• No results found

Distance-based analysis of dynamical systems and time series by optimal transport Muskulus, M.

N/A
N/A
Protected

Academic year: 2021

Share "Distance-based analysis of dynamical systems and time series by optimal transport Muskulus, M."

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Distance-based analysis of dynamical systems and time series by optimal transport

Muskulus, M.

Citation

Muskulus, M. (2010, February 11). Distance-based analysis of

dynamical systems and time series by optimal transport. Retrieved from

https://hdl.handle.net/1887/14735

Version: Corrected Publisher’s Version License:

Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14735

Note: To cite this publication please use the final published version (if

applicable).

(2)

Distance-based analysis of dynamical systems and time series by optimal transport

P

ROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties te verdedigen op donderdag 11 Februari

klokke 11.15 uur

door

Michael Muskulus

geboren te Sorengo, Switzerland in 1974

(3)

Promotiecommissie

Promotor:

prof. dr. S.M. Verduyn Lunel

Overige leden:

dr. S.C. Hille

prof. dr. J.J. Meulman

prof. dr. P.J. Sterk (Academisch Medisch Centrum, Universiteit van Amsterdam) prof. dr. P. Stevenhagen

prof. dr. S.J. van Strien (University of Warwick)

(4)

Distance-based analysis of dynamical systems and time

series by optimal transport

(5)

T HOMAS S TIELTJES I NSTITUTE FOR M ATHEMATICS

Muskulus, Michael, 1974–

Distance-based analysis of dynamical systems and time series by optimal transport

AMS 2000 Subj. class. code: 37M25, 37M10, 92C50, 92C55, 62H30

NUR: 919

ISBN: 978-90-5335-254-0

Printed by Ridderprint Offsetdrukkerij B.V., Ridderkerk, The Netherlands

Cover: Michael Muskulus

This work was partially supported by the Netherlands Organization for Scientific Research (NWO) under grant nr. 635.100.006.

Copyright © 2010 by Michael Muskulus, except the following chapters:

Chapter 8 J. Neurosci. Meth. 183 (2009), 31–41: Copyright © 2009 by Elsevier B.V.

DOI: 10.1016/j.jneumeth.2009.06.035

Adapted and reprinted with permission of Elsevier B.V.

No part of this thesis may be reproduced in any form without the express written consent of the copyright holders.

(6)

After I got my PhD, my mother took great relish in introducing me as, “This is my son. He’s a doctor, but not the kind that helps people”.

Randy Pausch

Für Frank & Ingrid And to the most beautiful neuroscientist in the world Sanne, thank you for our adventures in the past, in the present, and in the future

(7)
(8)

Contents

Prologue xv

1 General Introduction 1

1.1 Distance-based analysis . . . 1

1.2 Reader’s guide. . . 5

1.3 Major results & discoveries . . . 9

2 Dynamical systems and time series 11 2.1 Introduction . . . 11

2.2 Wasserstein distances. . . 14

2.3 Implementation . . . 18

2.3.1 Calculation of Wasserstein distances . . . 18

2.3.2 Bootstrapping and binning . . . 19

2.3.3 Incomplete distance information . . . 19

2.3.4 Violations of distance properties . . . 20

2.4 Analysis . . . 21

2.4.1 Distance matrices . . . 21

2.4.2 Reconstruction by multidimensional scaling . . . 21

2.4.3 Classification and discriminant analysis . . . 25

2.4.4 Cross-validation . . . 26

2.4.5 Statistical significance by permutation tests . . . 27

2.5 Example: The Hénon system . . . 28

2.5.1 Sample size and self-distances . . . 28

2.5.2 Influence of noise . . . 29

2.5.3 Visualizing parameter changes . . . 30

2.5.4 Coupling and synchronization . . . 32

2.5.5 Summary . . . 35

2.6 Example: Lung diseases . . . 37 vii

(9)

Contents

2.6.1 Background . . . 37

2.6.2 Discrimination by Wasserstein distances . . . 39

2.7 Generalized Wasserstein distances . . . 43

2.7.1 Translation invariance . . . 44

2.7.2 Rigid motions . . . 45

2.7.3 Dilations and similarity transformations . . . 46

2.7.4 Weighted coordinates . . . 47

2.7.5 Residuals of Wasserstein distances . . . 48

2.7.6 Optimization of generalized cost . . . 49

2.7.7 Example: The Hénon system . . . 50

2.8 Nonmetric multidimensional scaling . . . 50

2.9 Conclusions . . . 52

Applications 55

3 Lung diseases 57 3.1 Respiration. . . 57

3.2 The forced oscillation technique. . . 59

3.3 Asthma and COPD . . . 63

3.3.1 Materials: FOT time series . . . 64

3.3.2 Artifact removal . . . 65

3.4 Fluctuation analysis. . . 65

3.4.1 Power-law analysis . . . 66

3.4.2 Detrended fluctuation analysis . . . 68

3.5 Nonlinear analysis . . . 71

3.5.1 Optimal embedding parameters . . . 72

3.5.2 Entropy . . . 73

3.6 Results . . . 74

3.6.1 Statistical analysis . . . 74

3.6.2 Variability and fluctuation analysis. . . 78

3.6.3 Distance-based analysis . . . 80

3.6.4 Nonlinear analysis . . . 83

3.6.5 Entropy analysis . . . 84

3.7 Discussion . . . 84

3.7.1 Main findings . . . 85

3.7.2 Clinical implications . . . 87

3.7.3 Further directions. . . 88

3.7.4 Conclusion . . . 89 viii

(10)

