• No results found

University of Groningen Competition for feature selection Hannus, Aave

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Competition for feature selection Hannus, Aave"

Copied!
21
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Competition for feature selection

Hannus, Aave

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Hannus, A. (2017). Competition for feature selection: Action-related and stimulus-driven competitive biases in visual search. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Bibliography

Allik, J., Toom, M., & Luuk, A. (2003). Planning of saccadic eye move-ments. Psychological Research, 67, 10-21. doi: 10.1007/s00426-002-0094-5 Allport, A. D. (1987). Selection for

ac-tion: Some behavioural and neurophys-iological considerations of attention and action. Hillsdale, NJ: Erlbaum.

Allport, A. D. (1989). Visual attention. In M. I. Posner (Ed.),

Founda-tions of Cognitive Science (pp.

631-682). Cambridge, MA: MIT Press. doi:10.1002/15206 doi:10.1002/15206 9 doi:10.1002/15206 ( 1 9 9 1 0 7 ) 2 7 : 3 < 2 4 2 : : A I D -JHBS2300270315>3.0.CO;2-B Anderson, G. M., Heinke, D., &

Hum-phreys, G. W. (2010). Featural guid-ance in conjunction search: The con-trast between orientation and color.

Journal of Experimental Psychology: Human Perception and Performance, 36,

1108-1127. doi: 10.1037/a0017179 Anderson, G. M., Heinke, D., &

Hum-phreys, G. W. (2012). Bottom-up guidance to grouped items in con-junction search: Evidence for color grouping. Vision Research, 52, 88-96. http://dx.doi.org/10.1016/j.vis-res.2011.11.011

Anderson, G. M., Heinke, D., & Hum-phreys, G. W. (2013). Top-down guidance of eye movements in con-junction search. Vision Research, 79, 36-46. http://dx.doi.org/10.1016/j.vis-res.2012.12.008

Arnold, D. H., Clifford, C.W. & Wen-deroth, P. (2001). Asynchronous pro-cessing in vision: color leads motion.

Current Biology, 11, 596-600.

Awh, E., Belopolsky, A. V., & Theeu-wes, J. (2012). Top-down versus bot-tom-up attentional control: a failed theoretical dichotomy. Trends in

Cognitive Sciences, 16, 437-443. http://

dx.doi.org/10.1016/j.tics.2012.06.010 Awh, E. & Jonides, J. (2001). Overlap ping mechanisms of attention and spatial working memory. Trends

in Cognitive Sciences, 5, 119-126.

http://dx.doi.org/10.1016/S1364-6613(00)01593-X

Baizer, J. S., Ungerleider, L. G., & Des-imone, R. (1991). Organization of visual inputs to the inferior tempo-ral and posterior parietal cortex in macaques. Journal of Neuroscience, 11, 168-190.

Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A.Wsza-lek, T., . . . Brown, C. (2000). Pre-frontal regions play a predominant role in imposing an attentional 'set': Evidence from fMRI. Cognitive

Brain Research, 10, 1-9. http://dx.doi.

org/10.1016/S0926-6410(00)00015-X Bartels, A. & Zeki, S. (1998). The

the-ory of multistage integration in the visual brain. Proceedings of the Royal

Society B: Biological Sciences, 265,

2327-2332. doi: 10.1098/rspb.1998.0579 Beaudot, W. H. & Mullen, K. T. (2005).

Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise.

Vision Research, 45, 687-696. doi: 10.1016/j.visres.2004.09.023

(3)

Beck, D. M. & Kastner, S. (2005). Stimulus context modulates compe-tition in human extrastriate cortex.

Nature Neuroscience, 8, 1110-1116. doi:

10.1038/nn1501

Beck, D. M. & Kastner, S. (2009). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49, 1154-1165. doi: 10.1016/j.visres.2008.07.012 Becker, S. I., Harris, A. M.,

Veni-ni, D., & Retell, J. D. (2014). Visual search for color and shape: when is the gaze guided by feature relation-ships, when by feature values?

Jour-nal of Experimental Psychology: Human Perception and Performande, 40,

264-291. doi: 10.1037/a0033489

Bekkering, H. & Neggers, S. F. W. (2002). Visual search is modulated by action intentions. Psychological

Science, 13, 370-374. doi:

10.1111/j.0956-7976.2002.00466.x

Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discov-ery rate: A practical and powerful approach to multiple testing. Journal

of the Royal Statistical Society. Series B (Methodological), 57, 289-300. doi:

10.2307/2346101

Beuth, F. & Hamker, F. H. (2015). A mechanistic cortical microcircuit of attention for amplification, nor-malization and suppression. Vision

Research, 116, 241-257. doi: 10.1016/j.

visres.2015.04.004

Beutter, B. R., Eckstein, M. P., & Stone, L. S. (2003). Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrim-ination. Journal of the Optical Society

of America. A, Optics, image science, and vision, 20, 1341-1355. https://doi.

org/10.1364/JOSAA.20.001341

Bichot, N. P., Rossi, A. F., & Desim-one, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529-534. doi: 10.1126/science.1109676 Bichot, N. P. & Schall, J. D. (1999).

Sac-cade target selection in macaque during feature and conjunction vi-sual search. Vivi-sual Neuroscience, 16, 81-89.

Birmingham, E. & Pratt, J. (2005). Ex-amining inhibition of return with onset and offset cues in the multi-ple-cuing paradigm. Acta

Psycholog-ica, 118, 101-121. doi:

10.1016/j.actp-sy.2004.10.005

Blaser, E., Sperling, G., & Lu, Z. L. (1999). Measuring the amplification of attention. Proceedings of the

Na-tional Academy of Sciences of the United States of America, 96, 11681-11686. doi:

10.1073/pnas.96.20.11681

Bles, M., Schwarzbach, J., De Weerd, P., Goebel, R., & Jansma, B. M. (2006). Receptive field size-de-pendent attention effects in si-multaneously presented stimulus displays. NeuroImage, 30, 506-511. http://dx.doi.org/10.1016/j.neuroim-age.2005.09.042

Bloomfield, J. R. (1979). Visual search with embedded targets: Col-or and texture differences.

Hu-man Factors, 21, 317-330. doi:

10.1177/001872087902100306

Borra, E., Belmalih, A., Calzavara, R., Gerbella, M., Murata, A., Rozzi, S., & Luppino, G. (2008). Cortical con-nections of the macaque anterior intraparietal (AIP) area. Cerebral

Cor-tex, 18, 1094-1111. doi: 10.1093/cercor/

(4)

Boynton, G. M. (2009). A frame-work for describing the effects of attention on visual responses.

Vi-sion Research, 49, 1129-1143.

http://dx-.doi.org/10.1016/j.visres.2008.11.001 Brainard, D. H. (1997). The Psycho-physics Toolbox.

Spa-tial Vision, 10, 433-436. doi:

10.1163/156856897X00357

Broadbent, D. E. (1958).

Per-ception and Communication. London:

Pergamon Press.

Buetti, S., Cronin, D. A., Madison, A. M., Wang, Z., & Lleras, A. (2016). Towards a better understanding of parallel visual processing in hu-man vision: Evidence for exhaus-tive analysis of visual information.

