of nardilysin and TOP in class I antigen processing 7   X ) . ) ) 7B=  7    )>  ; these enzymes, either apart or together, have a .          Œ.   

(62)        .

(63) Nardilysin in principle can support the generation of both the C-terminus and the N-termi> %   S"> ? C*U  8 % matics analysis of all 1620 published ligands of the most prevalent class I molecules with their ~$   )  )8  . % % ) [{!\ )  

(64) +.>  +.>  6 %  ) S78 U 7 . %   %F> )   S8U +.> % ) ) 8  +' > S+'! +! + CU )  

(65) +.> % +*_ ) S78  ) U 3  <.)  >X) ) > <)    + ' ) +*_ )   . %  ))!  +. %  +'+) overlapping immunodominant epitopes from ,+ & _ [ \  }  )>) S? ]U     . %)  )  S)    U . !  '6 %  +*_ )    8 )>      S=U <   ) .   8) +   =!    >  ) + S78  ) U

(66) ) } ) ) 8%  

(67) +.> %  > %  +*_ ligands tested and in three cases produced the epitope’s C-terminus; among these are immu ) .    % . ,+  ] ) 5*

(68) ' [_\ S? ]*!U

(69)  ! % > %  )  )X)  >  be proteasome-independent as studied with   . 8  S     )U ['\ To demonstrate nardilysin-dependence of these epitopes during processing in cells, )  >) 8 :

(70)   5*

(71) '+    >    )>)    8 7   + *_{6+) 5*

(72) '6C+. S::z;5U   [_\ S? ];U 5)  >   of the minimal epitope with its N-terminal. ~$    X.)  )+)pendence to reside in the N-terminal epitope   S? ];U 7>!  >  . ) <      ) 5:! )  F>) %  

(73) +. 8  %  5*

(74) '6C+.   B> sults help to explain the strong over-represen  %  )   =  +*_ )! residues that contribute at that position only modestly to binding capacity but enforce pep) 8      [C\3 )sin cleaves before a basic doublet, it may also liberate ligands with a non-basic C-terminus ) 8  +! +! +*C ) + *'6 S"> ? C*U  )) !  )8 motif is often present within 4 aa of the N- or +.> S78 U! >  .>+ .. %  + )>  7 . % is present directly at or within 4 aa of the N- or +.>   %   { ) I) S78 U *> )    .. 8%  .  +8  [\     S  ? ]ƒ "?;   +  U!  ~> .  8 )  )8 . %

(75) ) .  )       8) )  vaccine design, the deliberate insertion of the nardilysin cleavage motif between CTL epit    +  F> . 8 >%>   .   } 7B=  8  ))  )    [ \! 8 .      [6\ )   F>    <  % 5?"z5 8 7B=   <  7 %)   % 7B=    %   X +. )> [!'\   8 ) F> X []!`\ % . >8 >  _    []\! )  7B= with potential C-terminus generating capac ?>. !  >)X)  + .   % 7B=  8  ) ['{\. 

(76)          _.

(77) A. LSGGELDRWEKIRLRPGG KKK YKLKHIVWA KIRLRPGG K (aa. 18-26) RLRPGG KKK (aa. 20-28) MADKPDMGEI ASFDKAKL K K TETQEKNTLP. B GRA KRR MQYN RR FVNVVPTFG KKK GPNANS SIMKWNRE RRR LQIEDFEAR IALLPLLQAE GPPPPHYEG RR MGPPVGGH R R GPSRYGPQY GYHWSLMERD RR ISGVDRYY VSKGLENID RL RR SRTPL RRR FSRSPI RRKR SRSSERGR FASLRMARAN ARLFGIRA K R AKEAAEQDVE GYRIMY KKR T KR LVVFDAR (-Ct) NPPIPVGEIY KR WIILGLNK. C. epitope prod. 10 min 30 min. RFLRGKWQ RR Y RR IYDLIEL. 35.8%. 62.5%. IFNγ prod. (pg/ml). D 4500 3000 1500 0 si-Control si-NRD. B-LCL. si-Control si-NRD. K562-B27-mini. 7% !  )  ~<8 % 7B=   )> )     8 . >8>     S= ) =€U > >)   % 7B=€    +.> % 5?"z5  =€+>8>  )  }! 8>    < %  =  =€  vented digestion, production of the epitope S5?"z5 U  „6 % { . % )  S"> ? {U = )>  8  >8F>    .)) %    occurred, but did not prevent epitope-produc  S"> ? {U     8 } 7    %  ) S"> ? {*U ;  %  =+>8>) !. ,0 4/*  

(78)  

(79) 

(80) $%  antigen processing. Digestions b >X) ) %    +'! + ) +*_ ) ) * ) )>  > )+ . % ;  .  '{ . * )  !    „6 %  ) +%.ˆ   !    “ 6 % %. ƒ ;  8 >X) ) % S>U '{+. ,+  _  C+'_  .   +'+) 7   S ))! >))U ) S U '{+. . +‹  +'{  . ++) ) "?;   S>))U 7 <.  $ % .  "z?=57 )8 S%)U *ƒ ;  8 >X) ) S'{ .U % long peptides encompassing eight published +*_{6 ) ) S>))U % .  "z?=57 )8   > ~$   )  S   8  .Uƒ ]{" 8  .   "'{  ]{+6ˆ  )+>    &:(`  6_+ _ˆ :8 >    '+'ˆ

(81) ;+>8F>  <) )>  6+ ˆ " ' ;

(82) +8)   *""   { + {']ˆ {" 8  .   '  CC+` ˆ ;

(83) + directed RNA polymerases 7 kDa polypeptide  6{+6Cˆ ) ,+  ]   6+_]!  is an immunodominant CTL epitope presented  +*_{6 S :3&

(84) U )J   +*'6 ) 7  

(85) ===,&5z S  % )U ƒ ;  8 >X) ) % {+. :?:& 3”::z::z;5 S5*

(86) '  ] + . ! +*_{6 )   >))U = )>  %    % { ) '{ . >8   )) ;ƒ % ƒ    8 7 +::z;5 % >   > *+ S+*_{6+) express 5*

(87) '! 8 < :

(88)  > )     :

(89)  : ƒ 7    % 6 +*_+.  !   6  < +*_{6 ) . (?:& 3”::z::z;5 S5*

(90) '  ]_+. ! epitope underlined), with or without suppressed ) 8 8 :

(91)  < . C  

(92)        .

