• No results found

The Pricing of Aggregate Volatility Risk in the Returns of the S&P 500

N/A
N/A
Protected

Academic year: 2021

Share "The Pricing of Aggregate Volatility Risk in the Returns of the S&P 500"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

in  the  Returns  of  the  S&P  500  

 

Master  Thesis  Finance  

 

 

First  semester  (2014-­‐2015)  

Rijksuniversiteit  Groningen  

 

 

 

ABSTRACT

:  

I  research  if  aggregate  volatility  risk  is  priced  in  the  returns  of  stocks  in  the  S&P  500.  The  VIX   index  is  used  to  proxy  for  changes  in  aggregate  volatility.  I  do  not  find  that  stocks  with  a  higher   sensitivity   to   changes   in   aggregate   volatility   have   lower   average   returns,   which   means   that   aggregate  volatility  is  not  a  priced  risk  factor,  where  earlier  research  for  other  indices  did  find   the  opposite.  This  can  be  due  to  the  small  sample  size  and  the  fact  that  I  only  use  stocks  of  the   S&P   500.   The   S&P   500   only   contains   very   large   stocks   and   these   can   react   differently   to   aggregate  volatility  than  small  stocks.    

       

Studentnr.:       s1792857  

Name:         W.A.  van  Guilik  

Number  of  words:     7318  

Supervisor:       Prof.  Dr.  R.E.  Wessels  

Date:         25-­‐02-­‐2015  

(2)

 

Table  of  contents  

   

1. Introduction   3  

2. Literature  review   5  

3. Data  and  descriptive  statistics   13  

4. Statistical  model   18  

5. Results   22  

6. Discussion  and  conclusion   25  

7. Reference  list   27  

8. Appendix   29  

   

(3)

1. Introduction  

 

In  this  paper  I  investigate  the  influence  of  aggregate  volatility  in  the  pricing  of  stocks  of   the  S&P  500.  Aggregate  volatility  risk  is  the  risk  that  all  assets  bear.  Volatility  of  stock   returns   varies   over   time,   and   stocks   react   differently   to   this   changing   volatility.   I   investigate   how   aggregate   volatility   is   priced   in   the   returns   of   stocks   of   the   S&P   500.   Investors  want  to  minimize  risks  and  want  to  form  portfolios  that  do  this.  If  aggregate   volatility  is  a  priced  risk  factor,  this  is  a  variable  that  investor  have  to  take  into  account   when  forming  portfolios  and  calculating  expected  returns.    

I  use  the  VIX  index  as  a  proxy  for  aggregate  volatility.  The  VIX  index  measures  the   expected  volatility  of  the  S&P  500  for  the  upcoming  30  days.  Giot  (2003)  and  Corrado   and  Miller  (2005)  have  shown  that  the  VIX  is  a  good  proxy  for  aggregate  volatility.    

Ang,   Hodrick,   Xing   and   Zhang   (2006)   investigate   all   stocks   on   AMEX,   NASDAQ   and   the   NYSE   and   find   that   stocks   with   a   higher   sensitivity   to   changes   in   aggregate   volatility  earn  lower  returns  than  stocks  with  a  low  sensitivity  to  changes  in  aggregate   volatility.  If  expected  volatility  rises,  the  expected  risk  in  the  market  has  increased.  This   means  that  prices  can  potentially  change  by  a  greater  extent.  This  risk  works  both  ways,   the  stock  prices  can  go  up  or  down.  But  most  investors  do  not  prefer  additional  risk  and   uncertainty   and   will   request   a   risk   premium.   This   will   lower   stock   prices.   The   stocks   that  have  a  high  sensitivity  for  changes  in  aggregate  volatility  are  the  most  risky  stocks   and  should  therefore  earn  a  higher  risk  premium  and  this  means  that  their  stock  price   should  fall  by  the  larger  extent.    

I  form  five  quintile  portfolios  with  different  sensitivities  to  changes  in  aggregate   risk   from   the   500   stocks   of   the   S&P.   If   these   portfolios   do   have   significant   different   sensitivities   for   changes   in   aggregate   volatility,   I   perform   an   ordinary   least   squares   regression,  to  calculate  monthly  returns  for  the  five  quintile  portfolios.    

My   hypothesis   is   that   the   portfolios   with   different   sensitivities   to   aggregate   volatility   will   have   significant   different   returns.   This   would   mean   that   aggregate   volatility  is  a  priced  risk  factor  in  determining  the  expected  returns  of  the  S&P  500.  

Accordingly  I  have  the  following  research  question:  

Is  aggregate  volatility  a  priced  risk  factor  in  the  cross-­‐section  of  the  

returns  of  the  S&P  500?  

(4)

This   research   will   give   insight   in   the   pricing   of   aggregate   volatility   risk   in   the   returns  of  the  most  important  barometer  of  the  state  of  the  American  economy,  the  S&P   500.  During  the  research  I  encounter  one  important  difficulty.  I  use  the  VIX  as  proxy  for   aggregate  volatility  and  compare  this  with  the  returns  of  the  S&P  500.  The  VIX  index  is   calculated   from   the   implied   volatilities   of   eight   S&P   500   options.   The   price   of   these   options   is   among   others   determined   by   the   price   of   the   underlying   stocks   of   the   S&P   500.   The   VIX   index   and   the   S&P   500   can   thus   have   the   same   drivers.   This   problem   is   called  endogeneity.  This  means  that  any  correlation  between  these  two  variables  can  be   caused  by  an  unknown  variable  which  is  not  included  in  my  research.  The  results  must   thus  be  interpreted  with  caution.  

   

(5)

2. Literature  review  

 

In  this  paper  I  research  if  aggregate  volatility  is  a  priced  risk  factor  in  the  cross-­‐section   of  the  returns  of  the  stocks  of  the  S&P  500.  Volatility  is  a  measure  for  the  variation  in  the   price  of  a  financial  instrument.  Variation  is  measure  for  the  risk.  A  financial  instrument   that  has  a  high  variation  and  thus  a  high  volatility  is  said  to  be  riskier.  There  a  two  sorts   of  risk:  Aggregate  volatility  means  the  total  risk  of  the  market.  This  is  the  risk  that  all  the   assets   bear.   Idiosyncratic   risk   is   the   risk   that   is   specific   for   only   one   asset   or   a   small   group  of  assets.  In  this  paper  I  will  only  focus  on  aggregate  volatility  risk.    