Journal of Experimental Psychology: General, 145, 672-707. doi: 10.1037/

xge0000163

Bundesen, C. (1990). A theory of vi-sual attention. Psychological

Re-view, 97, 523-547. http://dx.doi.

org/10.1037/0033-295X.97.4.523 Bundesen, C. (1998). Visual selective

attention: Outlines of a choice model, a race model and a com-putational theory. Visual Cog-nition, 5, 287-309. https://doi. org/10.1080/135062898395399

Burghouts, G. J. & Geusebroek, J. M. (2006). Quasi-periodic spatio-temporal filtering. IEEE

Transac-tions on Image Processing, 15,

1572-1582. doi: 10.1109/TIP.2005.864234 Burnham, B. R. (2015).

Intertri-al priming of popout search on vi-sual prior entry. Journal of Vision,

15(14), 8-8. doi: 10.1167/15.14.8

Carandini, M.Demb, J. B.Mante, V.Tol-hurst, D. J.Dan, Y.Olshausen, B. A., . . . Rust, N. C. (2005). Do we know what the early visual system does? The Journal of Neuroscience, 25, 10577-10597. doi: 10.1523/jneuros-ci.3726-05.2005

Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appear-ance. Nature Neuroscience, 7, 308-313. doi: 10.1038/nn1194

Cecchi, G. A., Rao, A. R., Xiao, Y., & Kaplan, E. (2010). Statistics of nat-ural scenes and cortical color pro-cessing. Journal of Vision, 10(11), 21. doi: 10.1167/10.11.21

Chawla, D., Rees, G., & Friston, K. J. (1999). The physiological basis of attentional modulation in extrastri-ate visual areas. Nature Neuroscience,

2, 671-676. doi: 10.1038/10230

Cherry, E. C. (1953). Some experi-ments on the recognition of speech, with one and with two ears. The

Jour-nal of the Acoustical Society of America, 25, 975-979. doi: 10.1121/1.1907229

Clark, K., Squire, R. F., Merrikhi, Y., & Noudoost, B. (2015). Visual atten-tion: Linking prefrontal sources to neuronal and behavioral correlates.

Progress in Neurobiology, 132, 59-80.

doi: 10.1016/j.pneurobio.2015.06.006 Clifford, C. W., Spehar, B., Solo-mon, S. G., Martin, P. R., & Zaidi, Q. (2003). Interactions between color and luminance in the perception of orientation. Journal of Vision, 3(2), 106-115. doi: 10.1167/3.2.1

Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201-215. doi: 10.1038/nrn755

(5)

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox.

Be-havior Research Methods, Instruments, & Computers, 34, 613-617. doi: 10.3758/

BF03195489

Cowey, A. (1979). Cortical maps and visual perception the grindley me-morial lecture. Quarterly Journal of

Experimental Psychology, 31, 1-17. doi:

10.1080/14640747908400703 Craighero, L., Fadiga, L., Rizzolatti,

G., & Umiltà, C. (1999). Action for perception: A motor-visual atten-tional effect. Journal of

Experimen-tal Psychology: Human Perception and Performance, 25, 1673-1692. doi:

10.1037/0096-1523.25.6.1673

Craighero, L., Mele, S., & Zorzi, V . (2015). An object-identity probabili-ty cueing paradigm during grasping observation: The facilitating effect is present only when the observed kinematics is suitable for the cued object. Frontiers in Psychology, 6, 1479. doi: 10.3389/fpsyg.2015.01479

Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Hu-man photoreceptor topography.

Journal of Comparative Neurology, 292,

497-523. doi: 10.1002/cne.902920402 D'Esposito, M., Postle, B. R., Ballard,

D., & Lease, J. (1999). Maintenance versus manipulation of informa-tion held in working memory: An event-related fMRI study. Brain and

Cognition, 41, 66-86. doi: 10.1006/

brcg.1999.1096

de Haan, E. H. F. & Cowey, A. (2011). On the usefulness of ‘what’ and ‘where’ pathways in vision. Trends in

Cognitive Sciences, 15, 460-466. http://

dx.doi.org/10.1016/j.tics.2011.08.005

De Valois, R. L. & De Valois, K. K. (1993). A multi-stage color model. Vision

Research, 33, 1053-1065. http://dx.doi.

org/10.1016/0042-6989(93)90240-W Desimone, R. (1998). Visual attention

mediated by biased competition in extrastriate visual cortex.

Philosoph-ical Transactions of the Royal Society B: Biological Sciences, 353, 1245-1255. doi:

10.1098/rstb.1998.0280

Desimone, R. & Duncan, J. (1995). Neural mechanisms of selective vi-sual attention. Annual Review of

Neu-roscience, 18, 193-222. doi:

10.1146/an-nurev.ne.18.030195.001205

Deubel, H. & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a com-mon attentional mechanism. Vision

Research, 36, 1827-1837. http://dx.doi.

org/10.1016/0042-6989(95)00294-4 Deubel, H., Schneider, W. X., &

Paprot-ta, I. (1998). Selective dorsal and ventral processing: Evidence for a common attentional mechanism in reaching and perception. Visual

Cog-nition, 5, 81-107. http://dx.doi.'

Deutsch, J. A. & Deutsch, D. (1963). Attention: Some theoretical con-siderations. Psychological Review, 70, 80-90. http://dx.doi.org/10.1037/ h0039515

Driver, J. (2001). A selective re-view of selective attention research from the past century. British

Jour-nal of Psychology, 92 Part 1, 53-78. doi:

10.1348/000712601162103

Duncan, J. (1980). The locus of interfer-ence in the perception of simulta-neous stimuli. Psychological Review,

87, 272-300. doi:

(6)

Duncan, J. (1984). Selective attention and the organization of visual infor-mation. Journal of Experimental

Psy-chology: General, 113, 501-517.

http://dx-.doi.org/10.1037/0096-3445.113.4.501 Duncan, J. (1996). Cooperating brain

systems in selective perception and action. In T. Inui & J. L. McClelland (Eds.), Attention and Performance (pp. 549-578). Cambridge: The MIT Press Duncan, J. (1998). Converging

lev-els of analysis in the cognitive neu-roscience of visual attention. Philo-sophical Transactions of the Royal Society B: Biological Sciences, 353, 1307-1317. doi: 10.1098/rstb.1998.0285 Duncan, J., Humphreys, G., & Ward,

R. (1997). Competitive brain activity in visual attention. Current Opinion in

Neurobiology, 7, 255-261. http://dx.doi.

org/10.1016/S0959-4388(97)80014-1 Duncan, J. & Humphreys, G. W. (1989).

Visual search and stimulus similar-ity. Psychological Review, 96, 433-458. doi: 10.1037/0033-295X.96.3.433 Dupont, P.Orban, G. A.Vogels,

R.Bor-mans, G.Nuyts, J.Schiepers, C., ... Mortelmans, L. (1993). Different per-ceptual tasks performed with the same visual stimulus attribute acti-vate different regions of the human brain: A positron emission tomogra-phy study. Proceedings of the National

Academy of Sciences of the United States of America, 90, 10927-10931.