(93) on the other hand, resulted in generation of  • € S5?"z5XU  =    S)  F>U!   &> S"> ? {U! 8>   %   )>      7  >) 8 }  % 5?"z5X %   . =+)> S ,! ! U )^  8 ) }    .)) %    S%   =! 7! ! 7U 7  %   !   &>   =+  !  !    8 > 3  )   +F>  .! 7B=  )>)      +.   > S"z"?=5=5 ) ,;&;, [_\U S"> ? {U 7 ) )  7B=   )>   from a wide array of C-terminally extended >  7% ! 7B=€        cessing is likely balanced between its anti-epit  )  +   ƒ    ) limiting presentation – by partial destruction – of epitopes whose correct C-terminus has ) 8 .) 8 SU    . S$ "

(94) ?5  [6!_\U! )!    )!  )>   +. X %    binding by trimming C-terminally extended   >   $ >    Importantly, this new model is in accordance with a recent analysis of cytosolic substrates )  )> % 7B=! ).   7B= both destroys and generates peptides of the  %   ) ['\ 7 >)  showed, in line with our results, that many 7B=+ )>      +.>.   % ) ) 7B=! '{  ) 17 aa respectively, prior to their action, protein hydrolysis by the proteasome or other    .  $ F>)  .   7     %   )   ))  ) ) 7B=    )X ).)! 8> > ) ) that both enzymes are capable of shaping and broadening the antigenic peptide repertoire, thereby expanding the options for successful immune responses to intracellular pathogens ) . The general implication of our study is that   ))   )>     X for antigenic presentation due to lack of an appropriate C-terminal anchor residue can 8  ) 8 ) )^  7B=  >  8) F>. %    . > *> %  >8  

(95)          `.

(96) References  .  . ' . ] . 6 .  . _ . C . ` . { .  . : $ ! z $ ! & )8 ƒ = +  . antigen processing for major histocompatibility  .<    

(97)  ..>  6ƒ _{+. __! {{] "

(98) ! )>) "! "8 ":! " ) 7! > ƒ   )  Xƒ  8!  .))! )  ) %  (   +   ..>  : {_ƒ'+ ]! {{6 z) 3ƒ =>.8   > % )  > (   ) ) > B ..>  `ƒ_`+C ! {{_ : 5!

(99) J ! 8 ! *$>J 3!  ! ;JK > 3!

(100) G ƒ  .J    %  7==  ..   . ))   )> %  (      ..> {ƒ]`6+6{ ! {{] z $ ! ( –! . ! † 3! " z! 8. :! " 7! & )8 ! : $ ƒ 7 cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent % (      ..> Cƒ]`+]]{! {{' " 7! &% ! & )8 ƒ = %  ))  % ) ) 8   .ƒ a key role for thimet oligopeptidase and other . )  *  . _`ƒ] _'+] _'! {{] > ! $  7! & )8 ! : $ ƒ 7 distinct proteolytic processes in the generation of a major histocompatibility complex class I-pre) ) = 

(101)  ) " # "  `]ƒ{C6{+ {C66! ``_ " I ! ;$ 7=! ; (! = .. *! :.. &! ") ƒ &  %  > stomatitis virus nucleoprotein cytotoxic T lympho   F>   .+)) ) +))     5>  ..>  Cƒ]{`+]{' ! ``C *. (! & .. (!

(102) G ƒ  )%ferences in the relationship between proteasome  ) (   )  )  ..>   ƒC'+C`! ``C >$ !  &(! ( ! ,$ "! ( *?!  I ,!   7! "8 I ! > ;?! 5) ,ƒ =  .     )  (    ƒ ) for nonproteasomal epitope generation in the     ..>   ƒ+! ``C "I ! ) &> :! ".)$ &! $ "!  ; *(! . *!  (! % :! & > (ƒ 7    . 8   and epoxomicin can be used to either up- or down>       < )   ..>   ]ƒ ]_+ 6_! {{{.  >$ ! ( ! =) (!  5! 3 ?(!   ;! "8 I ! > ;?! 5) ,ƒ ;   <  % >.   (  )   ) )    %   . 8   ..>   _ƒ+! {{ ' ( (!   !  I )  ƒ =  .+)) +*_ )  . % . . 8   (   =  . ƒ`'! {{_ ] "% #! (  ! ".> ! ; > ?! 3  $ ! $ ! $ =! ; "! )> (! )  "! 3$ 7! ") ! ) ;! & !  &!  I =(! : z!  . ƒ     %  ) )     %  (    

(103)  ..>  ]ƒ'_6+'_`! {{' 6  5) =ƒ :  % ) )   (       ) %   Œ 5>  ..>  'Cƒ {`+ '! {{C   7I "! = *! *>$ "! "  B! .. ! "I ((!  I =(! :.. &! ") !  I> &ƒ ( )  (   pathway by combining predictions of proteasomal ! 7=   ) (   8)  (  % " ƒ{6+{'_! {{6 _  ! *$.

(104) ! *+, . "! ,)J$ =!  , =!  .+  (! , ;!  *  &!  (&! "J ! ;JK > 3! B)  ?! B :! (% (ƒ 5} )X  %   +S—U{{+ presented cytotoxic T lymphocyte epitopes in  ) <) >.   =:(5 8   .+.)) )    5< () `'ƒ_'+CC! {{ C & 5! =%% &! 3. (! >+I (! *>. 3! 5. !