2.1  Volatility  and  returns  

The  relationship  between  volatility  and  returns  can  be  explained  in  several  ways.   First,  there  is  a  positive  relationship  between  the  expected  risk  premium  on  stocks  and   the   level   of   aggregate   volatility.   If   expected   risk   premiums   are   positively   related   to   predictable   volatility,   then   a   positive   unexpected   change   in   volatility   (and   an   upward   revision  in  predicted  volatility)  increases  expected  risk  premiums  (French,  Schwert,  &   Stambaugh,   1987).   Secondly,   an   asset’s   expected   return   depends   on   risk   from   the   market   return,   changes   in   the   forecasts   of   future   market   returns,   and   changes   in   forecasts  of  future  market  volatilities.  This  means  that  if  forecasts  expect  volatility  to  go   up,   that   the   risk   premiums   should   increase   (Chen,   2002).   And   thirdly,   if   aggregate   volatility   increases,   this   causes   the   risks   to   increase   in   the   next   period   of   Campbell   (1993)  his  intertemporal-­‐CAPM  model.  All  these  leads  to  lower  stock  prices.  

Pindyck  (1984)  has  another  explanation.  He  shows  that  the  relative  riskiness  of   investors’  net  real  returns  from  holding  stocks  has  increased  because  the  variance  of  the   firm’s   real   gross   marginal   return   has   increased   significantly   since   1965.   Thus   returns   from  the  stock  market  became  more  uncertain,  which  lowered  stock  prices.    

(6)

volatility.   This   all   leads   to   lower   stock   prices   for   all   stocks.   Campbell   and   Hentschel   (1992)   find   an   asymmetry   in   the   movement   of   volatility.   They   find   that   volatility   is   typically   higher   after   the   stock   market   falls   than   after   it   rises   by   the   same   extent,   so   stock   returns   are   negatively   correlated   with   future   volatility.   Volatility   feedback,   the   finding  that  an  increase  in  volatility  requires  higher  stock  returns  and  thus  lowers  stock   prices,  can  explain  the  asymmetry  in  the  movement  of  volatility.  If  there  is  a  large  piece   of  good  news,  this  is  mostly  followed  by  other  good  news  because  volatility  is  persistent,   so   this   news   increases   future   expected   volatility.   This   persistency   is   confirmed   by   the   finding  that  a  volatility  shock  has  an  implied  half-­‐life  of  about  7  months  with  post-­‐war   monthly  data.  Future  expected  volatility  increases  the  required  rate  of  return  on  stocks   and   lowers   the   stock   price,   thereby   offsetting   part   of   the   positive   returns   of   the   good   news.  On  the  other  hand  if  there  is  a  large  piece  of  bad  news,  the  stock  price  falls,  and   again   volatility   rises,   but   now   this   increase   in   volatility   increases   the   already   negative   effect   of   the   bad   news.   If   there   is   small   news   or   no   news,   volatility   will   be   lowered,   because  of  the  mean  reversion  process.    

Stocks   that   do   badly   when   volatility   increases   tend   to   have   negatively   skewed   returns  over  intermediate  horizons,  while  stocks  that  do  well  when  volatility  rises  tend   to   have   positively   skewed   returns.   Campbell   (1993)   finds   that   large   negative   stock   returns   are   more   common   than   large   positive   ones,   so   stock   returns   are   in   general   negatively  skewed.  

Chen   (2002)   and   Campbell   (1993)   both   find   that   stocks   with   the   highest   sensitivity   for   unexpected   changes   in   expected   aggregate   volatility   should   earn   a   risk   premium.   These   stocks   are   the   most   risky.   This   means   that   the   prices   of   these   stocks   should   fall   more   than   the   stocks   with   a   lower   sensitivity   for   unexpected   changes   in   expected  aggregate  volatility.    

(7)

aggregate   volatility   carry   a   statistically   significant   negative   price   of   risk   of   approximately  -­‐1%  per  year,  when  controlling  for  several  other  variables  like  the  Fama-­‐ French   (1993)   3-­‐factors   (market,   size   and   book-­‐to-­‐market),   momentum   factor   and   liquidity   factor.   This   can   be   explained:   investors   want   to   hedge   against   changes   in   market  volatility,  because  increasing  volatility  represents  a  deterioration  in  investment   opportunities.  The  stocks  with  the  highest  sensitivities  for  aggregate  volatility,  are  the   most  risky  ones,  and  their  stock  prices  should  decline  more  than  the  stocks  with  lower   sensitivities   for   aggregate   volatility.   When   only   controlling   for   the   market   they   find   a   negative  price  of  aggregate  volatility  risk  of  1.04%  per  month.    

Investors  see  stocks  of  small  firms  and  value  firms  (stocks  of  these  firms  seem  to   be  undervalued)  as  riskier  because  their  returns  correlate  strongly  with  market  returns   at  times  of  high  volatility.  On  the  other  hand,  stocks  of  big  firms  and  growth  firms  (have   potential   to   achieve   high   earnings   growth)   are   seen   as   hedges   against   innovations   in   aggregate  market  volatility.  (Barinov,  2012)  

Fama  and  French  (1992)  find  that  the  size  of  a  company  and  their  book-­‐to  market   value  are  very  good  in  explaining  the  cross-­‐section  average  returns  on  NYSE,  Amex  and   NASDAQ  stocks  for  the  period  of  1963-­‐1990.  The  size  of  a  company  is  measured  by  their   market  capitalization,  the  number  of  shares  multiplied  by  the  share  price,  and  the  book-­‐ to-­‐market  value  is  the  book  value,  which  is  calculated  by  looking  at  the  firm’s  historical   cost,  divided  by  the  market  value,  which  is  equal  to  its  market  capitalization.  Between   the  average  returns  and  the  size  of  companies  they  find  a  negative  relationship,  which   means  that  smaller  firms  earn  higher  average  returns.  They  find  a  positive  relationship   between   the   average   returns   and   the   book-­‐to-­‐market   value.   This   means   that   value   stocks,  stocks  with  a  high  book-­‐to-­‐market  value  earn  higher  average  returns.  These  are   stocks  that  seem  to  be  undervalued.  The  book-­‐to-­‐market  value  has  a  stronger  influence   on  the  average  returns  than  the  size  effect.  Also  they  find  that  the  market  beta  does  not   help  in  explaining  the  average  returns  of  the  stocks.  The  size  and  book-­‐to-­‐market  value   are   very   commonly   used   in   controlling   for   the   effects   of   other   variables   in   the   cross-­‐ section  of  average  stock  returns.  

2.2  The  VIX  index  

(8)

changes  in  the  VIX  because  the  VIX  is  highly  serially  correlated,  with  an  autocorrelation   of   almost   one.   This   makes   the   change   in   the   VIX   a   suitable   proxy   for   the   change   in   expected  aggregate  volatility.  Barinov  (2012)  also  investigates  aggregate  volatility  risk.   He  is  using  changes  in  the  VIX  index  to  proxy  for  changes  aggregate  volatility  risk.    