Eckstein, M. P. (1998). The lower visual search efficiency for conjunctions is due to noise and not serial attention-al processing. Psychologicattention-al Science, 9, 111-118. https://doi.org/10.1111/1467-9280.00020

Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively defined targets. Journal of

Experimen-tal Psychology: Human Perception and Performance, 10, 32-39. http://dx.doi.

org/10.1037/0096-1523.10.1.32

Einhauser, W., Rutishauser, U., & Koch, C. (2008). Task-demands can immediately reverse the effects of sensory-driven saliency in com-plex visual stimuli. Journal of Vision,

8(2).1-19. doi: 10.1167/8.2.2

Elsner, B. & Hommel, B. (2001). Ef fect anticipation and action con-trol. Journal of Experimental

Psychol-ogy: Human Perception and Perfor-mance, 27, 229-240. http://dx.doi.

org/10.1037/0096-1523.27.1.229

Engbert, K. & Wohlschlager, A. (2007). Intentions and expectations in temporal binding.

Conscious-ness and Cognition, 16, 255-264. doi:

10.1016/j.concog.2006.09.010

Engel, S. A. (2005). Adaptation of oriented and unoriented color-selec-tive neurons in human visual areas.

Neuron, 45, 613-623. http://dx.doi.

org/10.1016/j.neuron.2005.01.014 Enns, J. (1986). Seeing textons in con

text. Perception & Psychophysics, 39, 143-147. doi: 10.3758/BF03211496 Eriksen, C. W. & St James, J. D. (1986).

Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics,

40, 225-240. doi: 10.3758/BF03211502

Fagioli, S., Ferlazzo, F., & Hom-mel, B. (2007). Controlling attention through action: Observing actions primes action-related stimulus di-mensions. Neuropsychologia, 45, 3351-3355. http://dx.doi.org/10.1016/j.neu-ropsychologia.2007.06.012

(7)

Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of at-tention: action planning primes ac-tion-related stimulus dimensions.

Psychological Research, 71, 22-29. doi:

10.1007/s00426-005-0033-3

Fecteau, J. H. & Munoz, D. P. (2006). Salience, relevance, and firing: A pri-ority map for target selection. Trends

in Cognitive Sciences, 10, 382-390. doi:

10.1016/j.tics.2006.06.011

Felleman, D. J. & Van Essen, D. C. (1991). Distributed hierarchical process-ing in the primate cerebral cortex.

Cerebral Cortex, 1, 1-47. https://doi.

org/10.1093/cercor/1.1.1-a

Findlay, J. M. (1997). Saccade tar-get selection during visual search.

Vision Research, 37, 617-631.

Findlay, J. M. (2003). Visual selec-tion, covert attention and eye movements In J. M. Findlay & I. D. Gilchrist (Eds.), Active vision: The

psychology of looking and seeing (pp.

35-54). New York: Oxford University Press

Folk, C. L., Remington, R. W., & John ston, J. C. (1992). Involuntary co-vert orienting is contingent on at-tentional control settings. Journal

of Experimental Psychology: Human Perception and Performance, 18,

1030-1044. http://dx.doi.org/10.1037/0096-1523.18.4.1030

Found, A. (1998). Parallel coding of conjunctions in visual search.

Per-ception & Psychophysics, 60, 1117-1127.

doi: 10.3758/BF03206162

Freud, E., Plaut, D. C., & Behr-mann, M. (2016). 'What' is happen-ing in the dorsal visual pathway.

Trends in Cognitive Sciences, 20,

773-784. doi: 10.1016/j.tics.2016.08.003

Friedman, H. S., Zhou, H., & von der Heydt, R. (2003). The coding of uniform colour figures in monkey visual cortex. The Journal of

Physiol-ogy, 548, 593-613. doi:

10.1113/jphysi-ol.2002.033555

Ganel, T. & Goodale, M. A. (2003). Visual control of action but not per-ception requires analytical process-ing of object shape. Nature, 426, 664-667. doi: 10.1038/nature02156 Gegenfurtner, K. R. (2003).

Corti-cal mechanisms of colour vision.

Na-ture Reviews Neuroscience, 4, 563-572.

doi: 10.1038/nrn1138

Gegenfurtner, K. R. & Kiper, D. C. (2003). Color vision. Annual Review of

Neuroscience, 26, 181-206. doi: 10.1146/

annurev.neuro.26.041002.131116 Gibson, J. J. (1979). The

ecologi-cal approach to visual perception.

Bos-ton, MA: Houghton Mifflin

Good, P. (2000). Permutation

tests: A practical guide to resampling methods for testing hypothesis.

Heidel-berg: Springer-Verlag.

Goodale, M. A. (2014). How (and why) the visual control of action differs from visual perception. Proceedings

of the Royal Society B: Biological Sci-ences, 281, 20140337. doi: 10.1098/

rspb.2014.0337

Goodale, M. A. & Milner, A. D. (1992). Separate visual pathways for per-ception and action. Trends in

Neu-rosciences, 15, 20-25. http://dx.doi.

org/10.1016/0166-2236(92)90344-8 Goodale, M. A., Milner, A. D.,

Jakob-son, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasp-ing them. Nature, 349, 154-156. doi: 10.1038/349154a0

(8)

Goodale, M. A. & Wolf, M. (2009). Vi-sion for action. In D. Dedrick & L. Trick (Eds.), Computation, cognition,

and Pylyshyn. Cambridge, MA: MIT

Press

Grefkes, C. & Fink, G. R. (2005). The functional organization of the intra-parietal sulcus in humans and mon-keys. Journal of Anatomy, 207, 3-17. doi: 10.1111/j.1469-7580.2005.00426.x Gutteling, T. P., Kenemans, J. L., &

Neggers, S. F. W. (2011). Grasp-ing preparation enhances ori-entation change detection. PLoS

ONE, 6, e17675. doi: 10.1371/journal.

pone.0017675

Gutteling, T. P., Park, S. Y., Kenemans, J. L., & Neggers, S. F. W. (2013). TMS of the anterior intraparietal area selectively modulates orien-tation change detection during action preparation. Journal of

Neu-rophysiology, 110, 33-41. doi: 10.1152/

jn.00622.2012

Gutteling, T. P., Petridou, N., Du-moulin, S. O., Harvey, B. M., Aarnou-tse, E. J., Kenemans, J. L., & Neggers, S. F. W. (2015). Action preparation shapes processing in early visual cortex. The Journal of Neuroscience, 35, 6472-6480. doi: 10.1523/JNEUROS-CI.1358-14.2015

Haenny, P. E. & Schiller, P. H. (1988). State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks.