(105) ). &ƒ  ant protease with potential to substitute for some %>  %    . " C'ƒ`_C+`C! ``` ` ?>. =!  (! 5 ! "II =! :II &! =II> !  ,! ".  !  &! †>) B! B  "! 7. :ƒ >.

(106) :;  ƒ    ) . ) ) <)  X  )> ) . )  )> > & . ]_ƒ'C+]6! ``C {   (! > 5! > (! " =$ ! > !  *ƒ ">)   >8 X %  ) S

(107) + )8  U  *  . _6ƒ`6]6+`66! {{{    (! B$ B! & ). ! ( †! > (! > !  *ƒ

(108) )  )  .  8  * . ]ƒ'`+ ]]! {{'. '{  

(109)        .

(110)  . ' . ] . 6 .   . _ . C . ` . '{ . ' .  &! ;) =(! * ƒ 7.  ) Xƒ ) % % cleavage near the C-terminus and product inhibi  % . $  % ) )  * .  '{C S = Uƒ]6+6{! ``6 B ,! & :! :  ,! ? 5"! " ! . ! > (! > ƒ 7.> )     )  %  combinant metallooligopeptidases neurolysin and .  ) 5>  * .  `ƒ]' + ]'']! {{ B ,! .  (! ( :! ? 5"! . ! > (! > ƒ ">8 X characterization of recombinant metallo oligo) .  ) ) >  * . ]{ƒ]]_+]]6! {{  " =?! ".> 5! )I :B!  den Nieuwendijk AM, Leeuwenburgh MA, van der ( &!  *(! B$% "!  ?ƒ  +.8 8  ) +8) probe for the caspase-like activity of the protea . *  () .  _ƒ']{+']{6! {{_ %) (! % 57! ” z! "$ ! %) (!    (

(111) ! *>

(112) ! "I (5! z !  &! z> –&! ( ! : $   !  7(!  ! : 8 5"!   (! 3$ *;ƒ    )  ;) =    ;"  8> "     ;CS˜U 7  :   ,+ = " () 'ƒ]{'! {{  * $ (! (> :! 7 . 3! > (&! :$  *ƒ ; +*_ >8   . ..> ) . 5+* > )  5< () _CƒC_`+CC_! ``' 8 !

(113) J !  !  ! ;J% > 3! : 5!

(114) G ƒ > 5)ƒ + *_ F> (

(115) +7. ;8 =)ƒ  >    =) "8   =   ..>  _ ƒ `_+_{! {{  ". ! = 7! 78 ,!   ;! &>$. (! 3 %  ƒ ?<8  >8 recognition by thimet oligopeptidase as revealed 8 )>  >) * .  'CCƒ66+ ! {{6 " ! =  ?! *  ,! ) . ! ? 5"ƒ 7.  ) S5 ']]6U!         > % (      * . *  :  ..> 66ƒ6`+6`6! ``` * ;! (  ! :> !  (! > ?(! † –! "  ! I$ ?! ? 5"! ?$ ;ƒ  % > >8 )  )> % .  ) S5 ']]6U  >. .8  $) `'   *  . C]ƒ]{6+] ! {{`. 

(116)          '.

(117) %5 TABLE 1. Proportion of HLA class I ligands potentially excised by nardilysin. HLA class I. Ligands. a. b. C-dir. (%). c. C-ind. (%). d. N-dir. (%). e. N-ind. (%). f. Total (%). HLA-A1. 86. 5.8. 7.0. 0.0. 3.5. 16.3. HLA-A2. 515. 1.7. 5.0. 2.5. 4.5. 13.7. HLA-A3. 121. 10.7. 5.8. 4.1. 5.0. 25.6. HLA-A11. 71. 11.3. 2.8. 1.4. 7.0. 22.5. 46 (238). 21.7 13.0. 17.4 7.1. 2.2 2.9. 0.0 4.6. 41.3 27.6. 51. 2.0. 3.9. 5.9. 9.8. 21.6 16.2. HLA-A68 g Cumulative A3-type HLA-A24 HLA-B7. 68. 2.9. 7.4. 1.5. 4.4. HLA-B8. 52. 0.0. 5.8. 0.0. 3.8. 9.6. HLA-B2701. 8. 0.0. 12.5. 37.5. 25.0. 75.0. HLA-B2702. 18. 0.0. 5.6. 61.1. 5.6. 72.3. HLA-B2703. 29. 3.4. 3.4. 62.1. 0.0. 68.9. HLA-B2704. 52. 5.8. 3.8. 38.5. 3.8. 51.9. HLA-B2705. 185. 7.6. 5.9. 31.4. 4.3. 49.2. HLA-B2706. 38. 5.3. 7.9. 26.3. 10.5. 50.0. HLA-B2707. 3. 0.0. 0.0. 66.7. 0.0. 66.7. 56 (389). 1.8 5.4. 7.1 5.9. 26.8 35.2. 3.6 4.9. 39.3 51.4. HLA-B2709 h Cumulative B27 HLA-B35. 11. 9.1. 9.1. 9.1. 9.1. 36.4. HLA-B3501. 20. 0.0. 5.0. 0.0. 5.0. 10.0. HLA-B44. 53. 3.8. 1.9. 1.9. 15.1. 22.7. HLA-B60 (B4001). 34. 2.9. 5.9. 0.0. 8.8. 17.6. HLA-B61 (B4002). 7. 0.0. 14.3. 0.0. 0.0. 14.3. HLA-B62 (B1501). 96. 4.2. 5.2. 5.2. 5.2. 19.8. 1620. 4.8. 5.7. 10.4. 5.2. 26.1. Cumulative a. Number of ligands per class I molecule. For each allele, all ligands in the SYFPEITHI database were analysed for presence of NRD-motifs in the ligand and its N-term. and C-term. ~anking regions.. b c d c f g h. C-dir.; NRD-motif present leading to direct production of the C-terminus. C-ind.; indirect production of C-terminus: NRD-motif present within 4 aa of the C-terminus. N-dir.; NRD-motif present leading to direct production of the N-terminus. N-ind.; indirect production of N-terminus: NRD-motif present within 4 aa of the N-terminus. Percentage of ligands per allele that may be either N-term. or C-term. dependent on NRD cleavage. Cumulative percentages of NRD-motif containing ligands for HLA-A3, HLA-A11 and HLA-A68. Cumulative percentages of NRD-motif containing ligands for HLA-B27 subtypes.. '  

(118)        .