The  VIX  index  is  calculated  by  the  Chicago  Board  Options  Exchange  (CBOE).  The   VIX   index   represents   the   S&P   500’s   expectation   of   30-­‐day   volatility.   It   measures   the   implied   volatility   of   S&P   500   index   options.   Implied   volatility   is   a   forecast   of   future   volatility.   The   implied   volatility   will   increase   when   the   market   expectations   are   negative.  Historical  volatility  refers  to  the  actual  price  changes  that  have  been  observed   in  the  past  over  a  specific  period  of  time.  An  option  is  the  right  to  buy  or  sell  an  asset  (for   example  a  stock)  within  a  predetermined  time  for  a  predetermined  price.  The  value  of   an  option  is  based  on  the  current  price  of  the  underlying  asset,  the  strike  price,  the  time   to   expiration,   interest   rates   and   the   volatility   of   the   underlying   asset.   There   are   two   sorts  of  options  namely  call  options,  which  gives  you  the  right  to  buy  an  asset,  and  put   options,  which  gives  the  right  to  sell  an  asset.  For  a  call  option  the  price  of  the  option   will  rise  if  the  price  of  the  underlying  asset  will  rise.  For  a  put  option  the  opposite  will   happen:  the  price  of  a  put  option  will  fall  if  the  price  of  the  underlying  asset  will  rise.       The  VIX  seems  a  good  proxy  for  aggregate  volatility  but  Jiang  and  Yisong  (2007)   find  that  the  VIX  may  be  not  that  accurate.  The  VIX  may  underestimate  the  true  volatility   by  almost  1.98%  or  overestimate  it  by  about  0.79%.  If  these  errors  are  true,  these  are   economically  significant.    

Whaley   (2008)   explains   that   the   VIX   measures   expected   short-­‐term   market   volatility.  VIX  is  forward-­‐looking,  measuring  volatility  that  investors  expect  to  see:    

VIX  is  like  a  bond’s  yield  to  maturity.  Yield  to  maturity  is  the  discount  rate  that   equates  a  bond’s  price  to  the  present  value  of  its  promised  payments.  As  such,  a  bond’s   yield   is   implied   by   its   current   price   and   represents   the   expected   future   return   of   the   bond  over  its  remaining  life.  In  the  same  manner,  VIX  is  implied  by  the  current  prices  of   S&P  500  index  options  and  represents  expected  future  market  volatility  over  the  next  30   days.  (p.  1)  

2.2.1  Calculation  of  the  VIX  index  

(9)

expiration.  These  implied  volatilities  are  weighted  in  such  a  way  that  the  VIX  represents   the  implied  volatility  of  a  S&P  500  option  with  30  days  left  to  expiration.    

The   VIX   is   not   based   on   calendar   days,   but   on   trading   days.   If   the   number   of   calendar  days  to  expiration  is  𝑁!,  the  number  of  trading  days,  𝑁!,  is  computed  as  

𝑁! = 𝑁! − 2×𝑖𝑛𝑡

𝑁! 7  

The   implied   volatility   rate   is   multiplied   by   the   ratio   of   the   square   root   of   the   number  of  calendar  days  to  the  square  root  of  number  of  trading  days,  that  is:  

𝜎! = 𝜎!

𝑁! 𝑁!  

Where  𝜎!   𝜎!  is  the  trading-­‐day  (calendar-­‐day)  implied  volatility  rate.  

To  calculate  the  VIX  index,  we  have  to  use  the  eight  options  that  are  the  building   blocks  of  the  VIX  index.  The  four  options  that  are  closest  to  expiration  should  have  at   least  eight  days  to  expiration.  The  second-­‐closest  are  the  options  of  the  next  succeeding   contract  month.    

The   exercise   price   just   below   the   current   price   of   the   underlying   asset,  𝑆,   is   denoted  as  𝑋!,  the  lower  exercise  price,  and  𝑋!  is  the  upper  exercise  price,  just  above  the   current  price.  The  eight  implied  volatilities  are  shown  in  Table  1.  

 

Table  1:  Implied  volatilities  of  eight  options  

  Closest  to  expiration   Second-­‐closest  to  expiration  

Exercise  Price   Call   Put   Call   Put  

𝑋!  (< 𝑆)   𝜎!,!!!   𝜎

!,!!!   𝜎!,!!!   𝜎!,!!!  

𝑋!  (≥ 𝑆)   𝜎!,!!!   𝜎

!,!!!   𝜎!,!!!   𝜎!,!!!  

 

(10)

and  

𝜎!!! = 𝜎!,!

!!+ 𝜎

!,!!!

2  

The  second  step  is  to  interpolate  between  the  closest  to  expiration  volatilities  and   the   second-­‐closest   to   expiration   implied   volatilities   to   get   an   at-­‐the-­‐money   implied   volatility  for  each  maturity:  

𝜎! = 𝜎!!! 𝑋! − 𝑆 𝑋!− 𝑋! + 𝜎!!! 𝑆 − 𝑋! 𝑋!− 𝑋!   and   𝜎! = 𝜎!!! 𝑋!− 𝑆 𝑋! − 𝑋! + 𝜎!!! 𝑆 − 𝑋! 𝑋! − 𝑋!  

Two   implied   volatilities   remain.   The   last   step   is   to   create   a   thirty-­‐calendar   day   implied  volatility  out  of  the  two  implied  volatilities.  If  𝑁!!  is  the  number  of  trading  days   to  expiration  of  the  closest  to  expiration  contract,  and  𝑁!!  is  the  number  of  trading  days   of  the  second-­‐closest  contract,  the  VIX  index  is:  

𝑉𝐼𝑋 = 𝜎! 𝑁!! − 22

𝑁!!− 𝑁!! + 𝜎!

22 − 𝑁!! 𝑁!! − 𝑁!!  

The   VIX   has   high   levels   during   periods   of   market   turmoil.   If   expected   market   volatility  increases,  investors  demand  higher  rates  of  return  on  stocks,  so  stock  prices   fall.    

2.2.2  Relation  of  the  VIX  index  with  the  S&P  500  

A  problem  that  arises  is  that  the  VIX  index  and  the  S&P  500  can  have  the  same  drivers.   The  VIX  index  is  calculated  from  the  implied  volatilities  of  eight  near  the  money  S&P  500   options.  If  the  price  of  the  underlying  asset  changes,  the  implied  volatilities  will  change   and   thus   the   VIX   index   will   change.   And   the   underlying   asset   is   the   S&P   500.   This   problem   is   called   endogeneity.   It   can   be   that   one   force   has   influence   on   them   both   simultaneously.  It  than  looks  like  there  is  a  correlation  between  the  changes  of  the  VIX   index  and  the  returns  of  S&P  500,  where  in  reality  this  is  not  true.    