Experimen-tal Brain Research, 69, 225-244. doi:

10.1007/BF00247569

Hannus, A., Cornelissen, F. W., Lindemann, O., & Bekkering, H. (2005). Selection-for-action in visual search. Acta Psychologica, 118, 171-191. doi: 10.1016/j.actpsy.2004.10.010

Hannus, A., van den Berg, R., Bek-kering, H., Roerdink, J. B., & Cor-nelissen, F. W. (2006). Visual search near threshold: Some features are more equal than others. Journal of

Vi-sion, 6(4), 523-540. doi: 10.1167/6.4.15

Helmholtz, H. v. (1867). Allgemeine

Encyklopädie der Physik: Handbuch der physiologischen Optik. In G. Karsten

(Series Ed.) Retrieved from e-rara. ch database doi:http://dx.doi. org/10.3931/e-rara-21259

Himmelbach, M. & Karnath, H.-O. (2005). Dorsal and ventral stream interaction: Contributions from optic ataxia. Journal of

Cogni-tive Neuroscience, 17, 632-640. doi:

10.1162/0898929053467514

Hirsch, J. & Curcio, C. A. (1989). The spatial resolution capacity of hu-man foveal retina. Vision Research,

29, 1095-1101. doi:

10.1016/0042-6989(89)90058-8

Hol, K. & Treue, S. (2001). Differ ent populations of neurons con-tribute to the detection and dis-crimination of visual motion. Vision

Research, 41, 685-689. http://dx.doi.

org/10.1016/S0042-6989(00)00314-X Hommel, B. (2009). Action control ac cording to TEC (theory of event cod-ing). Psychological Research, 73, 512-526. doi: 10.1007/s00426-009-0234-2 Hommel, B. (2010). Grounding atten

tion in action control: The intention-al control of selection. In B. Bruya (Ed.), A new perspective in the cognitive

science of attention and action: Effortless attention (pp. 121–140). Cambridge,

(9)

Hommel, B. & Colzato, L. S. (2009). When an object is more than a bind-ing of its features: Evidence for two mechanisms of visual feature inte-gration. Visual Cognition, 17, 120-140. doi: 10.1080/13506280802349787 Hommel, B., Musseler, J., Aschersleben,

G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning.

Behavioral and Brain Sciences, 24,

849-878; discussion 878-937. doi: 10.1017/ S0140525X01000103

Hopfinger, J. B., Woldorff, M. G., Fletch-er, E. M., & Mangun, G. R. (2001). Dissociating top-down attention-al control from selective percep-tion and acpercep-tion. Neuropsychologia,

39, 1277-1291. doi:

10.1016/S0028-3932(01)00117-8

Horwitz, G. D. & Hass, C. A. (2012). Nonlinear analysis of macaque V1 color tuning reveals cardinal direc-tions for cortical color processing.

Nature Neuroscience, 15, 913-919. doi:

10.1038/nn.3105

Hubel, D. H. & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. The Journal

of Physiology, 148, 574-591. doi: 10.1113/

jphysiol.1959.sp006308

Humphreys, G. W. & Muller, H. J. (1993). SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology,

25, 43-110. http://dx.doi.org/10.1006/

cogp.1993.1002

Humphreys, G. W. & Riddoch, M. J. (2001). Detection by action: Neu-ropsychological evidence for ac-tion-defined templates in search.

Nature Neuroscience, 4, 84-88. doi:

10.1038/82940

Hutchison, R. M. & Gallivan, J. P. (2016). Functional coupling between frontoparietal and occipitotem-poral pathways during action and perception. Cortex http://dx.doi. org/10.1016/j.cortex.2016.10.020 Iba, M. & Sawaguchi, T. (2003).

Involve-ment of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection. Journal of

Neuro-physiology, 89, 587-599. doi: 10.1152/

jn.00148.2002

Itti, L. & Koch, C. (2000). A salien-cy-based search mechanism for overt and covert shifts of visual at-tention. Vision Research, 40, 1489-1506. http://dx.doi.org/10.1016/ S0042-6989(99)00163-7

Itti, L. & Koch, C. (2001). Compu-tational modelling of visual atten-tion. Nature Reviews Neuroscience, 2, 194-203. doi: 10.1038/35058500 Jackson, S. R., Newport, R., Husain,

M., Fowlie, J. E., O’Donoghue, M., & Bajaj, N. (2009). There may be more to reaching than meets the eye: Re-thinking optic ataxia.

Neu-ropsychologia, 47, 1397-1408. http://

dx.doi.org/10.1016/j.neuropsycholo-gia.2009.01.035

James, T. W., Culham, J., Humphrey, G. K., Milner, A. D., & Goodale, M. A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain, 126, 2463-2475. doi: 10.1093/brain/awg248

James, W. (1890). The principles of

psychology. Retrieved from

(10)

Johnson, E. N., Hawken, M. J., & Shapley, R. (2008). The orienta-tion selectivity of color-responsive neurons in macaque V1. The Journal

of Neuroscience, 28, 8096-8106. doi:

10.1523/jneurosci.1404-08.2008 Kang, P. & Shevell, S. K. (2012). Feature

binding of a continuously chan-ging object. Journal of the Optical Society of

America. A, Optics, image science, and vision, 29, A128-A132. https://doi.

org/10.1364/JOSAA.29.00A128

Kaptein, N. A., Theeuwes, J., & van der Heijden, A. H. C. (1995). Search for a conjunctively defined target can be selectively limited to a col-or-defined subset of elements.

Jour-nal of Experimental Psychology: Human Perception and Performance, 21,

1053-1069. http://dx.doi.org/10.1037/0096-1523.21.5.1053

Kastner, S. & Ungerleider, L. G. (2000). Mechanisms of visual atten-tion in the human cortex. Annual

Re-view of Neuroscience, 23, 315-341. doi:

10.1146/annurev.neuro.23.1.315

Kastner, S. & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex.

Neuropsychologia, 39, 1263-1276. doi:

10.1016/S0028-3932(01)00116-6 Kiefer, M., Sim, E.-J., Helbig, H., &

Graf, M. (2011). Tracking the time course of action priming on object recognition: Evidence for fast and slow influences of action on per-ception. Journal of Cognitive

Neuro-science, 23, 1864-1874. doi: 10.1162/

jocn.2010.21543

Klink, P. C., Jentgens, P., & Lorteije, J. A. M. (2014). Priority maps explain the roles of value, attention, and sa-lience in goal-oriented behavior. The

Journal of Neuroscience, 34, 13867-13869.

doi: 10.1523/jneurosci.3249-14.2014 Kowler, E. (2011). Eye

move-ments: The past 25 years. Vision

Re-search, 51, 1457-1483. http://dx.doi.

org/10.1016/j.visres.2010.12.014 Kowler, E., Anderson, E., Dosher, B., &

Blaser, E. (1995). The role of atten-tion in the programming of sac-cades. Vision Research, 35, 1897-1916. http://dx.doi.org/10.1016/0042-6989(94)00279-U

Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neu-ral framework for visuospatial pro-cessing. Nature Reviews Neuroscience,

12, 217-230. doi: 10.1038/nrn3008.

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: An expanded neural framework for the processing of object quality.

Trends in Cognitive Sciences, 17, 26-49.

doi: 10.1016/j.tics.2012.10.011.

LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (1999). Neuroanatomic overlap of working memory and spatial attention net-works: A functional MRI compari-son within subjects. NeuroImage, 10, 695-704. http://dx.doi.org/10.1006/ nimg.1999.0503

Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all competition among visual filters. Nature Neuroscience, 2, 375-381. doi: 10.1038/7286

(11)

Leventhal, A. G., Thompson, K.G., Liu, D., Zhou, Y. & Ault, S.J. (1995). Con-comitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex.

The Journal of Neuroscience, 15,

1808-1818.

