• No results found

Solutions to Theory Problem 1 LIGO-GW150914

N/A
N/A
Protected

Academic year: 2021

Share "Solutions to Theory Problem 1 LIGO-GW150914"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal +351 21 799 36 65

info@ipho2018.pt

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Solutions to Theory Problem 1

LIGO-GW150914

(V. Cardoso, C. Herdeiro)

July 15, 2018

v6.0

(2)

English (UK)

ST1-1

GW150914 (10 points)

Part A. Newtonian (conservative) orbits (3.0 points)

A.1 Apply Newton’s law to mass 𝑀1:

𝑀1d2π‘Ÿ1βƒ—

d𝑑2 = 𝐺 𝑀1𝑀2

| βƒ—π‘Ÿ2βˆ’ βƒ—π‘Ÿ1|2

βƒ—

π‘Ÿ2βˆ’ βƒ—π‘Ÿ1

| βƒ—π‘Ÿ2βˆ’ βƒ—π‘Ÿ1| . (1)

Use, from eq. (1) of the question sheet

βƒ—

π‘Ÿ2= βˆ’π‘€1

𝑀2π‘Ÿ1βƒ— , (2)

in eq. (1) above, to obtain

d2π‘Ÿ1βƒ—

d𝑑2 = βˆ’ 𝐺𝑀23 (𝑀1+ 𝑀2)2π‘Ÿ21

βƒ—

π‘Ÿ1

π‘Ÿ1. (3)

A.1

𝑛 = 3, 𝛼 = 𝐺𝑀23 (𝑀1+ 𝑀2)2 .

1.0pt

A.2 The total energy of the system is the sum of the two kinetic energies plus the gravitational poten- tial energy. For circular motions, the linear velocity of each of the masses reads

| ⃗𝑣1| = π‘Ÿ1Ξ© , | ⃗𝑣2| = π‘Ÿ2Ξ© , (4) Thus, the total energy is

𝐸 =1

2(𝑀1π‘Ÿ12+ 𝑀2π‘Ÿ22)Ξ©2βˆ’πΊπ‘€1𝑀2

𝐿 , (5)

Now,

(𝑀1π‘Ÿ1βˆ’ 𝑀2π‘Ÿ2)2= 0 β‡’ 𝑀1π‘Ÿ21+ 𝑀2π‘Ÿ22= πœ‡πΏ2. (6) Thus,

𝐸 = 1

2πœ‡πΏ2Ξ©2βˆ’ 𝐺𝑀 πœ‡

𝐿 . (7)

A.2

𝐴(πœ‡, Ξ©, 𝐿) =1

2πœ‡πΏ2Ξ©2.

1.0pt

A.3 Energy (3) of the question sheet can be interpreted as describing a system of a mass πœ‡ in a cir- cular orbit with angular velocity Ξ©, radius 𝐿, around a mass 𝑀 (at rest). Equating the gravitational acceleration to the centripetal acceleration:

𝐺𝑀

𝐿2 = Ω2𝐿 . (8)

This is indeed Kepler’s third law (for circular orbits). Then, from (7), 𝐸 = βˆ’1

2𝐺𝑀 πœ‡

𝐿 . (9)

A.3

𝛽 = βˆ’1 2 .

1.0pt

(3)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST1-2

Part B - Introducing relativistic dissipation (7.0 points)

B.1 Some simple trigonometry for the π‘₯, 𝑦 motion of the masses (in an appropriate Cartesian system) yields:

(π‘₯1, 𝑦1) = π‘Ÿ1(cos(Ω𝑑), sin(Ω𝑑)) , (π‘₯2, 𝑦2) = βˆ’π‘Ÿ2(cos(Ω𝑑), sin(Ω𝑑)) . (10) Then,

𝑄𝑖𝑗= 𝑀1π‘Ÿ21+ 𝑀2π‘Ÿ22 2

βŽ›βŽœ

⎜⎜

⎝

4

3cos2(Ω𝑑) βˆ’23sin2(Ω𝑑) 2 sin(Ω𝑑) cos(Ω𝑑) 0 2 sin(Ω𝑑) cos(Ω𝑑) 43sin2(Ω𝑑) βˆ’23cos2(Ω𝑑) 0

0 0 βˆ’23

⎞⎟

⎟⎟

⎠

, (11)

or, using some simple trigonometry and (6),

𝑄𝑖𝑗= πœ‡πΏ2 2

βŽ›βŽœ

⎜⎜

⎝

1

3+ cos 2Ω𝑑 sin 2Ω𝑑 0 sin 2Ω𝑑 13βˆ’ cos 2Ω𝑑 0

0 0 βˆ’23

⎞⎟

⎟⎟

⎠

. (12)

B.1

π‘˜ = 2Ξ© , π‘Ž1= π‘Ž2=1

3, π‘Ž3= βˆ’2

3, 𝑏1= 1, 𝑏2= βˆ’1, 𝑏3= 0 , 𝑐12= 𝑐21= 1, 𝑐𝑖𝑗 otherwise= 0 . 1.0pt

B.2 First take the derivatives:

d3𝑄𝑖𝑗

d𝑑3 = 4Ξ©3πœ‡πΏ2βŽ›βŽœβŽœβŽœ

⎝

sin 2Ω𝑑 βˆ’ cos 2Ω𝑑 0

βˆ’ cos 2Ω𝑑 βˆ’ sin 2Ω𝑑 0

0 0 0

⎞⎟

⎟⎟

⎠

. (13)

Then perform the sum:

d𝐸 d𝑑 = 𝐺

5𝑐5(4Ξ©3πœ‡πΏ2)2[2 sin2(2Ω𝑑) + 2 cos2(2Ω𝑑)] = 32 5

𝐺

𝑐5πœ‡2𝐿4Ξ©6. (14)

B.2

πœ‰ = 32 5 .