(11)

Whaley  (2008)  finds  that  the  S&P  500  option  market  has  become  dominated  by   hedgers  who  buy  put  options  when  they  are  afraid  for  a  possible  drop  of  the  price  of  the   S&P   500.   They   are   more   concerned   by   an   unexpected   drop   in   the   stock   price   than   an   unexpected   rise.   They   use   the   put   options   as   a   portfolio   insurance   for   when   they   are   afraid  that  the  stock  market  will  drop.  They  only  use  this  for  a  drop,  not  for  a  rise:  the   demand   for   puts   will   thus   be   larger   than   the   demand   for   calls.   This   is   why   Whaley   (2008)   found   an   asymmetry   in   the   movements   of   the   VIX   caused   by   this   portfolio   insurance.  If  the  S&P  500  rises  by  100  basis  points,  the  VIX  falls  by  -­‐2.99%.  On  the  other   hand   if   the   S&P   500   falls   by   100   basis   points,   VIX   rises   by   4.493%.   Because   of   the   demand  for  portfolio  insurance,  the  VIX  reacts  stronger  to  a  decline  in  the  S&P  500,  than   to  a  rise  in  a  S&P  500.  Investors  buy  more  puts  when  the  S&P  500  falls,  than  that  they   buy  calls  when  the  S&P  500  rises  by  the  same  extent.    

Giot   (2003)   shows   that   there   is   statistically   significant   negative   relationship   between  the  returns  of  the  S&P100,  which  is  very  comparable  with  the  S&P  500,  and  the   VIX  index.  He  also  finds,  like  Whaley  (2008),  that  for  the  S&P100  this  is  relationship  is   asymmetric,   because   negative   stock   returns   produce   bigger   changes   in   the   VIX   than   positive  returns  do.  Dash  and  Moran  (2005)  test  if  a  small  allocation  to  the  VIX  index  can   be  used  for  risk  reduction.  They  find  a  negative  correlation  between  hedge  fund  returns   and  changes  in  the  VIX  index,  and  this  correlation  is  more  negative  in  months  when  the   hedge  funds  deliver  negative  returns.    

(12)

VIX   have   lower   returns   than   stocks   with   a   high   sensitivity   to   changes   in   the   VIX.     Banerjee,  Doran  and  Peterson  (2007)  test  if  the  implied  volatility,  measured  by  changes   in  the  VIX  and  the  level  of  the  VIX,  has  predictive  power  for  future  market  returns.  They   show  that  this  is  true  even  when  they  control  for  the  Fama  and  French  (1993)  factors.   Changes  in  VIX  and  the  level  of  VIX  are  significantly  related  to  future  returns,  where  the   relationship  is  stronger  for  high  beta  portfolios.  They  conclude  that  their  results  suggest   that  aggregate  volatility,  as  measured  by  the  VIX,  may  be  a  priced  risk  factor.    

The   main   prediction   of   Ang   et   al.   (2006)   was   that   stocks   with   different   sensitivities  on  aggregate  volatility  risk  have  different  average  returns.  This  would  mean   that  the  aggregate  volatility  is  a  priced  risk  factor.  I  want  to  investigate  this  for  stocks  of   the  S&P  500,  where  the  VIX  index  represents  aggregate  volatility  risk.    

  Research  question:    

Is  aggregate  volatility  a  priced  risk  factor  in  the  cross-­‐section  of  the  

returns  of  the  S&P  500?  

(13)

3. Data  and  descriptive  statistics:    

 

I  will  first  show  the  data  that  I  have  used  and  give  descriptive  statistics.  I  will  also  show   if  the  data  is  properly  fitted  for  the  regression  that  I  use.    

 

Table  2:  Summary  of  data  selection  

Country   USA  

Period   January  2004  -­‐  December  2013  

Index   Standard  &  Poor’s  500  

Number  of  stocks   500    

3.1  Description  of  the  data  

I  will  use  the  S&P  500  as  my  benchmark  portfolio  and  I  will  use  the  closing  values  of  the   VIX  index.  These  data  are  obtained  from  Thomson  Financial  Datatstream.  The  S&P  500   represents  the  500  biggest  American  companies  and  gives  the  most  reliable  image  of  the   state  of  the  American  economy.    I  have  a  sample  period  of  10  years,  from  January  2004   until  December  2013.  This  is  summarized  in  Table  2.  

Table  3  shows  the  monthly  data  summary.  In  my  sample  period  the  S&P  500  has   an  average  monthly  change  of  0.41%  with  a  standard  deviation  of  4.30%.  The  standard   deviation  is  ten  times  higher  than  the  average  change  of  the  S&P  500.  The  VIX  index  has   decreased  on  average  a  little  with  -­‐0.16%  and  has  a  relatively  high  standard  deviation  of   18.28%.  The  VIX  index  is  only  used  as  an  indicator  of  the  expected  (change  in)  aggregate   volatility.   The   kurtosis   measures   the   ‘peakedness’   of   the   distribution   of   the   returns.   A   kurtosis   of   three   means   that   the   distribution   is   normal.   A   lower   value   means   that   the   distribution  very  flat  is,  where  a  high  value  means  that  the  distribution  is  peak  shaped.   The  S&P  500  index  has  an  kurtosis  of  3.086,  which  means  that  the  distribution  is  normal.   The  VIX  index  has  a  kurtosis  of  0.665  and  the  distribution  of  the  VIX  is  thus  very  flat  and   broad.  A  symmetric  distribution  has  a  skewness  of  0.  In  table  3  can  be  seen  that  the  S&P   500  has  a  skewness  of  -­‐1.109,  which  means  that  the  data  has  a  long  left  tail  and  the  mass   of  the  distribution  is  concentrated  to  the  right  of  the  middle.  This  is  confirmed  by  the   fact  that  the  median  is  higher  than  the  average.    