Li, Z. (2002). A saliency map in pri-mary visual cortex. Trends in

Cog-nitive Sciences, 6, 9-16. http://dx.doi.

org/10.1016/S1364-6613(00)01817-9 Lindemann, O., Stenneken, P., van Schie,

H. T., & Bekkering, H. (2006). Se-mantic activation in action plan-ning. Journal of Experimental

Psycholo-gy: Human Perception and Performance, 32, 633-643. doi:

10.1037/0096-1523.32.3.633

Liu, T., Pestilli, F., & Carrasco, M. (2005). Transient attention enhances per-ceptual performance and fMRI response in human visual cortex.

Neuron, 45, 469-477. doi: 10.1016/j.

neuron.2004.12.039

Liu, T., Slotnick, S. D., Serences, J. T., & Yantis, S. (2003). Cortical mech-anisms of feature-based attention-al control. Cerebrattention-al Cortex, 13, 1334-1343. https://doi.org/10.1093/cercor/ bhg080

Liversedge, S. P. & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in Cognitive

Scienc-es, 4, 6-14. http://dx.doi.org/10.1016/

S1364-6613(99)01418-7

Livingstone, M. S. & Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex.

The Journal of Neuroscience, 4, 309-356.

Livingstone, M. S. & Hubel, D. H. (1987). Psychophysical evidence for sepa-rate channels for the perception of form, color, movement, and depth.

The Journal of Neuroscience, 7,

3416-3468.

Lotze, R. H. (1852). Medizinische

Psy-chologie oder Physiologie der Seele

[Medical psychology or the physi-ology of mind]. Leipzig, Germany: Weidmenn’sche Buchhandlung. Luck, S. J., Chelazzi, L., Hillyard, S. A., &

Desimone, R. (1997). Neural mecha-nisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of

Neurophysiol-ogy, 77, 24-42.

Luck, S. J. & Hillyard, S. A. (1994). Elec-trophysiological correlates of feature analysis during visual search.

Psy-chophysiology, 31, 291-308. doi: 10.1111/

j.1469-8986.1994.tb02218.x

Luria, S. M. & Strauss, M. S. (1975). Eye movements during search for coded and uncoded targets.

Percep-tion & Psychophysics, 17, 303-308. doi:

10.3758/BF03203215

Majaj, N. J., Pelli, D. G., Kurshan, P., & Palomares, M. (2002). The role of spatial frequency channels in let-ter identification. Vision Research, 42, 1165-1184. http://dx.doi.org/10.1016/ S0042-6989(02)00045-7

Marr, D. (1982). Vision. A computational

investigation into the human represen-tation and processing of visual informa-tion. San Francisco, CA: W.H.

Free-man.

Martinez-Trujillo, J. C. & Treue, S. (2004). Feature-based attention in-creases the selectivity of population responses in primate visual cortex.

Current Biology, 14, 744-751. http://dx.

(12)

Maunsell, J. H. & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29, 317-322. doi: 10.1016/j.tins.2006.04.001 Maunsell, J. H. & van Essen, D. C.

(1983). The connections of the mid-dle temporal visual area (MT) and their relationship to a cortical hier-archy in the macaque monkey. The

Journal of Neuroscience, 3, 2563-2586.

McCollough, C. (1965). Color adap-tation of edge-detectors in the hu-man visual system. Science, 149, 1115-1116. 10.1126/science.149.3688.1115 McMains, S. & Kastner, S. (2011).

Interactions of top-down and bot-tom-up mechanisms in human visu-al cortex. The Journvisu-al of Neuroscience,

31, 587-597. doi:

10.1523/jneuros-ci.3766-10.2011

Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of

Neuroscience, 24, 167-202. doi: 10.1146/

annurev.neuro.24.1.167

Miller, E. K., Erickson, C. A., & Des-imone, R. (1996). Neural mecha-nisms of visual working memory in prefrontal cortex of the macaque.

The Journal of Neuroscience, 16,

5154-5167.

Milner, A. D. & Goodale, M. A. (1995).

The visual brain in action. Oxford, UK:

Oxford University Press.

Milner, A. D. & Goodale, M. A. (2008). Two visual systems re-viewed.

Neuro-psychologia, 46, 774-785. http://dx.

doi.org/10.1016/j.neuropsycholo-gia.2007.10.005

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spa-tial vision: Two cortical pathways.

Trends in Neurosciences, 6, 414-417.

http://dx.doi.org/10.1016/0166-2236(83)90190-X

Moore, T. (2006). The neurobiology of vi-sual attention: Finding sources. Current Opinion in Neurobiology, 16, 159-165. http://dx.doi.org/10.1016/j. conb.2006.03.009

Moore, T. & Zirnsak, M. (2017). Neural mechanisms of selective visual attention. Annual Review of

Psy-chology, 68, 47-72. doi:

10.1146/an-nurev-psych-122414-033400

Motter, B. C. (1994). Neural correlates of attentive selection for color or lu-minance in extrastriate area V4. The

Journal of Neuroscience, 14, 2178-2189.

Moutoussis, K. & Zeki, S. (1997a). A di-rect demonstration of perceptu-al asynchrony in vision.

Proceed-ings of the Royal Society B: Biological Sciences, 264, 393-399. doi: 10.1098/

rspb.1997.0056

Moutoussis, K. & Zeki, S. (1997b). Functional segregation and tempo-ral hierarchy of the visual perceptive systems. Proceedings of the Royal

So-ciety B: Biological Sciences, 264,

1407-1414. doi: 10.1098/rspb.1997.0196 Moutoussis, K. & Zeki, S. (2002).

Re-sponses of spectrally selective cells in macaque area V2 to wavelengths and colors. Journal of Neurophysiology, 87, 2104-2112. doi: 10.1152/jn.00248.2001 Müsseler, J., Wühr, P., Danielmei-er, C., & Zysset, S. (2005). Action-in-duced blindness with lateralized stimuli and responses.

Experimen-tal Brain Research, 160, 214-222. doi:

(13)

Nakayama, K. & Mackeben, M. (1989). Sustained and transient com-ponents of focal visual attention.

Vi-sion Research, 29, 1631-1647.

Nakayama, K. & Martini, P. (2011). Situating visual search. Vision

Re-search, 51, 1526-1537. http://dx.doi.

org/10.1016/j.visres.2010.09.003 Neumann, O. (1987). Beyond

ca-pacity: A functional view of atten-tion. In H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and

action (pp. 361–394). Hillsdale, NJ:

Lawrence Erlbaum Associates

Noë, A. (2005). Action in Perception (Vol. 102). Cambridge, MA: MIT Press.

Nothdurft, H.-C. (1993). The role of fea-tures in preattentive vision: Com-parison of orientation, motion and color cues. Vision Research, 33, 1937-1958. http://dx.doi.org/10.1016/0042-6989(93)90020-W

Nothdurft, H.-C. (2000). Salience from feature contrast: Additivity across dimensions. Vision Research, 40, 1183-1201. doi: 10.1016/s0042-6989(00)00031-6

Olds, E. S., Graham, T. J., & Jones, J. A. (2009). Feature head-start: Con-junction search following progres-sive feature disclosure. Vision

Re-search, 49, 1428-1447. http://dx.doi.

org/10.1016/j.visres.2009.02.008 Olivers, C. N., Peters, J., Houtkamp,

R., & Roelfsema, P. R. (2011). Differ-ent states in visual working mem-ory: When it guides attention and when it does not. Trends in Cognitive

Sciences, 15, 327-334. doi: 10.1016/j.

tics.2011.05.004

Østerberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmology, 13, 1-103. Pashler, H. (1987). Detecting

con-junctions of color and form: Reas-sessing the serial search hypothesis.