1.0pt

B.3 Now we assume a sequency of Keplerian orbits, with decreasing energy, which is being taken from the system by the GWs.

First, from (9), differentiating with respect to time, d𝐸

d𝑑 = 𝐺𝑀 πœ‡ 2𝐿2

d𝐿

d𝑑 , (15)

Since this loss of energy is due to GWs, we equate it with (minus) the luminosity of GWs, given by (14) 𝐺𝑀 πœ‡

2𝐿2 d𝐿

d𝑑 = βˆ’32 5

𝐺

𝑐5πœ‡2𝐿4Ξ©6. (16)

We can eliminate the 𝐿 and d𝐿/d𝑑 dependence in this equation in terms of Ξ© and dΞ©/d𝑑, by using Kepler’s third law (8), which relates:

𝐿3= 𝐺𝑀

Ξ©2 , d𝐿 d𝑑 = βˆ’2

3 𝐿 Ω

dΞ©

d𝑑 . (17)

(4)

English (UK)

ST1-3

Substituting in (16), we obtain:

(dΞ© d𝑑)

3

= (96 5 )

3Ξ©11

𝑐15𝐺5πœ‡3𝑀2≑ (96 5 )

3Ξ©11

𝑐15 (𝐺𝑀c)5. (18)

B.3

𝑀c= (πœ‡3𝑀2)1/5.

1.0pt

B.4 Angular and cycle frequencies are related as Ξ© = 2πœ‹π‘“. From the information provided above: GWs have a frequency which is twice as large as the orbital frequency, we have

Ξ© 2πœ‹ = 𝑓GW

2 . (19)

Formula (10) of the question sheet has the form dΞ©

d𝑑 = πœ’Ξ©11/3, πœ’ ≑ 96 5

(𝐺𝑀c)5/3

𝑐5 . (20)

Thus, from (11) of the question sheet

Ξ©(𝑑)βˆ’8/3= 8

3πœ’(𝑑0βˆ’ 𝑑) , (21)

or, using (20) and the definition of πœ’ gives 𝑓GWβˆ’8/3(𝑑) = (8πœ‹)8/3

5 (𝐺𝑀c 𝑐3 )

5/3

(𝑑0βˆ’ 𝑑) . (22)

B.4

𝑝 = 1 .

2.0pt

B.5 From the figure, we consider the two Δ𝑑’s as half periods. Thus, the (cycle) GW frequency is 𝑓GW= 1/(2Δ𝑑). Then, the four given points allow us to compute the frequency at the mean time of the two intervals as

𝑑AB 𝑑CD

𝑑 (s) 0.0045 0.037

𝑓GW(Hz) (2 Γ— 0.009)βˆ’1 (2 Γ— 0.006)βˆ’1

Now, using (22) we have two pairs of (𝑓GW,𝑑) values for two unknowns (𝑑0,𝑀c). Expressing (22) for both 𝑑AB and 𝑑CDand dividing the two equations we obtain:

𝑑0= 𝐴𝑑CDβˆ’ 𝑑AB

𝐴 βˆ’ 1 , 𝐴 ≑ (𝑓GW(𝑑AB) 𝑓GW(𝑑CD))

βˆ’8/3

. (23)

Replacing by the numerical values, 𝐴 ≃ 2.95 and 𝑑0 ≃ 0.054 s. Now we can use (22) for either of the two values 𝑑ABor 𝑑CDand determine 𝑀c. One obtains for the chirp mass

𝑀c≃ 6 Γ— 1031kg ≃ 30 Γ— π‘€βŠ™. (24)

Thus, the total mass 𝑀 is

𝑀 = 43/5𝑀c≃ 69 Γ— π‘€βŠ™. (25)

This result is actually remarkably close to the best estimates using the full theory of General Relativity!

[Even though the actual objects do not have precisely equal masses and the theory we have just used is not valid very close to the collision.]

(5)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST1-4

B.5

𝑀c≃ 30 Γ— π‘€βŠ™, 𝑀 ≃ 69 Γ— π‘€βŠ™.

1.0pt

B.6 From (8), Kepler’s law states that 𝐿 = (𝐺𝑀 /Ξ©2)1/3. The second pair of points highlighted in the plot correspond to the cycle prior to merger. Thus, we use (19) to obtain the orbital angular velocity at 𝑑CD:

Ω𝑑

CD ∼ 2.6 Γ— 102rad/s . (26)

Then, using the total mass (25) we find

𝐿 ∼ 5 Γ— 102km . (27)

Thus, these objects have a maximum radius of 𝑅max∼ 250 km. Hence they have over 30 times more mass and,

π‘…βŠ™

𝑅max ∼ 3 Γ— 103 (28)

they are 3000 times smaller than the Sun and!

Their linear velocity is

𝑣col=𝐿

2Ξ© ≃ 7 Γ— 104km/s . (29)

They are moving at over 20% of the velocity of light!

B.6

𝐿collision∼ 5 Γ— 102km , π‘…βŠ™

𝑅max ∼ 3 Γ— 103, 𝑣col 𝑐 ∼ 0.2 .