(119) TABLE 2. HLA-B27 ligands and nardilysin-cleavage motifs, exempliXed for HLA-B2703. Ligands in flanking regions and dibasic-motifs. a. Source protein and position of ligand. KLQEEERERRDNYVPEVSALDQEIIE. 40S ribosomal protein S17 aa.79-87. VAEVDKVTGRFNGQFKTYAICGAIRR. 40S ribosomal protein S21 aa.44-53. GLIKLVSKHRAQVIYTRNTKGGDAPA. 40S ribosomal protein S25 aa.103-111. KNYDPQKDKRFSGTVRLKSTPRPKFS. 60S ribosomal protein L10A (Csa-19) aa.46-54. NNLKARNSFRYNGLIHRKTVGVEPAA. 60S ribosomal protein L28 aa.37-45. LFESWCTDKRNGVIIAGYCVEGTLAK. Cleavage and polyadenylation specif. Fact. 73kDa aa.348-357. AIRPQIDLKRYAVPSAGLRLFALHAS. DNA dep. protein kinase catal. subunit Q13 aa.263-272. DIPHALREKRTTVVAQLKQLQAETEP. EIF-3 protein 6 aa.73-81. IPDVITYLSRLRNQSVFNFCAIPQVM. Farnesyl-diphosphate farneysltransferase 1 aa.278-286. VDLVRFTEKRYKSIVKYKTAFYSFYL. Farnesyl pyrophosphate synthetase aa.191-199. LEKIIQVGNRIKFVIKRPELLTHSTT. General transcription factor II aa.532-540. GTVALREIRRYQKSTELLIRKLPFQR. Histone H3.3 aa.52-60. EVECATQLRRFGDKLNFRQKLLNLIS. Immediate early response protein APR aa.30-38. VGEKIALSRRVEKHWRLIGWGQIRRG. Initiation factor eIF-2 gamma aa.444-452. VHFKDSQNKRIDIIHNLKLDRTYTGL. KIAA1197 aa.399-407. IWQLSSSLKRFDDKYTLKLTFISGRT. Microsomal sign. peptidase 25kDa Su aa.164-172. HWSLMERDRRISGVDRYYVSKGLENI. NADH-ubiquinone oxidoreductase aa.52-60. SPDDKYSRHRITIKKRFKVLMTQQPR. Nop10p aa.44-52. DFDWNLKHGRVFIIKSYSEDDIHRSI. Ny-Ren antigen aa.410-418. PLLLTEEEKRTLIAEGYPIPTKLPLT. OASIS protein aa.267-275. MLSTILYSRRFFPYYVYNIIGGLDEE. Proteasome Su C5 aa.99-107. VKGPRGTLRRDFNHINVELSLLGKKK. Ribosomal protein L9 aa.35-43. SLVKGGLCRRVLVQVSYAIGVSHPLS. S-adenosylmethionine synthetase gamma aa.312-320. RGDSVIVVLRNPLIAGK ( C-term. protein). Small nuclear ribonucleoprotein SM D2 aa.110-118. KDSKTDRLKRFGPNVPALLEAIDDAY. SMC6 protein aa.478-487. PRLAILYAKRASVFVKLQKPNAAIRD. ST13-like tumor suppressor aa.149-157. KLEAINELIRFDHIYTKPLVLEIPSE. XBP1 aa.281-289. a. All HLA-B2703 ligands in the SYFPEITHI database (at: www.syfpeithi.de) are listed and were analysed for the presence of dibasic nardilysin cleavage motifs. Ligand is underlined and nardilysin cleavage motifs are printed bold.. 

(120)          ''.

(121) 6678% 9 A % Competition. 75. ELFSYLIEK. (9-mer). ELFSYLIEKV (10-mer) ELFSYLIEKVK (11-mer) ELFSYLIEKVKR (12-mer) ELFSYLIEKVKRK (13-mer). 50. 25. 0 0 2.5. 5 7.5 10 12.5 15 17.5 20 22.5 25. Peptide concentration (μM). B ELFSYLIEK ELASYLIEK ELFAYLIEK ELFRYLIEK ELFSALIEK ELFSYAIEK ELFSYLAEK ELFSYLIAK. C. CTL recognition ++ +/++ ++ ++ 9-m er 11-m er 12-m er 13-m er. IFNJ prod. (pg/ml). 25000 20000 15000 10000 5000 0 200 nM. 40 nM. 8 nM. 1.6 nM. Peptide concentration loaded. 0''/,0 /$%%&

(122) 

(123) ,

(124) ( ,

(125)  

(126)  *   ' ' 

(127)   C-terminally extended precursors. Aƒ *) } %  +' %   . S=:`{+`CU 5?"z5   )  +.  ) {+! +! + ) '+.   ).)    . +8) 8)    !  {+.   8)  )>   $ %  +. +' 8)   Bƒ +  )% 7    S7:U+  )>   5?"z5 ) ">8> + %  5?"z5 )!     . ) ) 8 !   ))  *+ 5 : S+'+) and co-incubated with the CTL clone that was raised against the exogenously )) 5?"z5 ) 7     %    ))  S˜˜U! S˜^+U  S+U S  )) 8)  +'ˆ )    U 7 > .   192=+"+7194 F> S))  8 <U  F>) %  7:   !       % +. <))  % 5?"z5 8  7   Cƒ 7    % +. <))  %  5?"z5 ) 7 +.! +. ) '+. =:190-200/201/202 S5?"z5 , ^:^ U  ) )   ))  *+ 5 :  S+'+U 7    +>8)   7 %  ]  )  ?

