• No results found

of weak static electric and magnetic field Analysis of apoplastic and symplastic antioxidant system in shallot leaves:Impacts Journal of Plant Physiology

N/A
N/A
Protected

Academic year: 2022

Share "of weak static electric and magnetic field Analysis of apoplastic and symplastic antioxidant system in shallot leaves:Impacts Journal of Plant Physiology"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal of Plant Physiology

jo u r n al h om e p a g e :w w w . e l s e v i e r . d e / j p l p h

Analysis of apoplastic and symplastic antioxidant system in shallot leaves:

Impacts of weak static electric and magnetic field

Turgay Cakmak

a,∗

, Zeynep E. Cakmak

b

, Rahmi Dumlupinar

c

, Turgay Tekinay

d

aDepartmentofMolecularBiologyandGenetics,FacultyofScience,IstanbulMedeniyetUniversity,Istanbul,Turkey

bDepartmentofBiology,ScienceandArtFaculty,KırıkkaleUniversity,Kırıkkale,Turkey

cDepartmentofBiology,ScienceFaculty,AtatürkUniversity,Erzurum,Turkey

dLaboratoryofSustainableTechnologies,InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received3November2011

Receivedinrevisedform10March2012 Accepted13March2012

Keywords:

Alliumascalonicum Antioxidantsystem Apoplast Electricfield Magneticfield ROS

a b s t r a c t

Impactsofelectricandmagneticfields(EFsandMFs)onabiologicalorganismvarydependingontheir applicationstyle,time,andintensities.HighintensityMFandEFhavedestructiveeffectsonplants.How- ever,atlowintensities,thesephenomenaareofspecialinterestbecauseofthecomplexityofplant responses.Thisstudyreportstheeffectsofcontinuous,low-intensitystaticMF(7mT)andEF(20kV/m) ongrowthandantioxidantstatusofshallot(AlliumascalonicumL.)leaves,andevaluateswhethershifts inantioxidantstatusofapoplasticandsymplasticareahelpplantstoadaptanewenvironment.Growth wasinducedbyMFbutEFappliedemergedasastressfactor.Despitealackofvisiblesymptomsof injury,lipidperoxidationandH2O2levelsincreasedinEFappliedleaves.Certainsymplasticantioxidant enzymeactivitiesandnon-enzymaticantioxidantlevelsincreasedinresponsetoMFandEFapplications.

Antioxidantenzymesintheleafapoplast,bycontrast,werefoundtoshowdifferentregulationresponses toEFandMF.Ourresultssuggestthatapoplasticconstituentsmayworkaspotentiallyimportantredox regulatorssensingandsignalingenvironmentalchanges.StaticcontinuousMFandEFatlowintensities havedistinctimpactsongrowthandtheantioxidantsysteminplantleaves,andweakMFisinvolvedin antioxidant-mediatedreactionsintheapoplast,resultinginovercomingapossibleredoximbalance.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

Allterrestrialorganismsareexposedtotheearth’selectricand magneticfields(EFsandMFs,respectively),whicharenaturalcom- ponentsoftheirenvironment.However,interestinstudyingthe effectsofthesenaturalphenomenaonplantsisstrengthenedby theincreasinghumanactivitiesthatgenerateEFandMF.AnEFis afieldofforcesurroundingachargedparticle,whileaMFisafield offorcesurroundingamovingchargedparticle.Achargedparticle alwayshasbothaMFandanEF,andthatiswhyEFandMFare associatedwitheachother(Griffiths,1999).Theyaretwodifferent fieldswithsimilarphysicalcharacteristics,andtheireffectsonbio- logicalorganismsshowdifference(McCannetal.,1993;Moonand Chung,2000).Today,differentintensitiesofMFandEFareusedin

Abbreviations: MF,magneticfield; EF,electricfield;CAT, catalase;GPOD, unspecificperoxidase;APX,ascorbateperoxidase;SOD,superoxidedismutase;

GR,glutathionereductase;Asc,ascorbate;Glu,glutathione;G6PDH,glucose-6- phosphatedehydrogenase;MDA,malonyldialdehyde.

∗ Correspondingauthor.Presentaddress:DepartmentofMolecularBiologyand Genetics,FacultyofScience,IstanbulMedeniyetUniversity,34730,Istanbul,Turkey.

Tel.:+902166022804;fax:+902166022805.

E-mailaddress:turgaycakmak@hotmail.com(T.Cakmak).

awiderangeofareasincludingelectronicappliances,foodsteril- ization,medicaldiagnostics,medicaltherapeutics,andlevitation.

AlargevolumeofliteratureisavailableontheeffectsofMFand EFonbiologicalorganisms.HighintensityMFandEFhavebeen utilizedfordirectbiologicalapplicationsduetotheirdestructive effectsonbiologicalsamples(McCannetal.,1993).Ontheother hand,weakMFandEFhavebeenreportedtohavebeneficialeffects onlivingorganisms(NechitailoandGordeev,2001;Phirkeetal., 1996).KnowledgeofthemechanismsoftheactionofMFandEF onvariousbiologicalsystemsmaybeeffectivelyusedasameans ofregulatingthebiologicalactivityofthesesystems.Stimulatory effectsofweakintensityEFhavebeenreportedonearlygrowth (Costanzo,2008)and flowering(Nechitailoand Gordeev,2001), evenifsmalldecreasesinthegerminationratioandslightdisrup- tionof meristemarchitecturewithdistracted celldivisionratio were reported (Wawrecki and Zagorska-Marek, 2007).Positive effectsofweakintensityMFonplantcharacteristics,suchasseed germinationandearlygrowth(Cakmaketal.,2010a;Vashisthand Nagarajan,2010),shootdevelopmentandflowering(Aladjadjiyan, 2002)werereported.Moreover,effectsofweakMFapplicationon proteinbiosynthesis,celldivision,nucleicacidcontent,andmem- braneionmovementwerestudied(Phirkeetal.,1996;Stangeetal., 2002).However,theunderlyingmechanismofthesephenomenais 0176-1617/$seefrontmatter © 2012 Elsevier GmbH. All rights reserved.

http://dx.doi.org/10.1016/j.jplph.2012.03.011

(2)

stillpoorlyunderstoodbecauseofthecomplexityofthebiological responses.

Plantsarefixedorganismsexposedtoenvironmentalstresses.