Perception & Psychophysics, 41, 191-201.

doi: 10.3758/bf03208218

Pelli, D. G. (1997). The VideoTool box software for visual psychophys-ics: Transforming numbers into movies. Spatial Vision, 10, 437-442. doi: 10.1163/156856897X00366

Perenin, M. T. & Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms: I. Differ-ent aspects of the deficit in reaching for objects. Brain, 111, 643-674. https:// doi.org/10.1093/brain/111.3.643 Perry, C. J., Amarasooriya, P., & Fallah,

M. (2016). An eye in the palm of your hand: Alterations in visual pro-cessing near the hand, a mini-re-view. Frontiers in Computational

Neuroscience, 10, 37. doi:

10.3389/fn-com.2016.00037

Perry, C. J., Sergio, L. E., Craw-ford, J. D., & Fallah, M. (2015). Hand placement near the visual stimulus improves orientation selectivity in V2 neurons. Journal of

Neurophysiolo-gy doi: 10.1152/jn.00919.2013

Pisella, L., Binkofski, F., Lasek, K., Toni, I., & Rossetti, Y. (2006). No double-dissociation between optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-man-ual integrations. Neuropsychologia, 44, 2734-2748. doi: 10.1016/j.neuropsy-chologia.2006.03.027

(14)

Pisella, L., Sergio, L., Blangero, A., Torchin, H., Vighetto, A., & Rossetti, Y. (2009). Optic ataxia and the func-tion of the dorsal stream: Contribu-tions to perception and action.

Neu-ropsychologia, 47, 3033-3044. http://

dx.doi.org/10.1016/j.neuropsycholo-gia.2009.06.020

Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008). Attention enhances the neural pro-cessing of relevant features and sup-presses the processing of irrelevant features in humans: An fMRI study of the Stroop task. The Journal of

Neu-roscience, 28, 13786-13792. doi: 10.1523/

JNEUROSCI.1026-08.2008

Posner, M. I. (1980). Orienting of at-tention. Quarterly Journal of

Experi-mental Psychology, 32, 3-25. http://dx.

doi.org/10.1080/00335558008248231 Posner, M. I. (1992). Attention as a

cog-nitive and neural system. Current

Directions in Psychological Science, 1,

11-14.

Posner, M. I., Snyder, C. R., & David-son, B. J. (1980). Attention and the detection of signals. Journal of

Exper-imental Psychology: General, 109,

160-174. doi: 10.1037/0096-3445.109.2.160 Pratt, J., Taylor, J. E. T., & Gozi, G.

(2015). Action and attention. In J. M. Fawcett, E. F. Risko & A. Kingstone (Eds.), The handbook of attention (pp. 325-347). Cambridge, MA: MIT Press Ptak, R. (2012). The frontopari-etal attention network of the human brain. The Neuroscientist, 18, 502-515. doi: 10.1177/1073858411409051

Quinlan, P. T. & Humphreys, G. W. (1987). Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches.

Percep-tion & Psychophysics, 41, 455-472. doi:

10.3758/bf03203039

Ranganath, C., Johnson, M. K., & D'Es-posito, M. (2003). Prefrontal activ-ity associated with working ory and episodic long-term mem-ory. Neuropsychologia, 41, 378-389. http://dx.doi.org/10.1016/S0028-3932(02)00169-0

Reed, C. L., Betz, R., Garza, J. P., & Rob-erts, R. J., Jr. (2010). Grab it! Biased attention in functional hand and tool space. Attention, Perception, &

Psy-chophysics, 72, 236-245. doi: 10.3758/

app.72.1.236

Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. The Journal of Neuroscience,

19, 1736.

Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention in-creases sensitivity of V4 neurons.

Neuron, 26, 703-714. http://dx.doi.

org/10.1016/S0896-6273(00)81206-4 Ridderinkhof, K. R. (2014).

Neurocog-nitive mechanisms of perception-ac-tion coordinaperception-ac-tion: A review and the-oretical integration. Neuroscience and

Biobehavioral Reviews, 46 Pt 1, 3-29.

doi: 10.1016/j.neubiorev.2014.05.008 Riddoch, M. J., Humphreys, G. W.,

Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsy-chological evidence for action-based effects on object selection. Nature

Neuroscience, 6, 82-89. doi: 10.1038/

(15)

Rizzolatti, G. & Craighero, L. (1998). Spatial attention: Mechanisms and theories. In M. Sabourin, F. Craick & M. Robert (Eds.), Advances in

psycho-logical science. Biopsycho-logical and cognitive aspects (Vol. 2, pp. 171–198). Montreal,

Canada: Psychology Press

Rizzolatti, G., Riggio, L., & Sheli-ga, B. M. (1994). Space and selective attention. In C. Umilta & M. Mosco-vitch (Eds.), Attention and performance

XV: Conscious and nonconscious infor-mation processing (pp. 231-265).

Cam-bridge, MA: MIT Press

Roe, A. W. & Ts'o, D. Y. (1999). Spec-ificity of color connectivity between primate V1 and V2. Journal of

Neuro-physiology, 82, 2719-2730.

Rolfs, M. & Carrasco, M. (2012). Rapid simultaneous enhancement of visu-al sensitivity and perceived contrast during saccade preparation. The

Jour-nal of neuroscience, 32, 13744-13752. doi:

10.1523/JNEUROSCI.2676-12.2012 Rosenbaum, D. A. (1983). The

move-ment precuing technique: Assump-tions, applicaAssump-tions, and extensions. In R. A. Magill (Ed.), Advances in

psychology: Memory and confrol of ac-tion (Vol. 12, pp. 231-274).

Amster-dam: North-Holland. http://dx.doi. org/10.1016/S0166-4115(08)61994-9 Saenz, M., Buracas, G. T., &

Boyn-ton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5, 631-632. doi: 10.1038/nn876

Sagi, D. & Julesz, B. (1984). Detec tion versus discrimination of visual orientation. Perception, 13, 619-628. doi: 10.1068/p130619

Schenk, T. (2010). Visuomotor robust-ness is based on integration not seg-regation. Vision Research, 50, 2627-2632. doi: 10.1016/j.visres.2010.08.013 Schneider, W. X., Einhäuser, W., &

Horstmann, G. (2013). Attention-al selection in visuAttention-al perception, memory and action: a quest for cross-domain integration.

Philosoph-ical Transactions of the Royal Society B: Biological Sciences, 368, 20130053. doi:

10.1098/rstb.2013.0053

Scolari, M., Seidl-Rathkopf, K. N., & Kastner, S. (2015). Functions of the human frontoparietal attention network: Evidence from neuroim-aging. Current Opinion in

Behavior-al Sciences, 1, 32-39. http://dx.doi.

org/10.1016/j.cobeha.2014.08.003 Serences, J. T. & Yantis, S. (2007).

Spatially selective representations of voluntary and stimulus-driven attentional priority in human occip-ital, parietal, and frontal cortex.