(128) ¤+ )>   .>). ']  

(129)        .

(130) B. 1.00. 100. 0.75. 75. 0.50. 50. 0.25. 25. 0.00. 0. Percent B. OD 214 nm. A. IFNJ prod. (pg/ml). 1500. 1000. 500. 0. C. 1.00. 100. 0.75. 75. 0.50. 50. 11-m er 12/13-m er. 0.25. 25. 3 6 8 11 14 16 19 22 24 27 30 32 35 38 40 43 46 48 51 54 56 59. 0.00. Percent B. OD 214 nm. 9-m er. 0. Fraction number (1-60). D. 130 243.1 390.2 477.2 640.3 753.4 866.5 955.5. -. L. F. S. Y. L. I. E. -. K. bn. 1012.6 899.5 752.4 665.4 502.3 389.2 276.1 147.1 yn *. Relative intenstity. E. y4. y5 y6. s. 0''/,0 :/

(131)  

(132)  PRA!"!#$%%&' 

(133) ' '  / Aƒ =+ X % +' ) ) >X) % . 6 +'  S¥{10U +' . >  ..> } >X) % .   ! ) )+>) peptides were separated in 60 fractions by + =!   ) S))U % '  ]{ 8> *  ' . S% <! B;]ˆ  <! *U Bƒ :   8 7 +5?"z5 %. { =+%   ))  *+ 5 : S+'+) to detect the fraction containing  >) )+  ?     I)  7 Cƒ =+ X %    %  .<> %   `+. 5?"z5 peptide and its C-terminal extended 11-, +! ) '+.  5?"z5 , ^:^ S=:190-200/201/202U 7     ducted identical to the separation of cell >% <) ) S  U 7 `+.! +.! +. ) '+. ) >)  %  ! `! ) '!  S X.) 8 .  .ˆ    U Dƒ 7 ("^(" >. % .^I 6_' S˜U present in fraction 21 of the eluted peptides  )X)  5?"z5 ˆ . 8+  +   >)) 7 ("^(" >. of the eluted peptide was identical to the ("^(" >. %   5?"z5 ) S   U =$ ))  •"€  >)   8 <) 8 •>€ peptide fragment-ions, however, were also    ("^(" >. %   ) 7 $ ))   $  >) 8$ >) $. s. y3 ss s. s s. y2. s. y7 *. *. s. 0. 200. 300. 400. 500. 600. 700. 800. 900. 1000. M/Z. 

(134)          '6.

(135) A. B. FLKEGACDELFSYLIEKVKRKKNVLRL. substrate (83.7%). EGACDELFSYLIEKVKRKKNVLRL. fragment 1.9%. CDELFSYLIEKVKRKKNVLRL. fragment 1.2%. LFSYLIEKVKRKKNVLRL. fragment 5.3%. YLIEKVKRKKNVLRL. fragment 7.9%. F naftLKEGA C D E L F S Y L I E K V K R K K N V L R L. C FIP VEVLVD L F L K E G A C D E L F S Y L I E K V KR K K N V L R L % CTL recognition. D 100. 50. 0. si-control si-TPPII K562-A3. 0''/,0 &/66   

(136)  ,

(137)   *   ' ' / Aƒ   )   >X) 7== % _+. =:C+{C    5?"z5 ) S8 )U   .)) 7 %. 8) %   )     ) F>X)    %    >..)  .>) 8 .  .   ) +   >8 )   >8F> ) %. Bƒ  . )   >X) 7== % _+. =:C+{C!     . )X) >8  the N-terminal phenylalanine a 2-naphylsulfonyl group is attached to protect the substrate from N. < +) 

(138)   )>  )) S  ) U Cƒ   )   >X) 7== % '_+. =:_+{C 7 )      )       $   8 $ 7==+.))

(139) +. < +)        

(140)   )>  )) S  ) U 7 !  >     F> .  % '  % . 

(141) +.> %   +. )X) =:C+{C substrate and its subseF> ) %.!     )   $  < +) ..+ % 7== Dƒ 7    % 6 +' 8 %)  < :

(142)  > 7==   +    :

(143)  S"5( %   %  <.U. '  

(144)        .

(145) A 72.0 186.0 299.1 398.2 511.3 624.4 711.4 768.4 839.5 953.5 1082.5 1139.6 -. A. N. L. V. L. L. S. G. A. N. E. G. K. bn. - 1214.6 1100.6 987.5 888.4 775.3 662.3 575.2 518.2 447.2 333.1 204.1 147.1 yn. Relative Intensity. 100. b3. b2. y9 y8 y7. y6. 50. y10. b4 b5. y11. 0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1100 1200. m/z. B Band 1. 2. 3. a. MS/MS. b. Sequence identified. c. Source protein. 507.6 (3+). IKGEHPGLSIGDVAK. High mobility group protein. 531.6 (3+). KHPDASVNFSEFSK. High mobility group protein. 796.9 (2+). KHPDASVNFSEFSK. High mobility group protein. 536.3 (2+). LAGLEEALQK. Keratin. d. 739.8 (2+). DSLENTLTETEAR. Keratin. 426.2 (2+). GLTGGFGSR. Keratin. 813.4 (2+). LNVEVDAAPTVDLNR. Keratin. 519.7 (2+). AQYDDIASR. Keratin. 514.6 (2+). TAVCDIPPR. -tubulin. 508.3 (2+). DVNAAIATIK. -tubulin. 912.9 (2+). VGINYQPPTVVPGGDLAK. -tubulin. 470.9 (3+). QLFHPEQLITGK. -tubulin. 4. no precursors found. 5. 643.3 (2+). ANLVLLSGANEGK. e. Nardilysin. 0''/,0 4/