1.0pt

(6)

1050-187 Lisboa, Portugal +351 21 799 36 65

info@ipho2018.pt

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Detailed Marking Scheme Theory Problem 1

LIGO-GW150914

(V. Cardoso, C. Herdeiro)

July 24, 2018

v6.0

(7)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

MT1-1

GW150914 (10 points)

Part A. Newtonian (conservative) orbits (3.0 points)

A.1

Apply Newton’s law to body 1 0.3 Relate the particle positions 0.3 Final expression (identification of 𝑛 and 𝛼) 0.4

Total 1.0

[Give full points to final answer without derivation]

A.2

The total energy of the system 0.5

Obtain 𝑀1π‘Ÿ21+ 𝑀2π‘Ÿ22= πœ‡πΏ2 0.2

Final expression for the energy (identification of 𝐴(πœ‡, Ξ©, 𝐿) 0.3

Total 1.0

[Give full points to final answer without derivation]

A.3

Equate the gravitational acceleration to the centripetal acceleration 0.5

Obtain 𝐸 (identification of 𝛽) 0.5

Total 1.0

[Give full points to final answer without derivation; it is accepted to use virial theorem]

Part B - Introducing relativistic dissipation (7.0 points)

B.1

Cartesian components for βƒ—π‘Ÿ1and βƒ—π‘Ÿ2 0.2

Expression for 𝑄𝑖𝑗 0.5

Simplified expression for 𝑄𝑖𝑗(identification of π‘˜, π‘Žπ‘–, 𝑏𝑖, 𝑐𝑖𝑗) 0.3

Total 1.0

(8)

English (UK)

MT1-2

B.2

Third order derivative 0.5

Summation to obtain d𝐸/d𝑑 (identification of πœ‰) 0.5

Total 1.0

B.3

Obtain d𝐸/d𝑑 0.2

Identify the power loss with the luminosity of GWs 0.2 Write expressions for 𝐿 and d𝐿/d𝑑 0.2 Find the expression for (dΞ©/d𝑑)3 0.2

Expression for 𝑀c 0.2

Total 1.0

B.4

Relate the frequency of the GWs with the orbital frequency 0.5 Write eq. (10) in question sheet as dΞ©/d𝑑 = πœ’Ξ©11/3 0.5

Usage of (11) in the question sheet 0.5

Expression for the GW frequency (identification of 𝑝) 0.5

Total 2.0

[dimensional analysis to determine 𝑝 is OK]

B.5

Estimate frequencies and time averages 0.3

Obtain 𝑑0and 𝐴 0.3

Value for the chirp mass 0.3

Total mass 0.1

Total 1.0

B.6

Angular orbital velocity 0.3

Obtain 𝐿 and 𝑅max 0.3

Value for the collision velocity 0.4

Total 1.0

(9)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal +351 21 799 36 65

info@ipho2018.pt

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Solutions to Theory Problem 2

Where is the neutrino?

(Miguel C N Fiolhais and AntΓ³nio Onofre)

July 24, 2018

v1.2

(10)

English (UK)

ST2-1

Where is the neutrino? (10 points)

Part A. ATLAS Detector physics (4.0 points)

A.1

The magnetic force is the centripetal force:

π‘šπ‘£2

π‘Ÿ = 𝑒𝑣𝐡 β‡’ π‘Ÿ = π‘šπ‘£ 𝑒𝐡 . First express the velocity in terms of the kinetic energy,

𝐾 = 1

2π‘šπ‘£2β‡’ 𝑣 = √2𝐾 π‘š , and then insert it in the expression above for the radius to get

A.1

π‘Ÿ =

√2πΎπ‘š 𝑒𝐡 .

0.5pt

A.2

The radius of the circular motion of a charged particle in the presence of a uniform magnetic field is given by,

π‘Ÿ =π‘šπ‘£ 𝑒𝐡 .

This formula is valid in the relativistic scenario if the mass correction, π‘š β†’ π›Ύπ‘š is included:

π‘Ÿ = π›Ύπ‘šπ‘£ 𝑒𝐡 = 𝑝

𝑒𝐡 β‡’ 𝑝 = π‘Ÿπ‘’π΅ .

Note that the radius of the circular motion is half the radius of the inner part of the detector. One obtains [1 MeV/𝑐 = 5.34 Γ— 10βˆ’22m kg sβˆ’1]

A.2

𝑝 = 330 MeV/𝑐 .

0.5pt

A.3

The acceleration for the particle is π‘Ž = π‘’π‘£π΅π›Ύπ‘š βˆΌπ‘’π‘π΅π›Ύπ‘š, in the ultrarelativistic limit. Then,

𝑃 = 𝑒4𝑐2𝛾4𝐡2

6πœ‹πœ–0𝑐3𝛾2π‘š2 = 𝑒4𝛾2𝑐4𝐡2 6πœ‹πœ–0𝑐5π‘š2. Since 𝐸 = π›Ύπ‘šπ‘2we can obtain 𝛾2𝑐4=π‘šπΈ22 and, finally,

(11)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST2-2

𝑃 = 𝑒4

6πœ‹πœ–0π‘š4𝑐5𝐸2𝐡2. Therefore,

A.3

πœ‰ = 1

6πœ‹, 𝑛 = 5 and π‘˜ = 4.