Efficientadaptive cellular mechanismsallowresistancetosuch stresses.When plants areexposed todifferentstress factors, a varietyoffreeradicalsandreactiveoxygenspecies(ROS)areover- produced.OverproductionofROScausesoxidativedamagetoDNA, lipids,andproteins,oftenleadingtothecessationofthecellcycle, andapoptoticornecroticcelldeath(Ahmadetal.,2008).Onthe otherhand,atlowlevels,ROSareimportantsignalingmolecules andareeffectivelymanagedbyseveralantioxidantmolecules.To keep ROS levels in a balance, plants have evolved antioxidant defensemechanisms.Theseincludeenzymaticcomponentssuch assuperoxidedismutase(SOD,EC1.15.1.1),ascorbateperoxidase (APX,EC1.11.1.11),catalase(CAT,EC1.11.1.6),peroxidase(POD, EC1.11.1.7), and glutathionereductase(GR,EC1.6.4.2),aswell asnon-enzymaticcomponents,suchasascorbate(ASC)andglu- tathione(GSH) pool(Mittler,2002).Enzymaticreaction of SOD withsuperoxideradicalsresultsin theformationof H2O2. Pro- ducedH2O2isthenscavengedbyCAT,nonspecificPODsandthe ascorbate–glutathionecycle,whereAPXreducesittoH2O(Mittler, 2002).GRalsoplaysakeyroleinantioxidantdefenseprocessesby reducingoxidizedglutathionetoGSH.Pastresearchhasfocused mainlyonthepotentialimportanceofsymplasticantioxidantsys- temsinthedetoxificationoftheROS.Bycontrast,relativelylittle attentionhasbeenpaidtothepotentialforthedetoxificationof ROSintheapoplast.However,manywelldocumentedantioxidants suchasAPX,POD,SOD,andCATarealsolocatedintheleafapoplast (CakmakandAtici,2009;Polleetal.,1994).Therefore,adverseenvi- ronmentalfactorsarealsocapableofinducingthesynthesisofROS inapoplasticspaceasintheintracellulararea.Thus,antioxidants locatedintheaqueousmatrixofleafcellwallsconstituteanimpor- tantfirstlineofdefenseagainsttheenvironmentalstress(Aticiand Nalbantoglu,2003).

Althoughsomereports haveinvestigated MF-orEF-induced oxidativestressandantioxidantresponse(Hajnorouzietal.,2011;

Sahebjameietal.,2007;Wangetal.,2009),toourknowledge,there isnoinformationavailableaboutMF-andEF-inducedapoplastic antioxidantresponse,althoughinitialeventsmostlikelyoccurin theapoplasticareaofplantcellssubjectedtobioticandabioticenvi- ronmentalfactors.Theobjectiveofthepresentstudywastoassess thepossibleeffectsofweakstaticMFandEFontheantioxidant statusofshallotleavesandtoevaluatewhethershiftsinantiox- idantstatusbetweenapoplasticandsymplastic areahelpplants adapttoanewenvironment.Shallotplantswerechosenforeffec- tiveevaluationofapoplasticandsymplasticantioxidantstatusin responsetoweakMFandEFapplicationsbecausetheapoplastic spacebetweencellsinanonionleafislargerthanmostotherplant leaves,andmoreuniformexposuretoleafcellscanbeachieved becauseofthechanneledcone-shapedstructureoftheleaves.

Materialsandmethods Plantgrowthandsampling

Freshshallot(AlliumascalonicumL.)bulbswereobtainedfrom FidanistanbulInc. (Istanbul,Turkey). Sixhealthy bulbs foreach group(control,MFapplied,EFapplied)wereplacedrootdownto thetopof50mlflasksfilledwithnutrientsolutionafterslightly cleaningand rinsingtherootregion.The nutrientmediumwas aspreviouslydescribed(SomervilleandOgren,1982),butathalf strength[2.5mMKNO3,1,25mMKH2PO4(pH5.6),1mMMgSO4, 1mMCa(NO3)2,25␮MFe-EDTA],supplementedwiththereported micronutrientmixat1× concentration.Flaskswereplacedincoils andbetweenplateswhereMFandEFweregenerated,respectively.

ControlgroupswereplacedincoilswherenoMFwasgenerated.

Shallots were sprouted under weakstatic MF and EF withthe magnitudes7mT MFand 20kV/m EF for17 days. Thenutrient solutionin flaskswasrenewedevery48htoavoidsolubleoxy- gendeficiencyorpossibleinfection.Samplingwasperformedon the8th,12thand17thdaysofgrowthinordertoanalyzepossible weakMF-andEF-inducedchangesintheapoplasticandsymplas- ticantioxidantsystemsinrelationtotheearlyleafage.Controland applicationgroupswerekeptatleast1mawayfromeachother toavoidanypotentialexternalinfluence.Allsampleswerekept inwell-controlledlaboratoryconditionsoftemperature(22±2C) andillumination(16h:8hlight/darkcircle).

Atharvest, roots and leavesof shallots wereseparated; the lengthof each partwas measuredwitha 0.1cm precisionand weighedwith10−4gaccuracy.Shootsandrootsweredriedat80C for48htodeterminedry biomass.Extractionofapoplastic and symplasticproteinswasperformedimmediatelyateachtimepoint.

Samplesrequiredforascorbate,glutathione,H2O2 andmalonyl- dialdehyde(MDA)determinationswereweighed,frozeninliquid nitrogenandstoredat−80Cforfurtheruse.

Magneticandelectricfieldexposure

Thebody materialof coilsused formagnetic treatmentwas madeofseverallayersofwoodlaminatedandgluedtoeachother.

Thecoildimensionwas30cmlongwithaninnerradiusof17cm;

theouterradiusofeachwas28cmand24cm,respectively.Eachof thecoilswaslocatedinaverticalposition.TheMFapplicationwas carriedoutinthecoilataverticalpositionof6–26cmabovethe coilbottom,whereauniformMFwasobtained.Theexposuremag- nitudeoftheMFdidnotatanypointdeviatemorethan6%fromthe centervalue.Aventilationsystemaroundthecoilswasemployedto avoidanoverheatingeffectfromthecurrentinthecoils.Thetem- peraturedeviationinsidethecoilswasnegligible(23±2C).The requiredcurrent(0.426A)andvoltage(36V)togenerateMFwas providedbypowersupplies(GlobaldualpowersupplyModelno:

3521,Wilmington,USA).Thenumberofturnsofwirewas17,000 andthewirediameterwas1mm.StaticcontinuousMFintheaxial centerofthecoilswasmeasuredas7mTwithagaussmeter(F.W.

BellGaussmeterModelno:5080,Delaware,USA).