(146)  

(147) 

(148)  

(149) 

(150)   

(151) 

(152) "/&;<=:%& / Anion-ex %    '_ % 6 +'  !   )   )  % ~>   >8 5?"zS+)8U5 , :S+?U

(153) !  ) 8 ";"+=&5 )   8)   ) S    ? *U 7    )X) 8 ). .  . S("^("U Aƒ 7 ("^(" >. % .^I ]'' S˜U   % >)  8) 6 S  *U  ))   )X)  ) 

(154) ,"&

(155) 5& % . )ˆ . 8+ ) +   >)) Bƒ )X  8 ("^(" %    8)  '   . 8   S8) U! $ S8) U! ) ‰+ Š ‹+>8> S8) 'U

(156) ƒ SU =  8)  ) % . ";"+=&5 ˆ S8U ( SU     %  ("^("ˆ SU  F>  )X) 8 ("^("ˆ S)U $    .    % % >)   $) % .ˆ SU % . 8) 6! )  %>  X.) 8 .  % %. 6' _ S˜U! 8  F z77;?7 ) _`' S˜U    F 55?""?55 S)    U. 

(157)          '_.

(158) 0''/,0 </( ,

(159)  

(160) 

(161)  

(162) >  ?' 

(163) ,$ %& / Aƒ :   8 7 +5?"z5 % +'  +< ) S+'+

(164) :;+) as .>) 8 ?

(165) ¤ 5"

(166) ) +< +'   ) 8  5&?= <  7  >     5&?= <   > ) <   >)  %  >  ( ¦ "5( % % > <.    Bƒ B  . % +'  %)  :5"+

(167) :;+5&?= )  ) % %  %   5&?=+   5&?=+ < !    >  +< ). A % CTL recognition. 150 125 100 75 50 25 0. Vector NRD+ HeLa-A3. B 150 120 90 60 30 0 0 10. 1. 10. 10. 2. 10. 3. 10. 4. F L1-H. 214. 213. 212. 211. 210. 209. 208. 207. 206. 205. 203 204. 202. 201. 199 200. 198. 197. 196. 195. 194. 193. 192. TOP Nardilysin 191. 190. A. ELFSYLIEKVKRKKNVLRLCCKKLK 1 2 3 4 5 6 7 8 9 10 11 12 13. IFNJ prod. (pg/ml). B 4000. TOP + NRD dig. NRD only dig.. 3000. TOP only dig. m ock digest. 2000 1000 0 200 nM. 40 nM. 8 nM. Digest concentration loaded. 0''/,0 =/( ,

(168)  

(169) 6%!":4 co-digested with nardilysin and TOP. Aƒ ">8 6+. =:190-214 S5?"z5 , :

(170) ,:  !   8 )%)U    % ) ) 7B= ))       +)  ) ) 7B= S U!  <. ' %  )  %.   ..  . 5?"z5  !  ) 8 .  . Bƒ 7    % 6+. =:190-214 )) %    8 ) S

(171) :;U! 7B=!  8  )   "5( %   %   <.  )) . !  6+. >8)  7B=   ))   >   ..   S   )  %.U!      % .  8 % 7     . ) % _+. =:190-206  7B=   ) 8 % S+.U     S)    U. 'C  

(172)        .

(173) A FIPVEVLVDLFLKEGACDELFSYLIEK ELFSYLIEK B. Relative generation + Epoxom. + Casp. Inh. 40% 0%. IFNJ prod. (pg/ml). mock digest Proteasome dig. Prot. + Epoxom. Prot. + Casp. Inh.. 4000 3000 2000 1000 0 1 μM. 200 nM. Digest concentration loaded. % CTL recognition. C 150. 100. 50. VS. I. LAA. +. PS +. in. +. Ep. ox. as C +. om. p.. di el ef. br. yc. In. A n. ed at tre +. un. h.. 0. 0''/,0 ;/* 8 +

(174) 0 ' 0  * ' @  >,  >  of the proteasome. Aƒ =  .   _+. =:_+`C S   +.>U ;   % .)  ..> + )  > >. {"   . %      8 % 8      %  < . S{ §(U  =

(175) >,"B S ! >)  6{ §(U!  X 8  %  +$   .    )  8>)  8%  &>+`{ S8   Uƒ    +%. )  .. %. S  +C`  +.>U ))) >  „6 %  )) . %   :> %  ..> + )  >   .   .8 7 } %        %  8   ))   %    )  > 8  7 <.  )  .  . > Bƒ 7    %  ) % _+. =:_+`C 7 >8  ))   >   . S U   8 % 8      %  < .  =

(176) >,"B S U ;  )!  ))  +'+ cells and co-incubated with the CTL +5?"z5 

(177)       _+. >8)  '_‡  >   . S. $ )U Cƒ : 7    % 6 +'  )     . 8   < . S §(U! =" S{ §(U ) )<''," S+,"ˆ 6{ §(U   8  %    =

(178) >,"B S !  6{ §(U  .>)  > ?

(179) ¤+ :% {{     6 +' ) S . )U! 8> >)ˆ 8$ >)     6 +' ) ) ..) )  8%)   8 $   +<  "5( %  <.  )). 

(180)          '`.