Ce-rebral Cortex, 17, 284-293. doi: 10.1093/

cercor/bhj146

Sincich, L. C. & Horton, J. C. (2005). The circuitry of V1 and V2: Integration of color, form, and mo-tion. Annual Review of Neuroscience,

28, 303-326. doi: 10.1146/annurev.

neuro.28.061604.135731

Smallman, H. S. & Boynton, R. M. (1990). Segregation of basic colors in an information display. Journal

of the Optical Society of America. A, Optics, image science, and vision, 7,

1985-1994. https://doi.org/10.1364/ JOSAA.7.001985

Smeets, J. B. & Brenner, E. (1999). A new view on grasping. Motor Control, 3, 237-271. http://dx.doi.org/10.1123/ mcj.3.3.237

(16)

Smit, A. C., van Gisbergen, J. A., & Cools, A. R. (1987). A parametric analysis of human saccades in different exper-imental paradigms. Vision Research,

27, 1745-1762. doi:

10.1016/0042-6989(87)90104-0

Sobel, K. V., Pickard, M. D., & Acklin, W. T. (2009). Using feature preview to investigate the roles of top–down and bottom–up processing in con-junction search. Acta Psychologica, 132, 22-30. http://dx.doi.org/10.1016/j. actpsy.2009.06.003

Solomon, J. A. & Pelli, D. G. (1994). The vi-sual filter mediating letter identi-fication. Nature, 369, 395-397. doi: 10.1038/369395a0

Spering, M. & Carrasco, M. (2015). Act ing without seeing: eye move-ments reveal visual processing without awareness. Trends in

Neu-rosciences, 38, 247-258. doi: 10.1016/j.

tins.2015.02.002

Sumner, P., Anderson, E. J., Sylvester, R., Haynes, J.-D., & Rees, G. (2008). Combined orientation and colour in-formation in human V1 for both L–M and S-cone chromatic axes.

Neuro-Image, 39, 814-824. doi:

10.1016/j.neu-roimage.2007.09.013

Symes, E., Tucker, M., Ellis, R., Vain-io, L., & Ottoboni, G. (2008). Grasp preparation improves change detec-tion for congruent objects. Journal of

Experimental Psychology: Human Per-ception and Performance, 34, 854-871.

doi: 10.1037/0096-1523.34.4.854 Symes, E., Tucker, M., & Ottoboni,

G. (2010). Integrating Action and Language through Biased Compe-tition. Frontiers in Neurorobotics, 4, 9. 10.3389/fnbot.2010.00009

Zanon, M., Busan, P., Monti, F., Piz-zolato, G., & Battaglini, P. P. (2010). Cortical connections between dor-sal and ventral visual streams in humans: Evidence by TMS/EEG co-registration. Brain Topography,

22, 307-317. doi:

10.1007/s10548-009-0103-8

Zeki, S. M. (1973). Colour coding in rhe-sus monkey prestriate cortex. Brain

Research, 53, 422-427. http://dx.doi.

org/10.1016/0006-8993(73)90227-8 Zeki, S. M. (1977). Colour coding in the

superior temporal sulcus of rhe-sus monkey visual cortex.

Proceed-ings of the Royal Society B: Biological Sciences, 197, 195-223. doi: 10.1098/

rspb.1977.0065

Zhaoping, L., May, K. A., & Koene, A. (2009). Some fingerprints of V1 mechanisms in the bottom up salien-cy for visual selection. In D. Heinke & E. Mavritsaki (Eds.), Computational

modelling in behavioural neuroscience: Closing the gap between neurophysiol-ogy and behaviour (pp. 137-164).

Lon-don, UK: Psychology Press

Zhuang, X. & Papathomas, T. V. (2011). Cue relevance effects in conjunctive visual search: Cueing for location, color, and orientation. Journal of

Vi-sion, 11(7), 1-13. doi: 10.1167/11.7.6

Takemura, H., Rokem, A., Winawer, J., Yeatman, J. D., Wandell, B. A., & Pes-tilli, F. (2016). A major human white matter pathway between dorsal and ventral visual cortex. Cerebral Cortex,

26, 2205-2214. doi: 10.1093/cercor/

bhv064

Theeuwes, J. (2010). Top–down and bottom–up control of visual selec-tion. Acta Psychologica, 135, 77-99. http://dx.doi.org/10.1016/j.actp-sy.2010.02.006

(17)

Theeuwes, J. (2013). Feature-based attention: It is all bottom-up prim-ing. Philosophical Transactions of the

Royal Society B: Biological Sciences, 368(1628), 20130055. doi: 10.1098/

rstb.2013.0055

Townsend, J. T. (1971). A note on the identifiability of parallel and serial processes. Perception & Psychophysics,

10, 161-163. doi: 10.3758/bf03205778

Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly

Jour-nal of Experimental Psychology, 12,

242-248. doi: 10.1080/17470216008416732 Treisman, A. M. (1977). Focused

at-tention in the perception and re-trieval of multidimensional stimuli.

Perception & Psychophysics, 22, 1-11.

doi: 10.3758/BF03206074

Treisman, A. M. (1991). Search, simi larity, and integration of features be-tween and within dimensions.

Jour-nal of Experimental Psychology: Human Perception and Performance, 17,

652-676. doi: 10.1037/0096-1523.17.3.652 Treisman, A. M. (1996). The binding

problem. Current Opinion in

Neu-robiology, 6, 171-178. http://dx.doi.

org/10.1016/S0959-4388(96)80070-5 Treisman, A. M. & Gelade, G. (1980).

A feature-integration theory of atten-tion. Cognitive Psychology, 12, 97-136. doi: 10.1016/0010-0285(80)90005-5 Treisman, A. M. & Gormican, S. (1988).

Feature analysis in early vision: ev-idence from search asymmetries.

Psycholpgical Review, 95, 15-48. http://

dx.doi.org/10.1037/0033-295X.95.1.15 Treisman, A. M. & Sato, S. (1990).

Conjunction search revisited.

Jour-nal of Experimental Psychology: Human Perception and Performance, 16,

459-478. http://dx.doi.org/10.1037/0096-1523.16.3.459

Treisman, A. M. & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separa-ble features. Journal of Experimental

Psychology: General, 114, 285-310. doi:

10.1037/0096-3445.114.3.285

Treue, S. (2003). Visual attention: The where, what, how and why of salien-cy. Current Opinion in Neurobiology, 13, 428-432. http://dx.doi.org/10.1016/ S0959-4388(03)00105-3

Ungerleider, L. G. & Haxby, J. V. (1994). 'What' and 'where' in the hu-man brain. Current Opinion in

Neu-robiology, 4, 157-165. http://dx.doi.

org/10.1016/0959-4388(94)90066-3 Ungerleider, L. G. & Mishkin, M. (1982).