(14)

Table  3:  Monthly  data  summary  (January  2004  –  December  2013)  

  S&P  500  index   VIX  index  

Average  monthly  change   0.41%   -­‐0.16%  

Standard  deviation   4.30%   18.28%   Median   1.20%   -­‐2.44%   Minimum   -­‐18.56%   -­‐38.51%   Maximum   10.23%   64.58%   Kurtosis   3.086   0.665   Skewness   -­‐1.109   0.641   Jarque-­‐Bera   61.213  (P<0.001)   9.735  (P=0.008)    

These  are  the  simple  returns  (no  excess  returns).  The  risk  free  rate  in  the  USA  on   3-­‐month   T-­‐Bills,   in   this   period,   was   on   average   monthly   0.13%.   Figure   1   shows   the   development  of  the  S&P  500  index  (distribution  on  the  right  axis)  and  the  VIX  index  (left   axis)   during   my   sample   period.   According   to   CBOE,   since   1990   the   VIX   has   moved   opposite  of  the  S&P  500  88%  of  the  times  on  the  same  day.  In  my  sample,  for  monthly   data,  the  VIX  moved  opposite  of  the  S&P  500  in  96  months  of  the  120,  that  is  80%.  

During  the  crisis  period  at  the  second  half  of  2008,  the  VIX  rises  to  extremely  high   values   and   the   S&P   500   drops   to   very   low   values.   The   two   months   in   which   the   VIX  

Figure  1:  This  figure  shows  the  values  of  the  S&P  500  index  (right  axis)  and  the  values  of  the  VIX  

index  (left  axis)  from  January  2004  until  December  2013.  

(15)

index  had  its  highest  changes,  September  and  October  2008,  where  also  the  months  in   which  the  S&P  500  index  had  two  of  its  three  lowest  returns.  Due  to  abnormal  returns  in   the  period  2008-­‐2009,  these  years  are  considered  as  outliers  and  will  be  discarded  from   the  data.  

 

Table  4:  Monthly  data  summary  (January  2004  –  December  2013)  without  2008  and  2009  

  S&P  500  index   VIX  index  

Average  monthly  change   0.77%   -­‐0.14%  

Standard  deviation   3.30%   17.49%   Median   1.21%   -­‐1.73%   Minimum   -­‐8.55%   -­‐38.51%   Maximum   10.23%   42.43%   Kurtosis   3.671   2.829   Skewness   -­‐0.338   0.303   Jarque-­‐Bera   3.595  (P=0.166)   1.567  (P=0.457)    

Table   4   shows   the   monthly   descriptive   statistics   without   the   years   2008   and   2009.   The   standard   deviation   of   the   S&P   500   is   reduced   by   almost   a   quarter,   and   the   Jarque-­‐Bera  of  the  S&P  500  and  the  VIX,  show  that  both  distributions  are  normal.  

I  have  also  considered  to  use  daily  data.  The  descriptive  statistics  of  the  daily  data   are  shown  in  Appendix  Table  1.  The  kurtosis  of  the  S&P  500  is  extremely  high,  which   means   that   the   distribution   is   peak-­‐shaped.   The   variation   is   then   caused   by   a   few   extreme  values.  The  data  has  a  very  high  standard  deviation  and  this  means  that  these   extreme   values   that   cause   the   variation   are   indeed   very   extreme.   The   Jarue-­‐Bera   statistic  also  shows  that  the  data  is  far  from  being  normally  distributed.  In  comparison   with  the  monthly  data,  the  daily  data  is  less  better  fitted  for  an  OLS  regression.  

3.2  Robustness  tests    

(16)

Table   5:  Summary  of  statistics  for  checking  if  data  is  fitted  to  be  tested  with  OLS,  without  the  

years  2008  and  2009.  

The  Durbin-­‐Watson  is  normal  when  it  is  close  to  2.  When  it  is  above  3  or  below  1  it  is  a  warning   sign  that  autocorrelation  can  be  present.  For  the  White  test  and  the  Jarque-­‐Bera  test,  the  P-­‐values   show  if  there  is  a  sign  of  non-­‐normality.  

 

I   have   included   a   constant   term   in   the   regression,   so   this   assumption   is   by   definition   never  violated.  The  second  one  is  the  assumption  of  homoscedasticity.  This  means  that   the  variance  of  the  errors  are  constant.  If  the  errors  are  not  constant  over    time,    they     are     said     to     be     heteroscedastic.     This   can   be   tested   with   the   White   test.   For   all   portfolios,   I   perform   a   White   test.   Column   3   and   4   in   Table   5   show   the   results   of   the   White  test.  The  P-­‐value  indicates  that  all  portfolios  are  heteroscedastic.  This  means  that   the   ordinary   least   squares   regression   does   not   give   the   coefficients   that   are   the   best   linear  unbiased  estimators.  Heteroscedasticity  does  not  cause  the  calculated  betas  to  be   biased  but  it  can  cause  estimates  of  the  standard  errors  of  the  betas  to  be  biased.  Thus,   the  regression  will  still  provide  an  unbiased  estimate  for  the  relationship  between  the   returns  of  the  portfolios  and  the  values  of  the  S&P  500  and  the  VIX  index.  The  betas  that   I  calculate  are  not  biased,  but  it  can  cause  the  estimates  of  the  standard  deviations  of  the   betas  of  the  VIX  and  the  S&P  500  to  be  biased.    

The  third  assumption  is  that  the  covariance  between  the  error  terms  over  time  is   zero.   This   means   that   the   errors   may   not   be   autocorrelated.   There   may   not   be   a   repeating  pattern,  it  must  be  random.  This  can  be  tested  with  the  Durbin-­‐Watson  (DW)   test.   The   DW   is   always   between   0   and   4.   When   the   DW   is   close   to   2,   there   is   little   evidence  of  autocorrelation.  There  is  cause  for  alarm  when  the  DW  is  lower  than  1  or   higher  than  3.  As  can  be  seen  in  column  5  of  Table  5,  the  DW’s  that  I  have  calculated  are   all  in  the  safe  zone,  so  there  is  no  reason  to  think  that  autocorrelation  is  present.  

The  fourth  assumption  is  that  all  regressors,  that  are  the  explanatory  variables,   the   S&P   500   and   the   VIX,   are   not   correlated   with   the   error   term.   This   means   that  

Portfolio   White  F-­‐

statistic   P-­‐value   Durbin-­‐Watson  

(17)

regressors   should   be   exogenous.   Endogeneity   may   not   be   present.   Sources   of   endogeneity   are:   omitted   variables,   measurement   error   and   simultaneity.     A   possible   problem  with  this  has  already  be  mentioned.  It  could  be  that  I  find  a  correlation  between   the   changes   in   the   VIX   and   de   returns   of   the   S&P   500,   where   in   reality   they   are   both   driven  by  the  same  variable  which  is  not  included  in  the  model.  The  variance  inflation   factor  (VIF)  checks  for  multicollinearity.  This  means  that  two  explanatory  variables  are   highly   correlated   with   each   other,   whereby   one   variable   can   be   predicted   with   the   model.  The  VIF  is  between  1.43  and  6.65,  this  means  that  there  is  no  multicollinearity   between  the  VIX  and  the  S&P  500.  This  would  be  the  case  if  VIF  is  above  ten.  I  use  the   Ramsey  RESET  test,  to  test  for  omitted  variables.  The  fifth  column  in  Table  5  shows  the   P-­‐values   of   the   fitted   terms,   and   these   are   all   significant.   This   means   that   there   is   apparent  non-­‐linearity,  and  thus  omitted  variables.  The  linear  model  is  not  appropriate   to   explain   the   returns.   I   cannot   remedy   this   problem,   so   the   results   should   be   interpreted  with  caution.    