1.0pt

A.4

The power emitted by the particle is given by, 𝑃 = βˆ’d𝐸

d𝑑 = 𝑒4

6πœ‹πœ–0π‘š4𝑐5𝐸2𝐡2. The energy of the particle as a function of time can be calculated from

∫

𝐸(𝑑)

𝐸0

1

𝐸2d𝐸 = βˆ’ ∫

𝑑

0

𝑒4

6πœ‹πœ–0π‘š4𝑐5𝐡2d𝑑 , where 𝐸(0) = 𝐸0. This leads to,

1 𝐸(𝑑)βˆ’ 1

𝐸0 = 𝑒4𝐡2

6πœ‹πœ–0π‘š4𝑐5 𝑑 β‡’ 𝐸(𝑑) = 𝐸0 1 + 𝛼𝐸0𝑑, with

A.4

𝛼 = 𝑒4𝐡2 6πœ‹πœ–0π‘š4𝑐5 .

1.0pt

A.5

If the initial energy of the electron is 100 GeV, the radius of curvature is extremely large (π‘Ÿ = 𝑒𝐡𝑐𝐸 β‰ˆ 167 m).

Therefore, in approximation, one can consider the electron is moving in the inner part of the ATLAS detector along a straight line. The time of flight of the electron is 𝑑 = 𝑅/𝑐, where 𝑅 = 1.1 m is the radius of the inner part of the detector. The total energy lost due to synchrotron radiation is,

Δ𝐸 = 𝐸(𝑅/𝑐) βˆ’ 𝐸0= 𝐸0

1 + 𝛼𝐸0𝑅𝑐 βˆ’ 𝐸0β‰ˆ βˆ’π›ΌπΈ02𝑅 𝑐 and

A.5

Δ𝐸 = βˆ’56 MeV .

0.5pt

(12)

English (UK)

ST2-3

A.6

In the ultrarelativistic limit, 𝑣 β‰ˆ 𝑐 and 𝐸 β‰ˆ 𝑝𝑐. The cyclotron frequency is, πœ”(𝑑) = 𝑐

π‘Ÿ(𝑑) =𝑒𝑐𝐡

𝑝(𝑑) = 𝑒𝑐2𝐡 𝐸(𝑑)

A.6

πœ”(𝑑) = 𝑒𝑐2𝐡

𝐸0 (1 + 𝑒4𝐡2

6πœ‹πœ–0π‘š4𝑐5𝐸0𝑑) .

0.5pt

(13)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST2-4

Part B. Finding the neutrino (6.0 points)

B.1

Since the π‘Š+ boson decays into an anti-muon and a neutrino, one can use principles of conservation of energy and linear momentum to calculate the unknown 𝑝z(𝜈) of the neutrino. Moreover, the anti- muon and the neutrino can be considered massless, which implies that the magnitude of their momenta (times 𝑐) and their energies are the same. Therefore, the conservation of linear momentum can be ex- pressed as

βƒ—

𝑝(π‘Š ) = 𝑝⃗(πœ‡)+ ⃗𝑝(𝜈), and the conservation of energy as,

𝐸(π‘Š ) = 𝑐𝑝(πœ‡)+ 𝑐𝑝(𝜈).

In addition, one can also relate the energy and the momentum of the π‘Š+boson through its mass, π‘š2π‘Š= (𝐸(π‘Š ))2/𝑐4βˆ’ (𝑝(π‘Š ))2/𝑐2

which leads to a quadratic equation on 𝑝𝑧(𝜈),

π‘š2π‘Š = [(𝑝(πœ‡)+ 𝑝(𝜈))2βˆ’ ( ⃗𝑝(πœ‡)+ ⃗𝑝(𝜈))2] /𝑐2

= (2𝑝(πœ‡)𝑝(𝜈)βˆ’ 2 ⃗𝑝(πœ‡)β‹… ⃗𝑝(𝜈)) /𝑐2

B.1

π‘š2π‘Š= 1

𝑐2(2𝑝(πœ‡)√(𝑝T(𝜈))2+ (𝑝(𝜈)𝑧 )2βˆ’ 2 ⃗𝑝T(πœ‡)β‹… ⃗𝑝T(𝜈)βˆ’ 2𝑝𝑧(πœ‡)𝑝𝑧(𝜈)) .

1.5pt

B.2

The numerical substitution directly in the answer of B.1, using

𝑝(πœ‡)= 37.2 GeV/𝑐 π‘š2π‘Šπ‘2= 6464.2 (GeV/𝑐)2 𝑝(𝜈) 2T = 10 864.9 (GeV/𝑐)2

βƒ—

𝑝T(πœ‡)β‹… ⃗𝑝T(𝜈)= 2439.3(GeV/𝑐)2 𝑝(πœ‡)𝑧 = βˆ’12.4 GeV/𝑐 , leads to

6464.2 = 74.4√10 864.9 + 𝑝(𝜈) 2𝑧 βˆ’ 4878.6 + 24.8𝑝(𝜈). This is a quadratic equation, equivalent to

0.88889 𝑝(𝜈) 2𝑧 + 101.64 𝑝(𝜈)𝑧 βˆ’ 12378 = 0 whose solutions are:

(14)

English (UK)

ST2-5

B.2

𝑝(𝜈)𝑧 = 74.0 GeV/𝑐 or 𝑝(𝜈)𝑧 = βˆ’188.3 GeV/𝑐.