Contents

4 Structural brain diseases 91

4.1 Quantitative MRI . . . 91

4.2 Distributional analysis . . . 93

4.3 Systemic lupus erythematosus . . . 95

4.3.1 Materials . . . 96

4.3.2 Histogram analysis . . . 97

4.3.3 Multivariate discriminant analysis . . . 99

4.3.4 Fitting stable distributions . . . 101

4.3.5 Distance-based analysis . . . 103

4.3.6 Discussion . . . 104

4.3.7 Tables: Classification accuracies . . . 106

4.4 Alzheimer’s disease. . . 107

4.4.1 Materials . . . 109

4.4.2 Results . . . 110

5 Deformation morphometry 113 5.1 Overview. . . 113

5.2 Introduction . . . 113

5.3 The Moore-Rayleigh test . . . 115

5.3.1 The one-dimensional case . . . 117

5.3.2 The three-dimensional case . . . 119

5.3.3 Power estimates. . . 121

5.4 The two-sample test. . . 125

5.4.1 Testing for symmetry. . . 125

5.4.2 Further issues . . . 128

5.5 Simulation results . . . 129

5.6 Application: deformation-based morphometry . . . 130

5.6.1 Synthetic data . . . 130

5.6.2 Experimental data . . . 133

5.7 Discussion . . . 136

6 Electrophysiology of the brain 139 6.1 Introduction . . . 139

6.2 Distance properties . . . 141

6.2.1 Metric properties . . . 141

6.2.2 Embeddability and MDS. . . 143

6.2.3 Graph-theoretic analysis . . . 146

6.3 Connectivity measures . . . 147

6.3.1 Statistical measures. . . 147

6.3.2 Spectral measures. . . 150

6.3.3 Non-linear measures . . . 152

6.3.4 Wasserstein distances . . . 153 ix

(11)

Contents

6.4 Example: MEG data during motor performance . . . 155

6.5 Example: Auditory stimulus processing . . . 159

6.6 Conclusion . . . 160

Epilogue 163

Appendices 167

A Distances 169 A.1 Distance geometry . . . 169

A.1.1 Distance spaces . . . 169

A.1.2 Congruence and embeddability. . . 172

A.2 Multidimensional scaling . . . 175

A.2.1 Diagnostic measures and distortions . . . 177

A.2.2 Violations of metric properties and bootstrapping . . . 181

A.3 Statistical inference . . . 184

A.3.1 Multiple response permutation testing . . . 185

A.3.2 Discriminant analysis . . . 186

A.3.3 Cross-validation and diagnostic measures in classification . . . 189

A.3.4 Combining classifiers . . . 191

B Optimal transportation distances 193 B.1 The setting . . . 193

B.2 Discrete optimal transportation . . . 194

B.3 Optimal transportation distances . . . 199

C The dts software package 201 C.1 Implementation and installation . . . 201

C.2 Reference . . . 202

cmdscale.add . . . 202

ldadist.cv . . . 203

mfdfa . . . 205

mle.pl. . . 207

powerlaw . . . 209

samp.en . . . 210

td . . . 211

stress . . . 213

td.interp . . . 214

ts.delay . . . 215 x

(12)

Contents

D The MooreRayleigh software package 217

D.1 Implementation and installation . . . 217

D.2 Reference . . . 217

bisect . . . 217

diks.test. . . 218

F3 . . . 220

lrw . . . 220

mr . . . 222

mr3 . . . 223

mr3.test. . . 224

pairing . . . 225

rsphere . . . 226

Notes 229

Bibliography 239

Samenvatting 257

Curriculum vitae 259

xi

(13)
(14)

List of boxes

1 Additional typographic elements . . . 9

2 Wasserstein distances of dynamical systems . . . 35

3 Main questions about lung diseases . . . 58

4 Real-time tracking of single-frequency forced oscillation signals . . . . 61

5 Power-law analysis of forced oscillation signals . . . 78

6 Detrended fluctuation analysis of forced oscillation signals . . . 80

7 Embedding parameters in reconstructing impedance dynamics. . . 83

8 Sample entropy of forced oscillations . . . 84

9 Analysis of systemic lupus erythematosus . . . 103

10 Analysis of Alzheimer’s Disease. . . 110

11 Why reconstruct distances in Euclidean space? . . . 175

12 How to publish distance matrices . . . 184

13 Why use the homoscedastic normal-based allocation rule? . . . 189

xiii

Referenties

GERELATEERDE DOCUMENTEN

In particular, one would like to (i) under- stand better how to lessen the dependence of the Wasserstein distances on the par- ticular embedding used, a point that was introduced

Due to large intra-group variance, fluctuation analysis showed no significant dif- ferences between the groups of subjects, but there were indications that the scaling exponents

It will be shown that the best method for general classification and discrimination of diseased patients from healthy controls is the distance-based comparison, whereas slightly

Note that the results of the permutation version of Hotellings T 2 test are limited by the number of rela- belling (N = 10 000), such that Bonferroni correction for multiple

As mentioned in the Introduction, a connectivity measure has to be reflexive, sym- metric, and it has to fulfill the triangle inequality in order to represent functional distances..

This seriously restricts the class of possible “distance” measures, and involves an important principle: Being a true distance allows for a natural representation of complex systems

The left panel of Figure A.4 shows the reconstructed configuration for Euclidean distances, the middle panel the config- uration for the geodesic distance, and the right panel

Section B.2 introduces the optimal transportation problem which is used to define a distance in Section B.3.. B.1