The  fifth  and  last  assumption  is  that  the  error  terms  are  normally  distributed.  The   most   commonly   used   test   for   normality   is   the   Jarque-­‐Bera   test.   The   Jarque-­‐Bera   test   uses  the  skewness  and  the  excess  kurtosis  to  calculate  if  they  are  jointly  zero  and  the   distribution   is   ergo   normal.   A   normal   kurtosis   is   three.   The   normal   excess   kurtosis   is   zero   and   is   calculated   by   subtracting   three   from   the   normal   kurtosis.   The   null   hypothesis  is  of  normality,  and  this  will  be  rejected  if  the  residuals  from  the  model  are   either  significantly  skewed,  have  a  high  or  low  kurtosis  or  both.  Column  6  and  7  show   the  results  from  the  Jarque-­‐Bera  test.  As  can  be  seen,  none  of  the  P-­‐values  in  column  7   are  significant,  so  the  errors  are  normally  distributed.    

The  R-­‐squared  is  very  low,  between  0.12  and  0.18  for  all  quintile  portfolios.  This   means  that  the  two  variables,  the  S&P  500  and  the  VIX  only  explain  about  15%  of  the   returns  of  the  quintile  portfolios.  This  finding  supports  to  control  in  the  regression  for   other   variables   like   the   size   and   book-­‐to-­‐market   value   of   Fama   and   French   (1993),   to   investigate  if  these  variables  can  help  to  explain  the  returns  by  a  larger  extent.    

The   problem   of   endogeneity   is   not   solved.   This   means   that   the   results   of   this   research  have  to  be  interpreted  with  caution.  

 

 

(18)

4. Statistical  model  

 

I   want   to   investigate   whether   stocks   with   different   sensitivities   to   changes   in   the   VIX   index  have  significant  different  returns.  In  the  first  place  I  will  not  control  for  the  Fama   and  French  (1993)  variables  because  adding  other  factors  in  constructing  portfolios  may   add  a  lot  of  noise.  First  I  only  regress  for  the  market  and  the  aggregate  volatility.  

4.1  Regression  with  S&P  500  and  the  VIX  

To  do  this  I  need  to  calculate  the  changes  in  the  S&P  500  and  the  changes  in  the  VIX   index.  I  use  all  the  monthly  stock  prices  of  all  the  stocks  that  are  included  in  the  S&P  500.   I  also  need  the  monthly  closing  values  of  the  VIX  index.  I  calculate  the  monthly  returns  of   the  S&P  500  with  a  simple  formula:  

𝑅!" = 𝑙𝑛 𝑃!" 𝑃!"!!  

Where  𝑃!"  is  the  share  price  adjusted  for  stock  splits  and  dividend  payments  of  company   i  on  the  end  of  month  t.  I  use  the  monthly  data  from  January  2004  until  December  2013,   excluding  the  years  2008  and  2009,  and  will  form  quintile  portfolios  at  the  end  of  each   month.    

The  change  in  VIX  is  calculated  in  a  similar  way:  

∆𝑉𝐼𝑋! = 𝑙𝑛 𝑉𝐼𝑋!

𝑉𝐼𝑋!!!  

Where  𝑉𝐼𝑋!  is  the  value  of  the  VIX  index  at  the  end  of  month    t.  

Ang  et  al.  (2006)  test  whether  stocks  with  different  sensitivities  to  changes  in  the   VIX  have  different  average  returns.  They  use  the  following  regression:  

𝑟!! = 𝛽

!+ 𝛽!"#! 𝑀𝐾𝑇!+ 𝛽∆!"#! ∆𝑉𝐼𝑋!+ 𝜀!!                                                                                        (1)  

Where  𝑀𝐾𝑇  is  the  market  excess  return,  ∆𝑉𝐼𝑋  is  the  change  in  the  VIX  index  and  is  the   instrument   they   use   for   changes   in   the   aggregate   volatility   factor,   and  𝛽!"#!  and  𝛽

∆!"#!  

are  loadings  on  market  risk  and  aggregate  volatility  risk,  respectively.  They  sort  firms  on   their  𝛽∆!"#!  coefficients  over  the  past  month  using  the  regression  (1)  with  daily  data.  

I  will  follow  the  next  steps  in  forming  the  quintile  portfolios,  based  on  the  paper  of  Ang   et  al.  (2006):  

-­‐ I   sort   stocks   on   their  𝛽∆!"#!    over   the   past   month   using   the   regression   (1)   with  

(19)

-­‐ At  the  end  of  each  month  I  sort  stocks  into  equally  weighted  quintile  portfolios   based   on   their  𝛽∆!"#!  loadings.   Stocks   in   the   first   quintile   have   the   lowest   betas;  

stocks  in  the  fifth  quintile  have  the  highest  betas.  I  calculate  the  returns,  standard   deviations,  𝛽!"#! ,  𝛽

∆!"#!     and   the   standard   deviation   of  𝛽∆!"#!     of   each   quintile  

portfolio.  The  returns  are  calculated  for  the  present  month.    

-­‐ Every  month  I  form  new  quintile  portfolios  based  on  the  𝛽∆!"#! .  So  every  month  I  

create  five  portfolios.    

-­‐ The   results   of   all   quintile   portfolios   are   averaged   to   form   one   result   for   the   quintile  portfolios  from  the  data  based  on  the  full  sample.    

My   goal   is   to   test   whether   stocks   with   different   sensitivities   to   changes   in   the   VIX   index   (aggregate   volatility)   have   different   expected   returns.   This   would   mean   that   aggregate  volatility  risk  is  factored  in  the  pricing  of  stocks.    

First,   the  𝛽∆!"#! ’s   of   the   five   quintile   portfolios   should   be   significant   different   from  

each  other.  If  the  𝛽∆!"#! ’s  are  not  different  from  each  other,  I  cannot  state  that  the  stocks  

in   the   portfolios   have   different   sensitivities   for   aggregate   volatility   risk,   and   consequential  that  aggregate  volatility  risk  is  not  a  priced  risk  factor.    