1.5pt

The general solution of the equation above in B.1 leads to

𝑝(𝜈)𝑧 = 2 ⃗𝑝T(πœ‡)β‹… ⃗𝑝T(𝜈)𝑝(πœ‡)𝑧 + π‘š2π‘Šπ‘2𝑝(πœ‡)𝑧

2(𝑝(πœ‡)T )2

±𝑝(πœ‡)βˆšβˆ’4(𝑝(πœ‡)T )2(𝑝(𝜈)T )2+ 4( ⃗𝑝T(πœ‡)β‹… ⃗𝑝T(𝜈))2+ 4 ⃗𝑝T(πœ‡)β‹… ⃗𝑝T(𝜈)π‘š2π‘Šπ‘2+ π‘š4π‘Šπ‘4 2(𝑝(πœ‡)T )2

Numerical substitution leads to the above mentioned values for 𝑝(𝜈)𝑧 .

B.3

The final state particles of the top quark decay are the anti-muon, the neutrino and jet 1. Since the neutrino is now fully reconstructed the energy and linear momentum of the top quark can be calculated as,

𝐸(t) = 𝑐𝑝(πœ‡)+ 𝑐𝑝(𝜈)+ 𝑐𝑝(𝑗1)

βƒ—

𝑝(t) = 𝑝⃗(πœ‡)+ ⃗𝑝(𝜈)+ ⃗𝑝(𝑗1). The top quark mass is,

π‘št = √(𝐸(t))2/𝑐4βˆ’ ( ⃗𝑝(t))2/𝑐2

= π‘βˆ’1√(𝑝(πœ‡)+ 𝑝(𝜈)+ 𝑝(𝑗1))2βˆ’ ( ⃗𝑝(πœ‡)+ ⃗𝑝(𝜈)+ ⃗𝑝(𝑗1))2. The substitution of values leads to two possible masses:

B.3

π‘št= 169.3 GeV/𝑐2 or π‘št= 311.2 GeV/𝑐2

1.0pt

B.4

According to the frequency distribution for signal (dashed line), the probability of the π‘št= 169.3 GeV/𝑐2 solution is roughly 0.1 while the probability of the π‘št= 311.2 GeV/c2solution is below 0.01. Therefore,

B.4 The most likely candidate is the π‘št= 169.3 GeV/c2solution. 1.0pt

(15)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST2-6

B.5

The top quark energy for the most likely candidate is 𝐸(t)= 𝑐𝑝(πœ‡)+ 𝑐𝑝(𝜈)+ 𝑐𝑝(𝑗1)= 272.6 GeV .

𝑑 = 𝑣𝑑 = 𝑣𝛾𝑑0= 𝑝(t)

π‘št𝑑0= 𝑐𝑑0√ 𝐸(t)2 π‘š2t𝑐4 βˆ’ 1 .

B.5

𝑑 = 2 Γ— 10βˆ’16m .

1.0pt

(16)

1050-187 Lisboa, Portugal +351 21 799 36 65

info@ipho2018.pt

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Detailed Marking Scheme Theory Problem 2

Where is the neutrino?

(Miguel C N Fiolhais and AntΓ³nio Onofre)

July 24, 2018

v1.2

(17)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

MT2-1

Where is the neutrino? (10 points)

Part A. ATLAS Detector physics (4.0 points)

A.1

Magnetic force as centripetal force 0.2 Velocity in terms of the kinetic energy 0.2 Final expression for the radius 0.1

Total 0.5

A.2

Recognize that π‘š β†’ π›Ύπ‘š 0.2

Expression for 𝑝 0.1

Radius of the circular motion is half the radius of the inner part of the detector 0.1

Final numerical expression for 𝑝 0.1

Total 0.5

A.3

Acceleration for the particle 0.2

Replace π‘Ž in the given expression for 𝑃 0.2

Use 𝐸 = π›Ύπ‘šπ‘2 0.2

Final expression for 𝑃 with identification of πœ‰, 𝑛, π‘˜ 0.4

Total 1.0

A.4

Power emitted by the particle 0.3 Solve the integral to get𝐸(𝑑)1 βˆ’πΈ1

0 = 𝛼𝑑 0.4

Arrive at expression for 𝐸(𝑑) and identify 𝛼 0.3

Total 1.0

(18)

English (UK)

MT2-2

A.5

Electron moving in a straight line 0.1

Time of flight 0.1

Expression for the energy lost 0.2 Final numerical value for energy lost 0.1

Total 0.5

A.6

𝑣 ≃ 𝑐 (ultrarelativistic limit) 0.1 𝐸 ≃ 𝑝𝑐 (ultrarelativistic limit) 0.1 Expression for the frequency 0.3

Total 0.5

Part B. Finding the neutrino (6.0 points)

B.1

Expression for ⃗𝑝(π‘Š ) 0.3

Expression for 𝐸(π‘Š ) 0.3

Write the initial expression for π‘š2π‘Š 0.3 Arrive at the final expression for π‘š2π‘Š 0.6

Total 1.5

B.2

Numerical values for 𝑝(πœ‡), π‘š2π‘Šπ‘2, 𝑝(𝜈) 2T , ⃗𝑝T(πœ‡)β‹… ⃗𝑝T(𝜈), 𝑝𝑧(πœ‡)(0.2 points each) 1.0 Get the two numerical solutions of the quadratic equation 0.5

Total 1.5

(19)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

MT2-3

B.3

Expression for 𝐸(t) 0.1

Expression for ⃗𝑝(t) 0.1 Write the initial expression for π‘št 0.2 Arrive at the two possible masses 0.6

Total 1.0

B.4

Estimate the probability for the lighter mass 0.3 Estimate the probability for the heavier mass 0.3 Conclude about the most likely candidate 0.4

Total 1.0

B.5

Numerical value for 𝐸(t) 0.4 Analytical expression for 𝑑 0.4 Numerical value for 𝑑 0.2

Total 1.0

(20)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal +351 21 799 36 65

info@ipho2018.pt

Solutions to Theory Problem 3

Physics of Live Systems

(Rui Travasso, LucΓ­lia Brito)

July 24, 2018

v1.0

(21)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST3-1

Physics of Live Systems (10 points)

Part A. The physics of blood flow (4.5 points)

A.1

Since the vessel network is symmetrical, the flow in a vessel of level 𝑖 + 1 is half the flow in a vessel of level 𝑖.