TheEFintensitywasdeterminedastheratioofelectricvolt- agechargedonplatestothedistancebetweenthem.Theelectric fieldwascreatedbetweentwoparallelaluminumplates,whose diameterswere50cmanddistancebetweentwoplateswas75cm.

A50Hz, 15kV DCvoltagewasappliedtoobtainEFintensityof 20kV/m.AdiagramoftheexperimentisshowninFig.1.

Enzymeextraction

Apoplasticproteinsfrom leaveswereextractedas described previously(Vanackeretal.,1998)withsomemodifications.Har- vestedfreshleaves(6g)werecarefullycutwithasharpbistoury into1cm lengthsand rinsed in6 changes of distilled waterto removecellularproteinsandepicuticularwaxesfromthecutends.

The leaves were then vacuum-infiltrated for 15min in 20mM ascorbicacidand20mMCaCl2 solution.Theleaveswereblotted dry andplaced vertically in a 20ml syringe.Thesyringeswere placed incentrifuge tubes.The apoplasticextract wascollected fromthebottomofthetubes aftertheleaveswerecentrifuged at1500×g for20minat4C.Thenapoplasticextractfluid was centrifugedtwiceat1500×gfor5minat4Ctoremoveepicu- ticularwaxes.Aftercentrifugation,thesupernatantwastakenand proteinswereprecipitatedfromapoplasticsupernatantbyadding 1.5times(v/v)MeOHcontaining1%aceticacidandincubatedthe samplesovernightat−20C.Thensupernatantsampleswerecen- trifugedat3500×gfor20min,proteinpelletswerewashedwith

(3)

SW

PS

G

T

VM EC

E1 E2

R

: Electric field cell EC

: Switch SW

: Resistor R

: HV transformer T

: AC 220 V, 50 Hz PS

: Voltmeter VM

: Ground G

: Aluminum electrodes E1, E2

Fig.1.Setupforelectricfieldtreatment.

100%ice-coldEtOHand70%ice-coldEtOH,andstoredat−80Cfor furtheruseofapoplasticenzymeactivitydeterminations(Tasgin etal.,2006).Proteincontentoftheapoplasticsupernatantafter proteinprecipitationwasneverdetectedovermorethan7%ofthe precipitatedproteins.

Followingcollection of apoplastic proteins, theresidual leaf materialwaspulverizedinliquidnitrogenbymeansofamortar anda pestle.For enzymeextracts,1gleafwashomogenizedin 10mlofextractionbuffer(50mMKH2PO4,pH7.8containing2%

solublepolyvinylpyrrolidone,0.5mMascorbateand1mMEDTA).

Homogenatewascentrifugedat13,000× gfor40minat4Cand supernatantwascentrifugedtwiceat1500×gfor5minat4Cto removeepicuticularwaxes.Thensupernatantwasfrozeninliquid nitrogenandstoredat−80Cforfurtheruseasenzymeextract.

Determinationofenzymeactivities

Thedriedapoplasticproteinpelletsobtainedfromtheleaves were dissolved in 0.2M phosphate buffer (pH 6.5). Symplas- tic enzyme extractwas thawed and usedfor protein level and enzymeactivitydeterminations.Proteinestimationofapoplastic andsymplasticfluidswascarriedoutusingthemethodofBradford (Bradford,1976)usingbovineserumalbuminasstandard.

Glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activitywasusedtoassessthecontaminationdegreeofapoplastic extractbycytoplasmicconstituents.Activitywasmeasuredaccord- ingtotheprotocolasdescribedbefore(KornbergandHorecker, 1955).ThereductionofNADPat340nmwasfollowedusingan assay containing 66mM potassium phosphate buffer (pH 7.6), 10mMMgCl2,300␮MNADP,2mMglucose-6-phosphateand50␮l extract.TheactivityofG6PDHwascalculatedusinganextinction coefficientof6.22mM−1cm−1forNADPHat340nm.

Catalase(CAT,EC1.11.1.6)activitywasmeasuredbymonitoring thedecreaseinabsorbanceat240nmin50mMphosphatebuffer (pH7.5)containing20mMH2O2.TheactivityofCATwascalcu- latedusinganextinctioncoefficientof43.6mM−1cm−1forH2O2 at240nm(BeersandSizer,1952).

Unspecificperoxidase (GPOD,EC1.11.1.7)activity wasmea- suredbymonitoringtheincreaseinabsorbanceat470nmin50mM phosphatebuffer(pH5.5)containing1mMguaiacoland0.5mM H2O2.TheactivityofGPODwascalculatedusinganextinctioncoef- ficientof26.6mM−1cm−1forguaiacolat470nm(Upadhyayaetal., 1985).

Superoxidedismutase(SOD,EC1.15.1.1)activitywasestimated byrecordingthedecreaseinopticaldensity ofnitro-bluetetra- zoliumdyebytheenzyme(Dhindsaetal.,1981).Threemilliliters ofthereactionmixturecontained,2␮Mriboflavine,13mMmethi- onine,75␮Mnitrobluetetrazoliumchloride(NBT),0.1mMEDTA, 50mMphosphatebuffer(pH7.8),50mMsodiumcarbonateand 0.1mlfromtheapoplasticfraction.Reactionwasstartedbyadding 60␮Lfrom100␮Mriboflavinsolutionandplacingthetubesunder two30Wfluorescentlampsfor15min.Acompletereactionmix- turewithoutenzyme, which yieldedthe maximalcolor, served as control. Reaction was stopped by switching off the light. A non-irradiatedcompletereactionmixtureservedasablank.The absorbancewasrecordedat560nm,andoneunitofenzymeactiv- ity wasthat amountof enzymewhich reduced theabsorbance readingto50%incomparisonwithtubeslackingenzyme.

Glutathionereductase(GR,EC1.6.4.2)activitywasdetermined followingtheoxidationofNADPHat340nm(FoyerandHalliwell, 1976). The assay mixture contained 25mM sodium phosphate buffer (pH 7.8), 0.12mM NADPH, 0.5mM oxidized glutathione (GSSG)and0.1mlenzymeextractinafinalassayvolumeof1ml.

CorrectionsweremadeforanyNADPHoxidationintheabsenceof GSSG.TheactivityofGRwascalculatedusingamolarextinction coefficientof6.22mM−1cm−1forNADPHat340nm.