(181) 207. 208. 206. 205. 204. 203. 202. 201. 199. 198. 197. 196. 195. 194. Nardilysin 193. 192. 191. 190. 189. 188. 187. 186. 185. 184. 183. 182. Proteasome. 200. A. FLKEGACDELFSYLIEKVKRKKNVLRL 1 2 3 4 5 6 7 8 9 10 11 12 13. ELFSYLIEKVK TOP. ELFSYLIEKVKR ELFSYLIEKVKRK ELFSYLIEK B A3-supertype Epitope. B B X X X X. Epitope. X B B X X X. Epitope. X X X X B B. X X X X B B X X X X X B B B B X X X X. Epitope HLA-B27 Epitope Epitope. A. B. 60. % Inhibition. 1600. IFNJ prod. (pg/ml). Suppl. Figure 8. Mechanism of epitope generation and role of nardilysin in class I processing. A: The proteasome, nardilysin ) 7B=  +      %  =:`{+`C   7   )  }  % SU    . 8%  &>+`{! SU % ) behind Lys-200, Arg-201 and Lys{ ) S'U   % 7B= 8) +`C   )+ )) + ) '+. cursors together generating the  € +.> B: "  )  )     %    presented peptides depending on the position of the dibasic motif      S*! 8 ƒ   U. 1200 800. 50 40 30 9-m er GRIDKPILK 13-m er 12-mer. 20. 400 10 0. 0. K562-A3-control. K562-A3-ICP47. 0. 10. 20. 30. 40. 50. Concentration test peptide. 0''/,0 !/%6 '

(182)

(183) 

(184)  

(185)  

(186) 6%!"!# epitope and its precursors. Aƒ 7=+))   %  5?"z5   6 +'   )>)    7=+8  =]_ S 6 +'+=]_U  8 $ 7=+.)) )   ! ) >)   %   7 +5?"z5  :% 6 +'   )>)   .  > S 6 +'+  U "5( %   %  <. B: 5} % 7=    % `+. 5?"z5 )  +. ) '+. +. <))   S5?"z5 , :^ U 7 )  )   .    7=+      ~>  8) % )   $   8  ) } =) &:; =  >)      ˆ  )   +*_ ) )  $   8 }  ) 8 7= ]{  

(187)        .

(188) A 10 min 30 min. % epitope. 30 20 10 0. PKQRCDNWESHVLYIATFMG VIDPFWCLYNHAEGMTSQKR. % destroyed epitpe. ELFSYLIEK-XKRK (P1’). 10 min 30 min. 40 30 20 10 0. PKQRCDNWESHVLYIATFMG VIDPFWCLYNHAEGMTSQKR. ELFSYLIEK-XKRK (P1’). 10000. IFNJ prod. (pg/ml). B. ELFSYLIEX-VKRK (P1). 8000. 10 min 30 min. ELFSYLIEX-VKRK (P1). C C. Epitope production 10 min. 30 min. 1h. SLYSFPEPEAVKRK. 5.7%. 17.5%. 24.6%. VLDGLDVLLVKRK. 5.0%. 6.3%. 4.5%. SLYSFPEPEARRFV. 6.6%. 16.4%. 25.8%. VLDGLDVLLRRFV. 14.0%. 19.2%. 17.6%. ELFSYLIEKRRFV. 2.7%. 10.5%. 21.5%. 6000 4000 2000 0. PKQRCDNWESHVLYIATFMG. ELFSYLIEK-XKRK (P1’). Suppl. Figure 10. The epitope-generating capacity of TOP. Aƒ ;  8 7B= %  % '+. 5?"z5 , : S=:190-202), where the residues at the =+ ) =€+   > >)  7B=   S5?"z5=+=€ : U  >8>) %    8 )> 7 )  '+. F>  >))  . S 8   =€+ ) =+ >8> U )  )) 8    ) 8 ) ) )> # ƒ  + )>  S5?"z5  5?"z5– %  =€+ ) =+>8> ! U % { . ) '{ .  )) ) F>X)    %    >..)  .>) 8 .  . ">8>   ))  )  } %  + )>   { .   ƒ  + )>  S )   )  > %. %   U % { . ) '{ .  ))   %   >..)  Bƒ 7    % 7B=+)) '+.  % =:190-202  >8>   =€ S5?"z5 + =€ : U 7 )  )!  ))  +'+ 5 :  !  +>8)   7 +5?"z5 ) ?

(189) ¤+  .>) :   %  )  '+. F>  )) 8    ) 8 ) ) )> C:  % >X) 7B=    +.> % ) 7   % . >    X +. <))   5  )  "z"?=5=5 S=:]+6U! ,;&;, S=:{{+{CU  ~$ F> , :  ::?, ) 5?"z5 S=:`{+`CU  ~$ F> ::?, 5   )>  % {! '{ ) { . >8  %  >8  7B=  )) ) <)   %    >..)  .>) 8 .  .. 

(190)          ].

(191) METHODS Cell lines Cell lines used were erythroleukemia cell line 6  S> < =:(5U!   .    S=:(5+), renal cell  . S:U  (†6_! +`]6 S8  ! =:(5+ ) +'+U ) (†C6 S+'+! =:(5+U S:   )) 8 ; 5 ,)! #(! 7

(192) )U ) *+ 5 : S+'+ ) =:(5+ U =:(5+<   ) 8 =: 6 !   >   ! )     )>)    < +'! +  + *_{6 S)) 6 +'! 6 +! 6 + *_ ) +'U > + ) +'  )   †:" .) ['\ S )) 8 ) ( .$$! ) 5<. .  ! ) # () U   +*_{6  ) .)  >% <  % +'! + ) +*_{6  .>) 8 ~   . > .    8 ) &=+'! **_ ) 3 '  S)    U +'  overexpressing nardilysin were made by trans%    :5"+5&?=     

(193) :; ;

(194)  S:5"+

(195) :;+5&?=U S

(196) :;  .  X  >.