In this way, we can sum the pressure differences in all levels:

Δ𝑃 =

π‘βˆ’1

βˆ‘

𝑖=0

𝑄𝑖𝑅𝑖 = 𝑄0

π‘βˆ’1

βˆ‘

𝑖=0

𝑅𝑖 2𝑖. Introducing the radii dependences yields

Δ𝑃 = 𝑄0

π‘βˆ’1

βˆ‘

𝑖=0

8β„“π‘–πœ‚

2π‘–πœ‹π‘Ÿπ‘–4 = 𝑄08β„“0πœ‚ πœ‹π‘Ÿ40

π‘βˆ’1

βˆ‘

𝑖=0

24𝑖/3

2𝑖2𝑖/3 = 𝑄0𝑁8β„“0πœ‚ πœ‹π‘Ÿ40 . Therefore

𝑄0= Δ𝑃 πœ‹π‘Ÿ40 8𝑁 β„“0πœ‚ . Hence, the flow rate for a vessel network in level 𝑖 is

A.1

𝑄𝑖= Δ𝑃 πœ‹π‘Ÿ40 2𝑖+3𝑁 β„“0πœ‚ .

1.3pt

A.2

Replace values in the formula and change units appropriately 𝑄0 = Δ𝑃 πœ‹π‘Ÿ40

8𝑁 β„“0πœ‚ =

= (55 βˆ’ 30) Γ— 1.013 Γ— 105Γ— 3.1415 Γ— (6.0 Γ— 10βˆ’5)4

760 Γ— 48 Γ— 2.0 Γ— 10βˆ’3Γ— 3.5 Γ— 10βˆ’3 = 4.0 Γ— 10βˆ’10m3/s to obtain the final value in the requested unites:

A.2

𝑄0≃ 1.5 mβ„“/h .

0.5pt

(22)

English (UK)

ST3-2

A.3

The current is given by

𝐼 = 𝑃ineπ‘–πœ”π‘‘ 𝑅 + π‘–πœ”πΏ +π‘–πœ”πΆ1 . The pressure difference in the capacitor is

𝑃oute𝑖(πœ”π‘‘+πœ™)= 𝑃ineπ‘–πœ”π‘‘ 𝑅 + π‘–πœ”πΏ +π‘–πœ”πΆ1

1

π‘–πœ”πΆ = 𝑃ineπ‘–πœ”π‘‘ π‘–πœ”πΆπ‘… βˆ’ πœ”2𝐿𝐢 + 1 . The amplitude is

𝑃out= 𝑃in

√(1 βˆ’ πœ”2𝐿𝐢)2+ πœ”2𝐢2𝑅2 . To be smaller than 𝑃in, for πœ” β†’ 0:

(1 βˆ’ πœ”2𝐿𝐢)2+ πœ”2𝐢2𝑅2> 1 ⟺ βˆ’2𝐢𝐿 + 𝐢2𝑅2> 0 .

Replacing the expressions for 𝐿, 𝐢, and 𝑅 we get: 3πΈβ„Žπ‘Ÿ64πœ‚2β„“32𝜌 > 1 . A.3

𝑃out= 𝑃in

√(1 βˆ’ πœ”2𝐿𝐢)2+ πœ”2𝐢2𝑅2 . Condition:

64πœ‚2β„“2 3πΈβ„Žπ‘Ÿ3𝜌> 1 .

2.0pt

Alternative way to obtain 𝑃out:

The amplitude of the current in the equivalent circuit is 𝐼0= 𝑃𝑍in, where

𝑍 = βˆšπ‘…2+ (πœ”πΏ βˆ’ 1 πœ”πΆ)

2

is the modulus of the impedance. Hence, the voltage amplitude in the capacitor is 𝑃out= 1

πœ”πΆΓ— 𝐼0= 𝑃in

βˆšπœ”2𝐢2𝑅2+ (πœ”2𝐿𝐢 βˆ’ 1)2.

A.4

The previous condition can also be expressed as

β„Ž < 64πœ‚2β„“2 3πΈπ‘Ÿ3𝜌 . For the network referred to in A.2

β„Ž < 64πœ‚2β„“20Γ— 2𝑖

3 Γ— 22𝑖/3πΈπ‘Ÿ30𝜌 = 64 Γ— (3.5 Γ— 10βˆ’3)2Γ— (2.0 Γ— 10βˆ’3)2

3 Γ— 0.06 Γ— 106Γ— (6.0 Γ— 10βˆ’5)3Γ— 1.05 Γ— 103 Γ— 2𝑖/3 = 7.7 Γ— 10βˆ’5Γ— 2𝑖/3.

(23)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST3-3

For 𝑖 = 0, in the worse case scenario,

β„Žmax= 7.7 Γ— 10βˆ’5Γ— 20= 7.7 Γ— 10βˆ’5 m

This value is certainly observed in these vessels since their radius range from 18 πœ‡m to 60 πœ‡m. A wall width smaller than 80 πœ‡m is certainly reasonable.