Ascorbateperoxidase(APX,EC1.11.1.11)activitywasdeter- minedasdetailedinNakanoandAsada(1981).Theassaymixture contained50mMpotassium phosphate buffer(pH 7.0),0.5mM ascorbic acid, 1.2mM H2O2, 0.1mM EDTA and 0.1ml enzyme extractinafinalassayvolumeof1ml.Enzymeactivitywascal- culatedusingamolarextinctioncoefficientof2.8mM−1cm−1for ascorbateat290nm.

Quantitationofascorbateandglutathione

Extractionofascorbateand glutathionewasaccomplishedas describedpreviously (NoctorandFoyer,1998).Freshleafmate- rial(0.5g)wasgroundinliquidnitrogenandthenextractedinto 2ml0.2NHCl.ThehomogenatewastransferredintoEppendorf tubes and centrifugedat 16,000×g for 10minat 4C. A 0.5ml supernatantwasneutralizedwith50␮lNaH2PO4(0.2M,pH5.6) and 0.4ml NaOH (0.2M). The final pH was between 5 and 6.

The levels of ascorbate and glutathione were measured using previouslydescribedenzyme-linkedspectrophotometricmethods (QuevalandNoctor,2007).Thetotalascorbatelevelwasquantified

(4)

afterconversionofdehydroascorbatetoascorbatebyincubation oftheneutralizedsupernatantwith1mMdithiothreitol(DTT)in NaH2PO4buffer(0.1M,pH7.5)for30min.Forascorbatemeasure- ment,theinitialabsorbanceofa30␮lofsupernatant(incubated with1mMDTT)wasmeasuredat265nminNaH2PO4(0.1M,pH 5.6),thenre-measuredover3minfollowingtheadditionofAscor- bateOxidase(0.5U).Anextinctioncoefficientof12.6mM−1cm−1 forascorbateat265nmwasusedforcalculation.Themethodfol- lowedforglutathionemeasurementreliesontheGR-dependent reductionof5,5-dithiobis(2-nitrobenzoicacid)(DTNB)monitored at 412nm. The assay mixture used for glutathione measure- mentcontains 100mM NaH2PO4 (pH 7.8),0.6mM DTNB, 6mM EDTA,0.1mMNADPH,25␮lextractand0.6UGR.Thechangein absorbanceat412nmwasrecordedfor5min.Glutathioneconcen- trationswerecalculatedfromastandardcurveconstructedusing GSHovertherangeof0–1nmol(y=1.143x−0.0453,R2=0.993).

Determinationofthemalonyldialdehydeandhydrogenperoxide levels

Thethiobarbituricacid(TBA)test,whichdeterminesmalonyl- dialdehyde(MDA) asanend productoflipid peroxidation,was employed to measure lipid peroxidation in the leavesof shal- lots. Briefly, 1g of leaf sample was homogenized in 5ml 80%

ethanolsolutionwithamortarandpestle.Thehomogenatewas centrifugedat3000×g for20minand2mlof supernatantwas aliquotedintotwoEppendorftubesas1mlpertube.Then;20%

trichloroacetic acid (TCA) (w/v) solution including 0.01% (w/v) butylatedhydroxytolueneand0.65%TBA(w/v),or1ml20%TCA solution including 0.01% (w/v) butylated hydroxytoluene was addedintothese aliquotsand theywere incubatedat95C for 20min.Thereactionwasstoppedbyplacingthereactiontubesinan icebathfor5minandthenthesampleswerecentrifugedat3000×g for 10min.The absorbanceof the supernatantswasmonitored at532nmfor MDAcompounds,440nmand600nmforcorrec- tionofanthocyaninandsugarabsorbance.TheMDAequivalents werecalculatedusinganextinctioncoefficientof157mM−1cm−1 asdescribedpreviously(Hodgesetal.,1999).

ForH2O2 determination,1gofleafsamplewasgroundinliq- uidnitrogen and homogenized in 5ml of 0.1% (w/v) TCA. The homogenatewascentrifugedat12,000×gfor15min.Analiquot (1ml)ofthesupernatantwasmixedwithanequalvolumeof10mM potassiumphosphatebuffer(pH7.0)(KH2PO4)and1mlof1MKI.

Theabsorbanceofthemixturewasmonitoredat390nm.Thecon- tentofH2O2 wascalculatedbyusingastandardcurve(Velikova etal.,2000).

Twoindependentexperiments,withthreereplicatesforeach measurement, wereperformed.All datawere expressedasthe meanvalues±standarddeviation(SD).Statisticalanalysiswascar- ried out from row data using two tailed probability values of thestudent’st-testandthedifferencesbetweentreatmentswere expressedassignificantatalevelofP<0.05,0.01,or0.001signifi- cancecriterion.

Resultsanddiscussion

Theworld’snaturalMFhasbeenreportedas25–65␮TandEF hasbeencalculatedas100–140V/minruralareas(Belyavskaya, 2004; Neamtu and Morariu, 2005). However, they can show dramaticincreasesin industrializedregions (Isobe etal., 1999).

According to the report released in 2001 by the American Conference of Governmental Industrial Hygenists Organization, occupationalthresholdlimitvaluesforworkersweredefinedas 25kV/mEFand10mTMF(Belyavskaya,2004).Inthisstudy,we wantedtoassessthepossibleeffectsofweakstaticMF(7mT)and

EF(20kV/m)ontheantioxidantstatusofplantleaves.Theshallot plantwaschosenduetothefeasibilitytoextractapoplasticfluids foreffectiveevaluationofapoplasticandsymplasticantioxidant statusinleavesinresponsetoweakMFandEFapplications.

Plants have the ability to adjust their metabolism accord- ingtochanging environmentalconditions.Theyacceleratetheir metabolism and growfaster when optimal conditions develop.

