• No results found

PAH processing in space Micelotta, E.R.

N/A
N/A
Protected

Academic year: 2021

Share "PAH processing in space Micelotta, E.R."

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

PAH processing in space

Micelotta, E.R.

Citation

Micelotta, E. R. (2009, November 12). PAH processing in space. Retrieved from https://hdl.handle.net/1887/14331

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14331

Note: To cite this publication please use the final published version (if applicable).

(2)

PAH Processing in Space

(3)
(4)

PAH Processing in Space

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op donderdag 12 november 2009 klokke 13.45 uur

door

Elisabetta Rita Micelotta

geboren te Torino, Itali¨e in 1974

(5)

Promotiecommissie

Promotores: Prof. dr. F. P. Israel

Prof. dr. A. G. G. M. Tielens

Co-promotor: Prof. dr. A. P. Jones (Institut d’Astrophysique Spatiale - Universit´e Paris-Sud XI, Orsay - France)

Overige leden: Dr. B. R. Brandl

Prof. dr. E. F. van Dishoeck

Dr. E. Dwek (NASA Goddard Space Flight Center, USA) Prof. dr. H. V. J. Linnartz

Dr. T. A. Schlath ¨olter (Rijksuniversiteit Groningen - Atoomfysica Kernfysisch Versneller Institute, KVI)

(6)

Alla mia Famiglia

(7)

Cover: Benzene molecule in the Leiden sky.

Photography of the sky by Elisabetta Micelotta.

Benzene molecule: pencil on paper by Gwena¨el Bou´e.

Design by Guilhem Lavaux & Elisabetta Micelotta.

Benzene (C6H6) is an aromatic hydrocarbon (not polycyclic since only one ring is present) and a fundamental unit of the Polycyclic Aromatic Hydro- carbons (PAHs) which are the subject of this thesis.

(8)

Table of contents vii

Table of contents

1 Introduction 1

1.1 The Interstellar Medium . . . 1

1.1.1 Components of the ISM . . . 1

1.1.2 The cosmic life cycle . . . 6

1.1.3 Supernova explosions . . . 7

1.2 Polycyclic Aromatic Hydrocarbons . . . 9

1.2.1 Definition, characteristics and structure . . . 9

1.2.2 Formation and evolution . . . 12

1.2.3 Excitation mechanisms and IR spectroscopy . . . 13

1.3 The importance of interstellar PAHs . . . 16

1.4 Dust processing in the ISM . . . 18

1.4.1 Processes affecting the dust-to-gas mass ratio . . . 18

1.4.2 Processes conserving the dust-to-gas mass ratio . . . 19

1.5 Why study collisional PAH processing in the ISM . . . 19

1.6 Thesis outline . . . 21

2 Spitzer observations of LMC-N157B 25 2.1 Introduction . . . 26

2.2 Observations and data processing . . . 27

2.3 Results and analysis . . . 29

2.3.1 IRAC and MIPS images . . . 29

2.3.2 IRS Spectroscopy of J05375027-6911071 . . . 31

2.3.3 IRS spectroscopy of the extended dust cloud . . . 33

2.4 Discussion . . . 34

2.4.1 The nature of the compact object J05375027-6911071 . . . 34

2.4.2 The northeast edge of the dust cloud . . . 38

2.4.3 Conditions in the extended dust cloud . . . 39

2.4.4 The SNR revisited . . . 41

2.5 Conclusions . . . 42

3 PAH processing in interstellar shocks 45 3.1 Introduction . . . 46

3.2 Ion interaction with solids . . . 47

3.2.1 Nuclear interaction . . . 47

3.2.2 Nuclear interaction above threshold . . . 51

3.3 PAHs in shocks . . . 55

(9)