A.4 Maximum β„Ž = 8 Γ— 10βˆ’5m 0.7pt

Part B. Tumor growth (5.5 points)

B.1

The expressions for the masses of tumour and normal tissue are written as:

⎧{

⎨{

⎩

𝑀T= 𝑉T𝜌T= 𝑉T𝜌0(1 +𝐾𝑝

T) 𝑀N= 𝑉 𝜌0= (𝑉 βˆ’ 𝑉T)𝜌0(1 + 𝐾𝑝

N) The pressure, 𝑝, can be expressed as

𝑝 =𝑀T𝐾T 𝑉T𝜌0 βˆ’ 𝐾T and, then, used in the equation for 𝑀N:

𝑀N= (𝑉 βˆ’ 𝑉T)𝑀N

𝑉 [(1 βˆ’ 𝐾T

𝐾N) + 𝑀T𝑉 𝐾T 𝑉T𝑀N𝐾N] Simplifying and rearranging the terms, the equation for 𝑣 becomes

(1 βˆ’ πœ…) 𝑣2βˆ’ (1 + πœ‡) 𝑣 + πœ‡ = 0 ,

for which the solution is (the other solution of the quadratic equation is not physically relevant since does not lead to 𝑣 = 0 for πœ‡ = 0)

B.1

𝑣 = 1 + πœ‡ βˆ’ √(1 + πœ‡)2βˆ’ 4πœ‡ (1 βˆ’ πœ…)

2(1 βˆ’ πœ…) .

1.0pt

B.2

For π‘Ÿ < 𝑅T, the conservation of energy implies that 4πœ‹π‘Ÿ2(βˆ’π‘˜)d𝑇

dπ‘Ÿ = 𝒫4 3πœ‹π‘Ÿ3.

(24)

English (UK)

ST3-4

Therefore, the temperature difference to 37oC = 310.15 K, Δ𝑇 (π‘Ÿ), is given by Δ𝑇 (π‘Ÿ) = βˆ’π’«π‘Ÿ2

6π‘˜ + 𝐢 , where 𝐢 is a constant.

For π‘Ÿ > 𝑅T, the conservation of energy implies that 4πœ‹π‘Ÿ2(βˆ’π‘˜)d𝑇

dπ‘Ÿ = 𝒫4 3πœ‹π‘…3T. Therefore, the temperature difference to 37oC is

Δ𝑇 (π‘Ÿ) = 𝒫𝑅3T 3π‘˜π‘Ÿ .

In this case there is no constant, since very far away the increase in temperature is zero.

Matching the two solutions at π‘Ÿ = 𝑅Tgives

𝐢 =𝒫𝑅2T 2π‘˜ .

Therefore the temperature at the centre of the tumour, in SI units, is

B.2 Temperature: 310.15 +𝒫𝑅2π‘˜2T. 1.7pt

B.3

The increase in temperature at the tumour surface (the lower temperature in the tumour) is Δ𝑇 (𝑅T) = 𝒫𝑅T2

3π‘˜ . This increase should be equal to 6.0 K. Therefore,

𝒫 = 3Δ𝑇 π‘˜

𝑅2T =3 Γ— 6 Γ— 0.6

0.052 = 4.3 kW/m3.

B.3 𝒫min= 4.3 kW/m3. 0.5pt

B.4

We can relate π›Ώπ‘Ÿ with the pressure in the tumour, using the relation given in the text up to leading order in 𝑝 βˆ’ 𝑃cap: π›Ώπ‘Ÿ = 2(π‘π‘βˆ’π‘ƒcap

cβˆ’π‘ƒcap) π›Ώπ‘Ÿc. Therefore, if 𝑝 βˆ’ 𝑃capis very small, also it is π›Ώπ‘Ÿ.

The pressure can be related with the volume. We know that 𝑀N

𝑉N = 𝜌0𝑉

𝑉 βˆ’ 𝑉T = 𝜌0

1 βˆ’ 𝑣 = 𝜌0(1 + 𝑝 𝐾N) .

(25)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

ST3-5

And so 𝑝 = 𝐾1βˆ’π‘£N𝑣.

When the thinner vessels are narrower, the flow rate in the main vessel is altered:

Δ𝑃 = (𝑄0+ 𝛿𝑄0)

π‘βˆ’1

βˆ‘

𝑖=0

8β„“π‘–πœ‚

2π‘–πœ‹π‘Ÿπ‘–4 = (𝑄0+ 𝛿𝑄0)8β„“0πœ‚ πœ‹π‘Ÿ40

βŽ›βŽœ

⎜

⎝

π‘βˆ’2

βˆ‘

𝑖=0

24𝑖/3

2𝑖2𝑖/3 + 24(π‘βˆ’1)/3 2π‘βˆ’12(π‘βˆ’1)/3(1 βˆ’π‘Ÿ π›Ώπ‘Ÿ

0/2(π‘βˆ’1)/3)4

⎞⎟

⎟

⎠

⟹ Δ𝑃 ≃ (𝑄0+ 𝛿𝑄0) Δ𝑃

𝑁 𝑄0(𝑁 βˆ’ 1 + 1 + 4 π›Ώπ‘Ÿ π‘Ÿπ‘βˆ’1) Noting that π›Ώπ‘„π‘„π‘βˆ’1

π‘βˆ’1 =𝛿𝑄𝑄0

0, we obtain

1 + π›Ώπ‘„π‘βˆ’1

π‘„π‘βˆ’1 = 1

1 + 𝑁 π‘Ÿ4 π›Ώπ‘Ÿ

π‘βˆ’1

≃ 1 βˆ’ 4 π›Ώπ‘Ÿ 𝑁 π‘Ÿπ‘βˆ’1 . And so:

π›Ώπ‘„π‘βˆ’1 π‘„π‘βˆ’1 ≃ βˆ’4

𝑁 π›Ώπ‘Ÿ π‘Ÿπ‘βˆ’1 . Putting all together

B.4 π›Ώπ‘„π‘βˆ’1

π‘„π‘βˆ’1 ≃ βˆ’2 𝑁

𝐾N𝑣 βˆ’ (1 βˆ’ 𝑣)𝑃cap (1 βˆ’ 𝑣)(𝑝cβˆ’ 𝑃cap)

π›Ώπ‘Ÿc π‘Ÿπ‘βˆ’1 .