However,whenastressconditionarises,plantsgenerallydeceler- atetheirmetabolismandlimittheirgrowth(AticiandNalbantoglu, 2003).Inthisstudy,rootandleaflengthincreasedinresponsetoMF buttheseeffectswerenotobservedinresponsetoEFapplication (Table1).Moreover,weakMFinducedsproutingapproximately onedayearlierthanothergroups.Emergenceofthefirstleafwas observedon6thdayoftheincubation.Rootandleafdrybiomass increasedinresponsetoEFandMFapplications.Increaseswere foundtoberelatively higherunder EFapplication (Table 1).In plants,thereactiveoxygenspecies(ROS)productionlevelincreases understressconditionsoratsomegrowthstages(e.g.,germina- tion,earlygrowth,senescence).Atcertainlevels,increasesinROS productionimplyeitherincreasedmetabolicactivityorpossible redoximbalancedependingonchangesinthelevelsofoxidative stressmarkerssuchaslipidperoxidationandproteincarbonyla- tion(Mittler,2002).OurresultsshowedthatH2O2levelsdecreased, butthelevelofMDAcompounds,whichareendproductsoflipid peroxidation,remainedunchangeddependingonleafage(Fig.2a andb).YoungerleaveshadahigherH2O2butapproximatelythe sameMDAcompoundlevels,whichreflectsthefactthattheyhave ahigher metabolicactivitythan olderones.Anincrease inROS levels,tosomeextent,wasreportedasanindicatorofmetabolic activityinplants(Mittler,2002).Moreover,H2O2andMDAlevels didnotshowaconsiderablechangeinMFappliedleaves,butboth increasedsignificantlyinEFappliedleaveswhencomparedtotheir respectivecontrols(Fig.2aandb).Theseresultsshowthat7mTMF applicationdoesnot,but20kV/mEFapplicationmay,formastress factoronshallotgrowth.

Under stress conditions or increased metabolic activities at somegrowthstages,plantsgenerallyincreasetheactivityofoneor moreantioxidantmolecules,andtheelevatedactivitylevelsusually correlatewithincreasedstresstolerance(Mittler,2002).Therefore, resistancetostressortheholdingmaximumgrowthrateunder prevailingenvironmentalconditionsisrelatedtoaplant’santiox- idantcapacity,whichcounteractsredoximbalancebyscavenging overproducedROS.Inaddition,manystudieshavesuggestedthat enzymesystemslocalizedatthecellsurfaceorapoplastareimpor- tant sources of superoxide (O2) and H2O2 production (Tasgin etal.,2006).Theantioxidantenzymesinapoplastspacesofplants haveimportantrolesin theremovalofROSunderboth normal andstress conditions(CakmakandAtici, 2009;Patykowskiand Urbanek,2003).However,apossiblecorrelationbetweenapoplas- ticandsymplasticantioxidantpoolisnotwelldocumented,andto ourknowledge,thereisnostudyreportedthusfarontheevalua- tionofEForMFeffectsonapoplasticandsymplasticantioxidant systemsinplants.Ourresultsshowedthatthesolubleproteinlevel insymplasticareasslightlyincreasedinresponsetoMF(Fig.3a).

Ontheotherhand,12daysofMFapplicationcausedmorethan atwo-foldincreaseinproteinlevelsandastatisticallyimportant decreaseinproteinlevelwasobservedinapoplasticwashingfluid attheendof17daysofEFapplication(Fig.3b).Theseresultsshow thatdifferentenzymaticregulationpatternsmayexistinapoplas- ticandsymplasticareasofshallotleavesinresponsetoMFandEF applications.

Beforestartingenzymaticactivitydeterminations,wemeasured G6PDHactivitytoexaminewhethertherewascontaminationof symplasticfluidintoapoplasticareas.ActivityofG6PDHinapoplas- ticwashingfluidofallleafsampleswasbelowthedetectionlimits whilesymplasticG6PDHactivityincreasedon12thand17thdaysof

(5)

Table1

ChangesinthelengthanddrybiomassofshallotrootandleavesunderEFandMFconditions.

Parameters Control 7mTMF 20kV/mEF

Day8 Day12 Day17 Day8 Day12 Day17 Day8 Day12 Day17

Leaflength(cm) 4.63±0.21 9.28±0.71 14.11±1.27 6.12±0.81* 12.4±1.15* 17.8±2.1* 4.1±0.67 10.6±0.22 14.26±2.25 Rootlength(cm) 3.52±0.68 3.91±0.22 4.42±0.34 4.12±0.68 4.7±0.43* 5.58±0.41* 3.65±0.21 3.36±0.85 4.71±0.44 Leafdrybiomass(%) 5.71±0.44 5.87±0.55 6.37±0.21 6.15±0.22 5.81±0.62 7.38±0.38* 6.72±0.48* 6.95±0.29* 7.65±0.36* Rootdrybiomass(%) 6.24±0.36 6.46±0.25 6.85±0.62 6.62±0.51 7.2±0.47 6.87±1.07 7.18±0.27* 7.64±0.51* 8.42±0.46* Dataaremeans±SEofatleastsixseparatemeasurements.

*Asignificantdifferencefromthecontrolint-testatP<0.05inthesameday.

Fig.2. Changesin(a)cellularH2O2and(b)MDAlevelsinshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SEofatleastsixseparate measurements.Asteriskinthesamecolumndenoteasignificantdifferencefromthecontrolint-testatP<0.05.

MFandEFapplications(Fig.5a).Apoplasticwashingfluidisolated fromshallotleaveswasfoundtocontainCAT,GPOD,APX,andSOD, butnotGR.Thisisconsistentwithpreviousreports(Patykowski andUrbanek,2003).

Inthisstudy,symplasticGPODactivityincreasedwhilenosig- nificantchangewasobservedinapoplasticareasinresponsetoMF duringalldaysstudied(Fig.4aandb).Ontheotherhand,sym- plasticGPODactivitydidnotchange,butapoplasticGPODactivity decreased inresponse toEFapplication (Fig.4aand b).Unspe- cificPODsprotectcellsagainstdamagingeffectsofH2O2duringan oxidative-burstresponsewhichoccursasaresultofcellularredox changes.ApoplasticPODsareboundtocellwallpolymersbyionic orcovalentbonds,andwerereportedtobeeasilyreleasedfrom thecellwallintotheapoplastandplayacriticalroleinregulating thewallstiffeningprocess(DePintoandDeGara,2004),andmany otherfunctionsrelatedtotheirROSscavengingactivity(Xueetal., 2008)undernormalandstressconditions.OurresultsshowthatEF applicationmayimpedecellwalllignificationprocessbyaffecting

chemicalcompositionofapoplasticGPODandsomeotherrelated enzymesboundtocellwallpolymers.SymplasticGPODactivity decreased,butapoplasticGPODactivitydidnotshowasignificant quantitativechangedependingonleafagein anyofthegroups studied.Thefunctionalsignificance ofsuchchanges incellwall propertiesundertheinfluenceofMFandEFareworthyofdetailed investigation.