These  are  the  first  hypotheses:  

𝐻!:    𝛽∆!"#!" = 𝛽∆!"#!"   𝐻!:    𝛽∆!"#!" ≠ 𝛽∆!"#!"  

Where    𝛽∆!"#!",! is   the   beta   of   the   change   in   the   VIX   index   of   respectively   quintile   portfolio  number  i,j  where  𝑖 ≠ 𝑗.  I  perform  a  Students  t-­‐test  to  see  if  the  differences  are   significant.  

If  the  null  hypothesis  will  be  rejected,  then  the  different  portfolios  have  different   sensitivities  for  aggregate  volatility  risk  and  I  can  continue  with  the  second  hypothesis:   do   the   portfolios   containing   stocks   with   different   sensitivities   for   aggregate   volatility   have  significant  different  returns:  

𝐻!:    𝑟!! = 𝑟!"  

𝐻!:    𝑟!" ≠ 𝑟!"  

(20)

  If   the   returns   of   the   quintile   portfolios   do   not   differ   significantly,   the   null   hypothesis   is   not   rejected   and   the   sensitivity   to   changes   in   aggregate   volatility,   measured   by   changes   in   the   VIX   index,   is   not   a   priced   risk   factor.   But   if   the   returns   between  the  quintile  portfolios  differ  significantly  from  each  other,  this  means  that  the   sensitivity   to   aggregate   volatility   is   a   priced   risk   factor.   The   null   hypothesis   will   be   rejected.  For  clarification:  I  use  the  VIX  only  as  an  indicator  of  aggregate  volatility  risk.   4.2  Regression  with  S&P  500,  the  VIX,  SMB  and  HML  

I   also   control   for   the   Fama   and   French   (1992)   variables,   in   addition   with   the   market   variable  and  the  aggregate  volatility  variable.  I  use  the  following  regression:  

                                 𝑟!! = 𝛽

!+ 𝛽!"#! 𝑀𝐾𝑇!+ 𝛽∆!"#! ∆𝑉𝐼𝑋!+ 𝛽!"#! 𝑆𝑀𝐵!+ 𝛽!"#! 𝐻𝑀𝐿!+ 𝜀!!                                      (2)  

Where,  again,  the  𝑀𝐾𝑇  is  the  market  excess  return,  ∆𝑉𝐼𝑋  is  the  change  in  the  VIX  index   and  is  the  instrument  I  use  for  changes  in  the  aggregate  volatility  factor.  The  SMB  and   HML  are  the  Fama  and  French  (1992)  variables  for  size  and  book-­‐to-­‐market  value,  and   𝛽!"#! ,  𝛽

∆!"#! ,  𝛽!"#!  and  𝛽!"#!  are   loadings   on   market   risk,   aggregate   volatility   risk,   size  

and  book-­‐to-­‐market  value,  respectively.  

  The  SMB,  is  the  small-­‐minus-­‐big  portfolio,  the  variable  for  the  size  effect  and  the   HML,  is  the  high-­‐minus-­‐low  portfolio,  the  variable  for  the  book-­‐to-­‐market  value,  of  Fama   and  French  (1992).  They  calculated  the  SMB  and  HML  values  by  creating  6  portfolios.   They   sort   all   stocks   from   the   NYSE,   Amex   and   NASDAQ   based   on   their   market   capitalization  and  their  book-­‐to-­‐market  value.  First  the  stocks  are  sorted  in  two  groups   based  on  their  size.  The  median  size  is  used  as  break  point  between  the  group  with  small   stocks,  and  the  group  with  big  stocks.  In  these  two  groups,  the  stocks  are  sorted  on  their   book-­‐to-­‐market  value.  These  are  broken  down  in  three  groups,  the  bottom  30%  (low),   middle   40%   (medium)   and   top   30%   (high).   In   total   there   are   now   have   6   portfolios:   small   size   firms   with   low   book-­‐to-­‐market   values   (S/L),   small   size   firms   with   medium   book-­‐to-­‐market   values   (S/M),   small   size   firms   with   high   book-­‐to-­‐market   values   (S/H),   and   big   size   firms   with   with   also   low   (B/L),   medium   (B/M)   and   high   (B/H)   book-­‐to-­‐ market  values.    (Fama  &  French,  1993)  

(21)

related   to   the   book-­‐to-­‐market   value   is   the   high-­‐minus-­‐low   (HML)   portfolio,   this   the   simple  average  of  the  S/H  and  B/H  portfolios  minus  the  simple  average  of  the  S/L  and   B/L  portfolios.  In  this  case,  it  should  be  largely  free  of  influences  of  size  factors.  Fama   and  French  (1992)  expect  that  stocks  that  are  smaller  earn  a  higher  a  return  and  that   stocks   with   a   higher   book-­‐to-­‐market   value   should   earn   higher   returns.   The   historical   SMB   and   HML   values   are   found   on   the   website   of   Kenneth   French,   and   these   are   the   ones   I   use   in   my   regression.   I   will   again   sort   the   stocks   in   portfolios   based   on   their   sensitivity  for  aggregate  volatility.  

 

 

(22)

5. Results  

 

Table  6:  Monthly  data  of  regression  (1)  without  the  years  2008  and  2009  

Portfolio   Return   Std.Dev  

Return   𝛽!"#!"   𝛽∆!"#!"   Std.Dev    𝛽∆!"#!"   Q1   0.73%   4.29%   0.04   -­‐0.27   0.1436   Q2   1.00%   4.12%   0.61   -­‐0.09   0.0280   Q3   0.88%   4.00%   0.97   -­‐0.01   0.0222   Q4   0.76%   4.14%   1.38   0.08   0.0318   Q5   0.57%   4.27%   2.52   0.27   0.1414        

The  results  from  regression  (1)  are  shown  in  Table  6.  Column  5  and  6  show  the  beta  of   the  aggregate  volatility  proxied  by  changes  in  the  VIX,  and  the  standard  deviation  of  the   beta  of  aggregate  volatility.  The  beta  of  quintile  portfolio  1  is  by  construction  the  lowest,   and   the   beta   of   quintile   portfolio   5   is   the   highest.   Their   standard   deviations   are   fairly   low.   My   first   hypothesis   is   that   the   betas   of   aggregate   volatility   should   differ   significantly.   To   find   out   if   the   betas   of   the   aggregate   volatility   differ   significantly   I   perform   the   Students   t-­‐test.   The   resulting   t-­‐values   with   corresponding   P-­‐values   are   shown  in  Table  7.    