2.3pt

(26)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal +351 21 799 36 65

info@ipho2018.pt

Detailed Marking Scheme Theory Problem 3

Physics of Live Systems

(Rui Travasso, LucΓ­lia Brito)

July 13, 2018

v1.0

(27)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

MT3-1

Physics of Live Systems (10 points)

Part A. The physics of blood flow (4.5 points)

A.1

Flow in a 𝑖 + 1 level vessel is half of flow in a 𝑖 level vessel 0.3

Obtain Δ𝑃 for all levels 0.3

Introduce radii dependences to obtain Δ𝑃 0.3

Expression for 𝑄0 0.2

Expression for 𝑄𝑖 0.2

Total 1.3

A.2

Replace values in formula with the correct units 0.3 Obtain final value in the requested units 0.2

Total 0.5

A.3

Obtain the current 0.5

Final expression for 𝑃out 0.5

Arrive at intermediate condition βˆ’2𝐢𝐿 + 𝐢2𝑅2> 0 0.5 Obtain the condition3πΈβ„Žπ‘Ÿ64πœ‚2β„“32𝜌 > 1 0.5

Total 2.0

A.4

Solve inequation in A.3 in order to β„Ž 0.2 Replace the values for the network 0.3 Obtain the maximum value for β„Ž 0.2

Total 0.7

(28)

English (UK)

MT3-2

Part B. Tumor growth (5.5 points)

B.1

Expressions for the masses of tumour and normal tissues (0.1 each) 0.2

Solve for the pressure 0.2

Equation without pressure 0.2

Solve to obtain the final solution for 𝑣 (if not in reduced variables discount 0.2) 0.4

Total 1.0

B.2

Conservation of energy for π‘Ÿ < 𝑅T 0.4 Solve to obtain the temperature difference to 37oC 0.2 Conservation of energy for π‘Ÿ > 𝑅T 0.4 Solve to obtain the temperature difference to 37oC 0.2

Find the integration constant, 𝐢 0.2

Final result for 𝑇 (π‘Ÿ = 0) 0.3

Total 1.7

[Forget to add body temperature (between this question and the question below), discount 0.5 pt.]

B.3

Consider the increase of temperature at the tumour surface 0.2 Equate the temperature increase to 6.0 K 0.1 Obtain the numerical value for the power 0.2

Total 0.5

[Forget to add body temperature (between this question and the question above), discount 0.5 pt.]

(29)

Secretariado IPhO 2018

Sociedade Portuguesa de FΓ­sica Avenida da RepΓΊblica NΒΊ45 3ΒΊEsq 1050-187 Lisboa, Portugal

+351 21 799 36 65 info@ipho2018.pt

Theory

English (UK)

MT3-3

B.4

Relate π›Ώπ‘Ÿ with pressure in tumour, up to leading order in 𝑝 βˆ’ 𝑃cap 0.3

Relate pressure with tumour volume (discount 0.2 if 𝑝 is not written as function of reduced variables) 0.4 Use the result of part A to calculate the new flow (include correctly the radius change at the capillary level) 0.3 Notice thatπ›Ώπ‘„π‘„π‘βˆ’1

π‘βˆ’1 = 𝛿𝑄𝑄0

0 0.3

Obtainπ›Ώπ‘„π‘„π‘βˆ’1

π‘βˆ’1 ≃ βˆ’π‘4 π‘Ÿπ›Ώπ‘Ÿ

π‘βˆ’1 0.6

Final result for π›Ώπ‘„π‘βˆ’1/π‘„π‘βˆ’1 0.4

Total 2.3

Referenties

GERELATEERDE DOCUMENTEN

de gekweekte soorten moet worden vergroot en autonomie verbeterd Vissen, die in de Nederlandse kweeksystemen opgroeien, komen voor een groot deel uit commerciΓ«le

8d Write down the condition to obtain a negative force (slowing down the atom). Write down the condition to obtain a slowing down force on the atoms. independent of the

Digital Camera Two factors limit the resolution of the camera as a pho- tographic tool: the diffraction by the aperture and the pixel size.. For diffrac- tion, the inherent

The data

In this chapter, the study on the relationship between corporate donors who fund NPOs as part of their CSI-spend and the NPOs who receive this funding will be introduced by means of a

Ideas ofa simplicial variable dimension restart algorithm to ap- proximate fixed points on Rn developed by the authors and the linear com- plementarity problem algorithm of Talman

Suikkanen presents a possible response on behalf of the error theorist ( 2013 , 182). He also rejects this response, but I think that in a slightly modi fied form, this response

bezorgdheid over de natuur 7 wat vind u van de hoeveelheid natuur in Nederland 9 wat vindt u van de hoeveelheid natuur in de woonomgeving 10 wat vindt u van de hoeveelheid vormen