Remarkably, both CAT and SOD activities in apoplastic and symplasticareasincreasedinresponsetoMFandEFapplications (Fig.4c–f).However,increasesin enzyme activitieswerefound tobehigherinresponsetoEF.Oftheantioxidantenzymes,SOD catalyzestheconversionoftwosuperoxidemoleculestohydro- genperoxideand oxygen, andhydrogenperoxideis eliminated mainlybyCAT.IncreasedCATandSODactivitieshavebeenrelated toincreasedmetabolicactivity,coldtolerance(CakmakandAtici, 2009;Clareetal.,1984),freezingtolerance(Cakmaketal.,2010b;

McKersieetal.,1993),andsaltstresstolerance(Yazicietal.,2007).

Inthisstudy,apoplasticSODactivitydidnotchangebutsymplastic

Fig.3.Changesinsymplastic(a)andapoplastic(b)proteinlevelsinshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SEofatleastsix separatemeasurements.Valuesfollowedbydifferentsymbols(*,**,and***)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05,**P<0.01,or

***P<0.001).

(6)

Fig.4. Changesinsymplastic(a,c,e,andg)andapoplastic(b,d,f,andh)antioxidantenzymeactivitiesinshallotleavesinresponsetoweakstaticMFandEFapplications.

(aandb)GPOD,unspecificperoxidases;(candd)CAT,catalase;(eandf)SOD,superoxidedismutase;(gandh)APX,ascorbateperoxidase.Dataaremeans±SEofatleast sixseparatemeasurements.Valuesfollowedbydifferentsymbols(*,**,and***)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05,**P<0.01,or

***P<0.001).

SODactivitydecreasedquantitativelydependingonleafageinall groupsstudied(Fig.4eandf).Indeed,fullfunctionofthisenzyme isnotwelldocumented.Itisthereforedifficulttoassessthesignifi- canceofthedecreaseintheactivityofthisenzymeinthesymplast dependingontheageoftheleaf.ApoplasticSODhasbeenasso- ciatedwithcellwalllignification(Kukavicaetal.,2009).Thus, a possibleconclusionfromourresultsmightbethatsomeofthe symplasticSODmoleculesmightbetransferredtotheapoplastic areainordertohelpcellwallstrengtheningdependingonleafage.

IncreasedapoplasticSODactivityinresponsetoEFapplicationsup- portsthishypothesis,asapoplasticSODwasalsoimplicatedinthe perceptionandsignalingofoxidativestress(Foyeretal.,1997).

SymplasticAPXactivitydidnotchangeinresponsetoMFand EFapplications(Fig.4gandh),butsymplasticGRactivityincreased during12days ofEFapplication whiletherewasnosignificant changeinresponsetoMF(Fig.5b).Ontheotherhand,apoplastic APXactivitysharplydecreasedinEFappliedleavesbutiteither increasedor remained unaffectedin MFapplied leaves. To our

(7)

Fig.5. Changesin(a)glucose-6-phosphatedehydrogenase(G6PDH)and(b)glutathionereductase(GR)enzymeactivitiesisolatedfromresidualleafextractafterapoplastic fluidseparationinshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SEofatleastsixseparatemeasurements.Valuesfollowedbydifferent symbols(*or**)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05or**P<0.01).

knowledge,thereisnostudythusfarreportedoneffectsofMFand EFonapoplasticantioxidantstatus,butresearchersreporteddif- ferentresultsofMFandEFeffectsoncellularantioxidantenzyme activitiesinplants.IthasbeenreportedthatweakstaticMFs(10and 30mTfor5days,5heachday)increasedSODbutdecreasedCATand APXenzymeactivitiesintobaccocelllines(Sahebjameietal.,2007).

Supportedwithincreasedleveloflipidperoxidation,theseauthors concludedthatweakMFcouldhavedeteriorativeeffectonantioxi- dantdefensesystemofplantcells.Ontheotherhand,magnetically (180mT)pretreatedlentilseedsgrewfasterandappearedasmore resistanttodrought withtheincreasedSOD and APXactivities (ShabrangiandMajd,2009).Acomprehensivestudywasreported onthe stimulation of germinationand early growthof rice by usinghigh-voltageEFsintherangeof250–450kV/m(Wangetal., 2009).Theyobservedinducedactivitiesofantioxidantenzymes (SOD,APX,andCAT),andloweredmalonyldialdehydecontentin responsetoa300kV/mEFfor30minrightbeforegermination.They concludedthatahigh-voltageEFcouldelevatetheagedriceseeds’

vigorandimprovethemembranesystemofagedriceseedlings.In addition,ourpreviousinvestigation(Cakmaketal.,2010b)showed thatshortterm(10and40min)EFapplicationwithamagnitudeof 100kV/mdoesnothaveasignificanteffectonantioxidantenzyme activitiesundernormal growthconditions. However,10minEF rightbeforecoldapplicationcouldaugmentchillingresistanceof cold-sensitivebeanspecies withincreased CATand SOD activi- ties.Inthisstudy,weobservedsignificantincreasesofoxidative stressmarkers(H2O2andlipidperoxidationlevels)inresponseto EFapplicationbutnottoMF(Fig.2aandb).Moreover,increased CATandSODactivitieswerefollowedbydecreasedAPXactivityin

theapoplasticareaofEFappliedshallotleaves.However,apoplastic APXactivityeitherincreasedorremainedunaffectedbyMF(Fig.4).

BothCATandAPXareinvolvedinscavengingH2O2andtheyhave distinctaffinitylevelsfor H2O2.Catalasehasbeenreportedasa primaryenzymethateffectivelyeliminatesthebulkofH2O2while APXcanscavengelowlevelsofH2O2thatisnotremovedbyCAT asithashigheraffinityforH2O2comparedtoCAT(Datetal.,2001;

Ghanatietal.,2005).Inaddition,similarchangesinapoplasticAPX andPODactivities(Fig.4)inresponsetoMFandEFshowthatper- oxidasesareimportantelementsoftheapoplasttakingonthetask ofsensingandsignalingenvironmentalchanges.

Inthisstudy,increasesinGRandG6PDHactivitiesweremore pronouncedinEFappliedleavesthanMFappliedonesingeneral (Fig.5a andb).Glucose-6-phosphatedehydrogenase isthefirst enzymeofthepentosephosphatepathway.Thus,anincreasein thisenzymeactivitysupportedwithincreasedGRactivitymayindi- catethatascorbate–glutathionepathwayworksfasterinEFapplied leaves.Inthiscase,EFappliedleavesareexpectedtohavehigher levelsofascorbateandglutathione.However,increasesinascor- bateandglutathionelevelsweremorepronouncedinMFapplied leavesthanEFappliedones(Fig.6aandb).Sucheffectsremainto beinvestigatedinA.ascalonicum.