Two cortical visual systems. In D. J. Ingle, M. A. Goodale & R. J. W. Mans-field (Eds.), Analysis of visual behavior (pp. 549-586). Cambridge, MA: MIT Press

van der Stigchel, S., Belopolsky, A. V., Peters, J. C., Wijnen, J. G., Meeter, M., & Theeuwes, J. (2009). The limits of top-down control of visual atten-tion. Acta Psychologica, 132, 201-212. http://dx.doi.org/10.1016/j.actp-sy.2009.07.001

Van Dromme, I. C., Premereur, E., Verhoef, B.-E., Vanduffel, W., & Janssen, P. (2016). Posterior pari-etal cortex drives inferotemporal activations during three-dimen-sional object vision. PLOS Biology,

14, e1002445. doi: 10.1371/journal.

pbio.1002445

van Elk, M., van Schie, H. T., Neg-gers, S. F. W., & Bekkering, H. (2010). Neural and temporal dynamics un-derlying visual selection for action.

Journal of Neurophysiology, 104,

(18)

van Polanen, V. & Davare, M. (2015). Interactions between dorsal and ven-tral streams for controlling skilled grasp. Neuropsychologia, 79, Part B, 186-191. http://dx.doi.org/10.1016/j. neuropsychologia.2015.07.010 Webster, M. A., De Valois, K. K., &

Swit-kes, E. (1990). Orientation and spa-tial-frequency discrimination for luminance and chromatic gratings.

Journal of the Optical Society of Ameri-ca. A, Optics, image science, and vision, 7, 1034-1049. https://doi.org/10.1364/

JOSAA.7.001034

Vecera, S. P. & Behrmann, M. (2001). Attention and unit formation: A biased competition account of ob-ject-based attention. In T. F. Shipley & P. J. Kellman (Eds.), From fragments

to objects: Segmentation and grouping in vision (pp. 145-180). New York, NY:

Elsevier Science. doi: 10.1016/S0166-4115(01)80026-1

Verhagen, L., Dijkerman, H. C., Grol, M. J., & Toni, I. (2008). Per-ceptuo-motor interactions during prehension movements. The Journal

of Neuroscience, 28, 4726-4735. doi:

10.1523/jneurosci.0057-08.2008 Vidyasagar, T. R. (1999). A neuronal

model of attentional spotlight: Parietal guiding the temporal.

Brain Research Reviews, 30, 66-76.

http://dx.doi.org/10.1016/S0165-0173(99)00005-3

Williams, D. E. & Reingold, E. M. (2001). Preattentive guidance of eye movements during triple con-junction search tasks: The effects of feature discriminability and sac-cadic amplitude. Psychonomic

Bulle-tin & Review, 8, 476-488. doi: 10.3758/

BF03196182

Williams, L. G. (1966). Tar-get conspicuity and visual search.

Human Factors, 8, 80-92.

Williams, L. G. (1967). The effects of target specification on objects fix-ated during visual search. Acta

Psy-chologica, 27, 355-360. doi: 10.3758/

BF03207398

Witt, J. K. & Proffitt, D. R. (2008). Ac-tion-specific influences on distance perception: A role for motor simula-tion. Journal of Experimental

Psycholo-gy: Human Perception and Performance, 34, 1479-1492. doi: 10.1037/a0010781

Viviani, P. & Aymoz, C. (2001). Co-lour, form, and movement are not perceived simultaneously. Vision

Re-search, 41, 2909-2918. http://dx.doi.

org/10.1016/S0042-6989(01)00160-2 Wolfe, J. M. (1994). Guided Search

2.0: A revised model of visual search.

Psychonomic Bulletin & Review, 1,

202-238. doi: 10.3758/bf03200774

Wolfe, J. M. (1996). Visual search: a review. In H. Pashler (Ed.), Attention (pp. 13– 74). London, UK: University College London

Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of vi-sual search. In W. D. Gray (Ed.),

Inte-grated models of cognitive systems. New

York, NY: Oxford University Press Wolfe, J. M., Cave, K. R., & Franzel, S.

L. (1989). Guided search: An alterna-tive to the feature integration model for visual search. Journal of

Experi-mental Psychology: Human Perception and Performance, 15, 419-433. http://

(19)

Wolfe, J. M. & Gancarz, G. (1996). Guid-ed Search 3.0: A model of visual search catches up with Jay Enoch 40 years later. In V. Lakshminarayanan (Ed.), Basic and clinical applications of

vision science (Vol. 60, pp. 189-192).

Dordrecht, the Netherlands: Kluwer Academic

von der Heydt, R., Friedman, H. S., & Zhou, H. (2003). Searching for the neural mechanism for color fill-ing-in. In P. De Weerrd & L. Pessoa (Eds.), Filling-in: From perceptual

com-pletion to cortical reorganization (pp.

106-127). London, UK: Oxford Uni-versity Press

Wykowska, A., Schubo, A., & Hom-mel, B. (2009). How you move is what you see: action planning biases selection in visual search. Journal of

Experimental Psychology: Human Per-ception and Performance, 35, 1755-1769.

doi: 10.1037/a0016798

Wykowska, A. & Schubö, A. (2012). Ac-tion intenAc-tions modulate allocaAc-tion of visual attention: Electrophysiolog-ical evidence. Frontiers in Psychology,

3, 379. doi: 10.3389/fpsyg.2012.00379

Xu, Y. (2010). The neural fate of task-irrelevant features in ob-ject-based processing. The Journal

of Neuroscience, 30, 14020-14028. doi:

10.1523/jneurosci.3011-10.2010 Yantis, S. & Jonides, J. (1990). Abrupt

visual onsets and selective atten-tion: Voluntary versus automatic allocation. Journal of Experimental

Psychology: Human Perception and Per-formance, 16, 121-134. http://dx.doi.

org/10.1037/0096-1523.16.1.121

Yantis, S., Schwarzbach, J., Serenc-es, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience,

5, 995-1002. doi: 10.1038/nn921

Yantis, S. & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional con-trol. Current Opinion in

Neurobiolo-gy, 13, 187-193. doi:

10.1016/S0959-4388(03)00033-3

Yoshioka, T. & Dow, B. M. (1996). Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cor-tex. Behavioural Brain Research, 76, 71-88. http://dx.doi.org/10.1016/0166-4328(95)00184-0

(20)
(21)

Referenties

GERELATEERDE DOCUMENTEN

ination of another feature (green vs. Therefore, we first determined 50% discrimination thresholds in orientation and color singleton search tasks for each individual participant

In conjunction search, the size discrimina- tion accuracy decreased significantly compared with single feature search, whereas color discrimination accuracy was approximately equal

Two experiments showed that precueing with the achromatic target and nontarget orientations can improve subsequent orientation discrimination performance while simultaneously

Differently, if the increased load on processing of behaviorally neutral feature is accompa- nied by decrease in the selective bias toward action-relevant feature, this would

In single feature search, this correction consists of subtracting the esti- mated number of saccade errors at a distance of 1 from the total number of error responses and adding

In my experiments, I varied (a) aspects of the objects (i.e., their color, but also aspects of their shape: orientation or size) to manipulate how “eye-catching” they are (also

In dit proefschrift heb ik daarom onderzocht of wat we van plan zijn te gaan doen (&#34;de actie-intentie&#34;) in- vloed heeft op de neiging om tijdens het visueel zoeken meer

Ma leidsin tunnuste kombinatsioonide otsingu ülesandes väga tugeva asüm- meetria värvuse eristamise kasuks — kui osaleja otsis värvuse ja kuju kombinat- siooni, siis vaatas ta