(197) :;U % %     )  5&?=+  ) 5&?=+  > !    >  +< ) 6 +'  <  7= 8  =]_ )     S 6 +'+=]_ ) 6 +'+ U  .) 8   )>  >  †:"+:5"+&?= .)    >  =]_  6 +*_{6 was stably transfected with a plasmid encoding  . (?:& 3”::z V  S5*

(198) '  ]_+. !   <

(199) +. methionine; CTL epitope in bold), transfected   )   .  . lines were cultured in complete culture me)>.   % (;( S* $! ,! *>.U >.)  C % % >. S?"ˆ =! I! >U! {{ #^ .  )  .( +>.   

(200)  =)  I) 8  )+ strategies on an automated multiple peptide I S" ! (>"! 3! &.U > ?. +. ?  ~>  )! ~>    lently coupled to the cysteine residue using 6+S ) .) U~>  S?>$ . &! *>! "I)U 7 F> )>! ?. ++S;8U+B  8) % .

(201)  . S?U ?  8 $ %

(202) + terminal trimming in digestion experiments, the N-terminus of the peptide was blocked   +>%   >  )  =+>X) ) )) 8 .  .   

(203) 

(204)    

(205)  .      6 +'  S6¥{9) were homogenized in  8> S{ .( 7+!  .( ;77!  .( NaN'! 6 .(

(206) ! { .( (2! { .( 5;7! {  !  .( 7=! 6{ .(

(207) ?! { .(

(208) C,B4!  _6U > a Dounce glass  . I 7  .   fuged %  { .  {!{{{ ¥ g, and the super  %>) %    {{!{{{ ¥ g 8 .    . ) 7== 7 X)   X)   { §. X 7       ) S { %  % {6 .U 8   <  .  >  .  ”  >. S: 6^6! ..U    ) S{ .U % . {  6{{ .(    8>   ~   %  .^. "X ) activity in the fractions was assessed with in-. ]  

(209)        .

(210)  F>) ~>   6+. >8 5?"zS+)8U5 , :S+?U

(211) S=:190-204U ?      ~>  S?U+ group was attached to a cysteine in stead of the >       7   % .)  >8   X    % {6 ¨(  >8 8> S'{ .( 7! { .( ! 6 .( (2!  .( ;77!  _6U    8   %  .(    % ~> ! )>     %  F> % .  ~>   !  .>) > ' { . <  ) ] { . .   ?  S{ §U   $     S%  ‚'  ]{U  >   ";"  .)  ) )   massie Brilliant Blue according to standard  )> ")   8)   ) % . %  ‚'_! >8J)  )     )8) [''\ ) ) > .  .   

(212)  

(213)    } % ) %  +'  .>) with a competition-based cellular peptide 8)   )8)  > [']\ In this assay the capacity of test peptides to  .    >% <)    8) %  ~>  S?U+8) reference peptide that is known to bind with  }    . > %   ) 7  8  % ~>  8) % ) 8) by the competitor test peptide was calculated >  %   % .>ƒ S+S(?reference and competitor peptide (?no reference peptideU ^ S(?reference peptide (?no reference peptideUU ¥ {{  7 8) } %   )  <)      ))  8 6{ 8) %  ?+8) % ) S6{U  6{ “ 6 .(   ))  } 8) ) 6 .( © 6{ “ 6 .( .  )) .) } 8) 7 ?+8) % ) >) %  +'  ,?=S?U

(214) [']\ RNA interference mediated suppression of peptidases RNA interference mediated suppression of ) <   6 +'! 6 +*_ ) +'  8) 8  transfection with pools of four interfering oligonucleotide RNA duplexes for each ) S&5

(215) B(5 "(:7  % . Dharmacon) and/or by stable transfection %  "#=5:+>   S % % . ) : *)!

(216) )  >U  ) :

(217)  F> 7%  % "#=5:+> .)  6 +' ) 6 + B27 was performed by electroporation, and  +'   ?>&5

(218) 5 S:  Molecular Biochemicals, Indianapolis) accord   >  %  .>%> Cells stably expressing siRNA were obtained by culturing in the presence of puromycine S §^. %  6 +' ) *_ ) { §^ . %  +'U 7 %  % :

(219)  )><  6 +'  % .)  =? S”U ) %   +'  ;.?57  S;. U! according to instructions of the manufactur "8 >  % 7==  )  &&7777& S% . % ]U 7  F>   %  8 >  % )  &&77&&&7 S>   8 >  % . X  )) F> )U ">  % 7B= 8 8 <   )  7&&& S% . % '6U )   %)   % )><  )) ƒ SU 7&7&&7&&&&77! SU 7&7&&77! S'U &&&77&&7&&7777! ) S]U &&&&7&77-. 

(220)          ]'.

(221) &77 S   >.8

(222) (ª{{']`U ">  %

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

Innate and adaptive immunity work together and are linked % =% > $ The innate system, composed of primarily + =,!>+ cytes, natural killer cells and the

Endogenous presentation of the candidate epitopes PRA100–108, PRA142–151, PRA300–309, and PRA425–433 in HLA-A 0201 was explored by assessing the ability of CTL clones that were

B, total PBMCs (30  10 6 ) from HLA-A*0201-subtyped healthy individuals and melanoma patients were stained with phycoerythrin-labeled PRA 100-108 tetramer and isolated by

For each assay, the following allele-specific parameters were established: (1) a suitable reference peptide with known binding capacity for the allele; (2) the optimal position of

In this group, especially the eight peptides with high or intermediate HLA class I binding affinity, namely b3a2 10-20 (KQSSKALQR), binding in HLA-A3 14,24 and b3a2 9-18 binding

#$" / # * $" * & >?:@A QR >< ?:RQ2R' =& nardilysin-dependent CTL epitopes may also be over-expressed in cells that are treated with / >2 / insensitive