 

Table   7:   t-­‐values   of   differences   between   the   betas   of   aggregate   volatility   of   the   quintile  

portfolios,  with  between  brackets  the  corresponding  P-­‐values  with  α=0.05.    

  Q2   Q3   Q4   Q5   Q1   12.05  (<0.001)   17.53  (<0.001)   23.32  (<0.001)   26.25  (<0.001)   Q2     21.94  (<0.001)   39.31  (<0.001)   24.47  (<0.001)   Q3       22.74  (<0.001)   19.17  (<0.001)   Q4         12.84  (<0.001)    

All  the  t-­‐values  are  significant,  with  a  significance  level  of  α=0.05.  This  means  that  the   portfolios  do  have  different  sensitivities  for  aggregate  volatility  risk.  The  next  step  is  to   find   out   if   these   portfolios   with   different   sensitivities   for   aggregate   volatility   have   different  returns.  

(23)

highest   return,   and   the   subsequent   portfolio   has   a   lower   return,   until   finally,   quintile   portfolio  5  has  the  lowest  return.  I  do  not  find  exactly  the  same  pattern,  although  from   quintile  2  to  5  the  returns  are  decreasing.  Only  quintile  portfolio  1  is  an  exception,  which   does   have   the   second   lowest   return.   The   standard   deviation   is   relatively   high   in   comparison  to  the  return.  To  find  out  if  the  returns  differ  significantly  from  each  other,  I   again  calculate  t-­‐values.  The  results  are  shown  in  Table  8.    

 

Table  8:  t-­‐values  of  differences  between  the  betas  of  the  returns  of  the  quintile  portfolios,  with  

between  brackets  the  corresponding  P-­‐values  with  α=0.05.    

  Q2   Q3   Q4   Q5   Q1   0.445  (0.329)   0.251  (0.401)   0.049  (0.481)   0.259  (0.398)   Q2     0.205  (0.419)   0.402  (0.344)   0.710  (0.240)   Q3       0.204  (0.419)   0.519  (0.302)   Q4         0.313  (0.378)    

None  of  the  t-­‐values  in  Table  8  is  significant.  This  means  that  I  can’t  reject  the  null   hypothesis   and   thus   the   portfolios   with   significant   different   sensitivities   for   aggregate   volatility  do  not  have  significant  different  returns.  This  means  that  aggregate  volatility  is   not  a  priced  risk  factor  in  my  research.    

Column   4   of   Table   6   shows   the   market   beta.   The   market   beta   is   very   low   for   quintile  portfolio  1  with  0.04,  and  incurs  with  the  subsequent  portfolios,  with  quintile   portfolio  5  having  a  market  beta  of  2.52.  Quintile  portfolio  1  moves  almost  independent   form   the   market,   where   quintile   portfolio   5,   moves   2.5   times   as   strong   as   the   market.   The  R-­‐squared  is  on  average  0.15,  which  is  very  low,  which  means  that  the  regression   has  barely  any  explanatory  power.  

Appendix   Table   2   shows   the   monthly   data,   comparable   with   Table   6,   but   then   calculated   for   all   the   years   from   2004   until   2013,   thus   with   the   years   2008   and   2009   included.  The  standard  deviation  is  much  higher  when  2008  and  2009  are  included  in   the  calculation  showing  that  these  years  where  very  volatile  in  comparison  to  the  other   years.  The  differences  between  betas  of  aggregate  volatility  are  significant,  but  again  the   differences  between  the  returns  are  not  significant.    

(24)

the  VIX,  the  variable  for  aggregate  volatility  could  not  do  this.  The  results  are  shown  in   Table  9.    

 

Table  9:  Monthly  data  of  regression  (2)  controlling  for  SMB  and  HML  without  the  years  2008  

and  2009   Portfolio   Return   𝛽!"#!"   𝛽∆!"#!"   𝛽!"#!"   𝛽!"#!"   Q1   0.86%   0.97   -­‐0.06   -­‐0.11   0.03   Q2   0.70%   1.03   -­‐0.02   -­‐0.06   0.04   Q3   0.77%   1.07   -­‐0.01   0.14   0.13   Q4   0.74%   1.14   0.01   0.07   0.14   Q5   0.87%   1.16   0.03   0.15   0.30    

The  beta  for  aggregate  volatility,  as  proxied  by  the  changes  in  the  VIX,  is  close  to   zero  for  all  portfolios.  The  value  of  the  beta  is  not  even  a  quarter  of  the  value  of  the  beta   calculated   with   regression   (1).   The   explanatory   power   of   the   beta   for   aggregate   volatility   is   much   lower,   when   the   two   control   variables   of   Fama   and   French   are   included.  The  returns  of  the  different  quintile  portfolios  are  close  to  each  other,  much   closer   than   the   returns   of   regression   (1)   which   are   shown   in   Table   6.   In   Table   6   the   returns  were  not  significant  different  from  each  other,  so  this  is  certainly  not  the  case  in   Table  9.      

The   market   beta,   is   close   to   one   for   all   quintile   portfolios,   where   in   the   first   regression  the  market  betas  were  very  different.  The  betas  for  the  SMB  and  HML  are  not   very  high,  but  have  more  explanatory  power  than  the  changes  in  the  VIX  index.  The  R-­‐ squared  is  now  on  average  0.67.  This  is  a  large  improvement  in  comparison  to  the  low   R-­‐squared  of  0.15  of  regression  (1).  About  two  thirds  of  the  returns  is  explained  by  the   variables  in  the  regression.      

 

Referenties

GERELATEERDE DOCUMENTEN

This study shows that quantification of blood flow in the human abdominal aorta is possible with echo PIV, and velocity profiles and data correspond well with those seen with

We presented a fractional-N subsampling PLL with fast robust locking using a soft switching between a frequency and sub-sampling phase control loop. The loop switching controller

The results in the first 16-year test period however, do not support the overreaction hypothesis since the abnormal return of the winner portfolio is larger

The results presented in Table 7 show significant evidence (null hypotheses are rejected) that the futures returns Granger cause the spot returns. In other words, the information

The momentum returns of the low and high Ivol tercile portfolios have a negative exposure to the SMB size factor, while the momentum return of the medium Ivol portfolio has a positive

Under the notion of a practical turn in the philosophy of technology this track brings together papers in which either insights from philosophy of technology become concretely

The results of the analysis show that a positive relationship is present between the two variables, but that the effect size of CEO-pay-ratio on company performance is almost

The acquisition of GNSS signals differentiates itself from the acquisition in Direct Sequence - Code Division Multiple Access (DS-CDMA) networks by the extremely low GNSS signal