In conclusion,thedata presentedin this paperindicatethat weakMFpromotegrowth,possiblybyincreasingantioxidantsys- temactivity,butEFhassomenegativeeffectsonshallotgrowth despitealackofvisiblesymptomsofinjury.Anincreaseingrowth inresponsetoMF,changeinmetabolicactivitydependingonleaf age,andslightoxidativestresscausedbyEFaredirectlyrelated tocollaborationbetween apoplastic andsymplastic antioxidant

Fig.6.Changesin(a)totalascorbate(Asc+DHAsc)and(b)glutathione(GSH)contentofshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SE ofatleastsixseparatemeasurements.Valuesfollowedbydifferentsymbols(*and**)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05or

**P<0.01).

(8)

activityofleafcells.Differentialactivitylevelsofapoplastic and symplasticROSscavengersinresponsetoMFandEFshowedthat the apoplastic area is as important as the symplastic area for sensingandovercomingastressfactor.Shiftsinantioxidantsta- tusoftheapoplastandsymplastcontributetoredoxregulation and help plants adapt to a newenvironment. Lastly, weakMF applicationsmaybeinvolvedinantioxidant-mediatedreactionsin apoplastresultinginovercomingofpossibleredoximbalance.Thus, weakMFcanbeusedasaneffectivemeansforaugmentingplant resistancetodifferentstressfactors.Touncoverpossiblepractical applicationsofweakEFandMFinagriculture,moreresearchonthe effectsofweakMFandEFapplicationsongrowthandbiochemical responseinplantsisnecessary.Ourongoingstudiesarefocusedon thepotentialimportanceofapoplasticantioxidantsinmediating theredoxstateofplantcellsatdifferentgrowthstages.

Acknowledgement

ThisworkwassupportedbygrantsfromtheResearchFundof AtatürkUniversity(Grantno:BAP-2009/233,Grantno:2009/384) andTheScientificandTechnologicalResearchCouncilofTurkey (TUBITAK,grantno2218).

References

AhmadP,SarwatM,SharmaS.Reactiveoxygenspecies,antioxidantsandsignaling inplants.JPlantBiol2008;51:167–73.

AladjadjiyanA.Studyoftheinfluenceofmagneticfieldonsomebiologicalcharac- teristicsofZeamays.JCentEurAgric2002;3:89–94.

Atici O, Nalbantoglu B. Antifreeze proteins in higher plants. Phytochemistry 2003;64:1187–96.

BelyavskayaNA.Biologicaleffectsduetoweakmagneticfieldonplants.AdvSpace Res2004;34:1566–74.

BeersR,SizerI.Aspectrophotometricmethodformeasuringthebreakdownof hydrogenperoxidebycatalase.JBiolChem1952;195:133–40.

BradfordM.Arapidandsensitivemethodforthequantitationofmicrogramquan- titiesofproteinutilizingtheprincipleofprotein–dyebinding.AnalBiochem 1976;72:248–54.

CakmakT,AticiO.Effectsofputrescineandlowtemperatureontheapoplastic antioxidantenzymesintheleavesoftwowheatcultivars.PlantSoilEnviron 2009;55:320–6.

CakmakT,DumlupinarR,ErdalS.Accelerationofgerminationandearlygrowth ofwheatandbeanseedlingsgrownundervariousmagneticfieldandosmotic conditions.Bioelectromagnetics2010a;31:120–9.

Cakmak T, Dumlupinar R, Erdal S. Chilling resistance of Phaseolus vulgaris andBrassicaoleraceaunderahigh-intensityelectricfield.ZNaturforsch C 2010b;65:380–6.

ClareD,RabinowitchH,FridovichI.Superoxidedismutaseandchillinginjuryin Chlorellaellipsoidea.ArchBiochemBiophys1984;231:158–63.

CostanzoE.Theinfluenceofelectricfieldonthegrowthofsoyseedlings.JElectrostat 2008;66:417–20.

DatJF, VanMontaguM,Inze D,Van BreusegemF.Catalase-deficient tobacco plants:toolsforinplantastudiesontheroleofhydrogenperoxide.RedoxRep 2001;6:37–42.

De Pinto M, De Gara L. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation.J Exp Bot 2004;55:2559–69.

DhindsaR,PlumbdhindsaP,ThorpeT.Leafsenescence—correlatedwithincreased levelsofmembrane-permeabilityandlipid-peroxidation,anddecreasedlevels ofsuperoxide-dismutaseandcatalase.JExpBot1981;32:93–101.

FoyerC,HalliwellB.Presenceofglutathioneandglutathionereductaseinchloro- plast:aproposedroleinascorbicacidmetabolism.Planta1976;133:21–5.

FoyerC, LopezDelgadoH,DatJ,ScottI. Hydrogenperoxide-andglutathione- associatedmechanismsofacclimatorystresstoleranceandsignalling.Physiol Plantarum1997;100:241–54.

GhanatiF,MoritaA,YokotaH.Effectsofaluminumonthegrowthofteaplantand activationofantioxidantsystem.PlantSoil2005;276:133–41.

GriffithsDJ.Introductiontoelectrodynamics.3rded.PrenticeHall;1999.p.265–266.

ISBN0-13-805326-X.OCLC40251748.

HajnorouziA,VaezzadehM,GhanatiF,JamnezhadH,NahidianB.Growthpromo- tionandadecreaseofoxidativestressinmaizeseedlingsbyacombinationof geomagneticandweakelectromagneticfields.JPlantPhysiol2011;168:1123–8.

Hodges D, DeLong J, Forney C, Prange R. Improving the thiobarbituricacid- reactive-substancesassayforestimatinglipidperoxidationinplanttissues containinganthocyaninandotherinterferingcompounds.Planta1999;207:

604–11.

IsobeS,IshidaN,KoizumiM,KanoH,HazlewoodCF.Effectofelectricfieldonphysical statesofcell-associatedwateringerminatingmorninggloryseedsobservedby

1H-NMR.BiochimBiophysActa1999;1426:17–31.

KornbergA,Horecker B.Glucose-6-phosphate dehydrogenase.In:Colowick S, KaplanN,editors.Methodsinenzymology,vol.1.NewYork,USA:Academic Press;1955.p.323–5.

KukavicaB,MojovicM,Vuˇcini ´cZ,Maksimovi ´cV,TakahamaU,JovanovicSV.Gen- erationofhydroxylradicalinisolatedpearootcellwall,andtheroleofcell wall-boundperoxidase,Mn-SODandphenolicsintheirproduction.PlantCell Physiol2009;50(2):304–17.