viii Table of contents

3.3.1 Ion collisions: nuclear interaction . . . 57

3.3.2 Ion collisions: electronic interaction . . . 61

3.3.3 Electron collisions . . . 62

3.4 Results . . . 63

3.4.1 PAH destruction via nuclear interactions . . . 63

3.4.2 PAH destruction via electronic interaction by ion collisions . . . . 64

3.4.3 PAH destruction due to electron collisions . . . 64

3.4.4 Summary . . . 67

3.4.5 Uncertainties discussion . . . 68

3.5 Discussion . . . 70

3.5.1 PAH lifetime in shocks . . . 70

3.5.2 Astrophysical implications . . . 72

3.6 Conclusions . . . 75

3.7 Appendix A: Sn,σand<T > . . . 76

3.8 Appendix B: Low and high energy regime above threshold . . . 79

3.9 Appendix C: Orientation correction . . . 80

4 PAH processing in a hot gas 81 4.1 Introduction . . . 82

4.2 Ion interaction with PAHs . . . 83

4.2.1 Electronic interaction . . . 83

4.2.2 Nuclear interaction above threshold . . . 85

4.3 Electron collisions with PAHs . . . 86

4.4 PAH destruction . . . 88

4.4.1 Dissociation probability . . . 88

4.4.2 Collision rate . . . 93

4.5 Results . . . 94

4.5.1 PAH destruction in a hot gas . . . 94

4.5.2 PAH lifetime . . . 97

4.6 Discussion . . . 102

4.6.1 X-ray absorption . . . 102

4.6.2 PAHs as tracers of cold entrained gas . . . 104

4.6.3 Comparison with previous studies . . . 106

4.6.4 C2groups loss . . . 107

4.7 Conclusions . . . 107

5 PAH processing by Cosmic Rays 109 5.1 Introduction . . . 110

5.2 High energy ion interactions with solids . . . 112

5.2.1 Collisions with high energy ions . . . 112

5.2.2 Ion energy loss and dissociation probability . . . 115

5.3 Collisions with high energy electrons . . . 118

5.4 Cosmic ray spectrum . . . 121

5.5 Collision rate and C-atom ejection rate . . . 124

5.6 Results . . . 126

(10)

Table of contents ix

5.6.1 PAH lifetime . . . 126

5.6.2 Discussion of the uncertainties . . . 128

5.7 Discussion . . . 131

5.7.1 Lifetime of PAHs against cosmic ray processing . . . 131

5.7.2 PAHs in galactic halos . . . 133

5.7.3 PAHs in galactic winds . . . 136

5.7.4 PAHs in galaxy clusters . . . 139

5.8 Conclusions . . . 143

6 Conclusions and Perspectives 147 6.1 Key questions . . . 147

6.2 Results . . . 147

6.3 Answers to key questions . . . 152

6.4 Future perspectives . . . 153

Bibliography 157

Nederlandse samenvatting 167

Curriculum vitae 183

Acknowledgments 185

(11)
(12)

Was it all worth it, was it all worth it all these years.

Queen, “Was It All Worth It”, The Miracle

(13)

Referenties

GERELATEERDE DOCUMENTEN

Interstellar PAHs are often “associated” with dust grains because, on the one hand, they are formed as a by-product of the formation of carbonaceous dust, and on the other hand,

The calibration is based on observations of standard stars (Decin et al. The ends of each orders, where the noise increases significantly, were man- ually clipped. To obtain a good

The fractional destruction induced by nuclear excitation increases with the PAH size, while in case of electronic excitation and electron collisions is lower for higher N C values,

Because of the decrease of the dissociation probability when the PAH size increases, as expected, the electron and electronic rate constants are strongly suppressed, and both

As expected, when E min = 50 MeV/nucleon τ 0 is higher for all sizes, ions and E 0 , due to the fact that we include in the calculation only the cosmic rays with higher energies,

In Chapter 3 we use our models to estimate the lifetime of PAHs against collisions with ions and electrons having high velocities arising from the thermal and relative motions

2005, The Physics and Chemistry of the Interstellar Medium (University of Cambridge Press).

Toch is het belangrijk te onthouden dat PAHs moleculen zijn, en dat de benadering vanuit de vaste stof fysica zoals toegepast op stofkorrels (zoals bijvoorbeeld botsingsprocessen