McCannJ,DietrichF,RaffertyC,MartinAO.Acriticalreviewofthegenotoxicpoten- tialofelectricandmagneticfields.MutatResRevGenetToxicol1993;297:61–95.

McKersieB,ChenY,DebeusM,BowleyS,BowlerC,InzeD,etal.Superoxidedismu- taseenhancestoleranceoffreezingstressintransgenicalfalfa(Medicagosativa L.).PlantPhysiol1993;102:85.

MittlerR.Oxidative stress,antioxidants andstresstolerance.Trends PlantSci 2002;7:405–10.

MoonJD,ChungHS.AccelerationofgerminationoftomatoseedbyapplyingAC electricandmagneticfields.JElectrost2000;48:103–14.

NakanoY,AsadaK.Hydrogen-peroxideisscavengedbyascorbate-specificperoxi- daseinspinach-chloroplasts.PlantCellPhysiol1981;22:867–80.

NeamtuS,MorariuVV.Plantgrowthinexperimentalspaceflightfieldconditions.

RomanJBiophys2005;15:41–6.

NechitailoG,GordeevA.Effectofartificialelectricfieldsonplantsgrownunder microgravityconditions.SpaceLifeSci2001;28:629–31.

NoctorG,FoyerC.Are-evaluationoftheATP:NADPHbudgetduringC-3photosyn- thesis:acontributionfromnitrateassimilationanditsassociatedrespiratory activity?JExpBot1998;49:1895–908.

PatykowskiJ, UrbanekH.Activityofenzymesrelated toH2O2 generationand metabolisminleafapoplasticfractionoftomatoleavesinfectedwithBotrytis cinerea.JPhytopathol2003;151:153–61.

PhirkeP,KubdeA,UmbarkarS.Theinfluenceofmagneticfieldonplantgrowth.

SeedSciTechnol1996;24:375–92.

PolleA,OtterT,SeifertF.Apoplasticperoxidasesandlignificationinneedlesof Norwayspruce(PiceaabiesL.).PlantPhysiol1994;106:53–60.

QuevalG,NoctorG.AplatereadermethodforthemeasurementofNAD,NADP,glu- tathione,andascorbateintissueextracts:applicationtoredoxprofilingduring Arabidopsisrosettedevelopment.AnalBiochem2007;363:58–69.

SahebjameiH,AbdolmalekiP,GhanatiF.Effectsofmagneticfieldontheantioxidant enzymeactivitiesofsuspension-culturedtobaccocells.Bioelectromagnetics 2007;28:42–7.

ShabrangiA,MajdA.Effectofmagneticfieldsongrowthandantioxidantsystemsin agriculturalplants.In:Piers2009Beijing:ProgressinElectromagneticsResearch Symposium,ProceedingsIandII;2009.p.1142–1147.

SomervilleC,OgrenW.IsolationofphotorespirationmutantsinArabidopsisthaliana.

In:EdelmanM,HallickR,ChuaN,editors.Methodsinchloroplastbiology.New York,USA:ElsevierBiomedicalPress;1982.p.129–38.

StangeB,RowlandR,RapleyB,PoddJ.ELFmagneticfieldsincreaseaminoaciduptake intoViciafabaL.rootsandalterionmovementacrosstheplasmamembrane.

Bioelectromagnetics2002;23:347–54.

TasginE,AticiO,NalbantogluB,PopovaL.Effectsofsalicylicacidandcoldtreatments onproteinlevelsandontheactivitiesofantioxidantenzymesintheapoplastof winterwheatleaves.Phytochemistry2006;67:710–5.

UpadhyayaA,SankhlaD,DavisT,SankhlaN,SmithB.Effectofpaclobutrazolon theactivitiesofsomeenzymesofactivatedoxygen-metabolismandlipid- peroxidationinsenescingsoybeanleaves.JPlantPhysiol1985;121:453–61.

VanackerH,CarverT,FoyerC.Pathogen-inducedchangesintheantioxidantstatus oftheapoplastinbarleyleaves.PlantPhysiol1998;117:1103–14.

VashisthA,NagarajanS.Effectongerminationandearlygrowthcharacteristicsin sunflower(Helianthusannuus)seedsexposedtostaticmagneticfield.JPlant Physiol2010;167:149–56.

VelikovaV,YordanovI,EdrevaA.Oxidativestressandsomeantioxidantsystemsin acidrain-treatedbeanplants—protectiveroleofexogenouspolyamines.Plant Sci2000;151:59–66.

WangG,HuangJ,GaoW,LuJ,LiJ,LiaoR,etal.Theeffectofhigh-voltageelectrostatic field(HVEF)onagedrice(OryzasativaL.)seedsvigorandlipidperoxidationof seedlings.JElectrostat2009;67:759–64.

WawreckiW,Zagorska-MarekB.InfluenceofaweakDCelectricfieldonrootmeris- temarchitecture.AnnBot2007;100:791–6.

XueYJ,TaoL,YangZM.Aluminum-inducedcellwallperoxidaseactivityandlignin synthesisaredifferentiallyregulatedbyjasmonateandnitricoxide.JAgricFood Chem2008;56:9676–84.

YaziciI,TurkanI,SekmenA,DemiralT.Salinitytoleranceofpurslane(Portulaca oleraceaL.)isachievedbyenhancedantioxidativesystem,lowerleveloflipid peroxidationandprolineaccumulation.EnvironExpBot2007;61:49–57.

Referenties

GERELATEERDE DOCUMENTEN

The second Systematic Volume covers these elementary basic concepts, namely the concept of a legal order [juridical unity and multiplicity – a numerical analogy within the

[r]

● De JGZ-organisatie spreekt af waar de af- en overwegingen voor het wel of niet geven van een rotavaccinatie wordt genoteerd.   In beide gevallen zal, bij het overdragen van

Muscle derived stem cells (MDSC) ... Skeletal muscle side population cells .... Bone marrow derived stem cells ... Biological roles of myogenic specific cell identifiers ...

An integrated nanogrooved scaffold on the freestanding membrane provides structural guidance and stratifies the neuronal cell network formation on-chip, which can be an approach

Finally, for each lobe (excluding the middle lobe, as it is not a target for lung volume reduction), mean lung density (MLD) in HU, low attenuation value (LAV) as

Wauthlé, ’Assesing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method’, Proceedings of the instituion of

The vector field synthesizers and detectors allow full control over the amplitude, phase and polarization of light in approximately 10 4 pixels, which is theoretically sufficient