• No results found

University of Groningen Greenhouse gas mitigation strategies for the oil industry - bottom-up system analysis on the transition of the Colombian oil production and refining sector Yanez Angarita, Edgar

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Greenhouse gas mitigation strategies for the oil industry - bottom-up system analysis on the transition of the Colombian oil production and refining sector Yanez Angarita, Edgar"

Copied!
37
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Greenhouse gas mitigation strategies for the oil industry - bottom-up system analysis on the transition of the Colombian oil production and refining sector

Yanez Angarita, Edgar

DOI:

10.33612/diss.158071720

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Yanez Angarita, E. (2021). Greenhouse gas mitigation strategies for the oil industry - bottom-up system analysis on the transition of the Colombian oil production and refining sector. University of Groningen. https://doi.org/10.33612/diss.158071720

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

8 REFERENCES

1. IEA. World Energy Outlook 2019 [Internet]. 2019. Available from:

https://webstore.iea.org/download/summary/2467?fileName=Japanese-Summary-WEO2019.pdf

2. Hailey AK, Meerman JC, Larson ED, Loo YL. Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas. Appl Energy.

2016;183:1722–30.

3. IEAGHG. Global CO2 emissions in 2019 [Internet]. [cited 2020 Sep 1]. Available from: https://www.iea.org/articles/global-co2-emissions-in-2019

4. IEA. Global Energy & CO2 Status Report [Internet]. 2019. Available from: https://www.iea.org/publications/freepublications/publication/GECO2017.pdf 5. IEA. Energy and Climate Change. World Energy Outlook Special Report. 2015. 6. UNFCC. Colombia’s INDC - UNFCC [Internet]. 2015. Available from:

http://www4.unfccc.int/submissions/INDC/Published

Documents/Colombia/1/Colombia iNDC Unofficial translation Eng.pdf

7. IDEAM, PNUD, MADS, DNP, CANCILLERÍA. Inventario nacional y departamental

de Gases Efecto Invernadero – Colombia. Tercera Comunicación Nacional de Cambio Climático [Internet]. Bogotá; 2016. Available from:

http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf 8. Eckstein D, Hutfils M-L, Winges M. Global Climate Risk Index 2019. [Internet].

Germanwatch. 2019. Available from: https://germanwatch.org/en/cri

9. IEA. Key World Energy statistics [Internet]. IEA International Energy Agency. 2017. Available from:

https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf 10. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. [Internet].

2006. Available from:

https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_0_Cover.pdf 11. BP. BP Energy Outlook 2035. 2015;(January):96.

12. IPIECA. Saving Energy in the Oil and Gas Industry. Int Pet Ind Environ Conserv Assoc [Internet]. 2007; Available from:

(3)

http://www.ipieca.org/publication/saving-energy-oil-and-gas-industry-2013

13. CONCAWE Refinery Management Group. EU refinery energy systems and efficiency. 2012.

14. WSP Parson Brinkerhoff; and DNV GL. Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050: Cross Sector Summary. 2015.

15. Saygin D, Worrell E, Patel MK, Gielen DJ. Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries. Energy [Internet]. 2011;36(11):6661–73. Available from: http://dx.doi.org/10.1016/j.energy.2011.08.025 16. IPCC. IPCC, 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts

of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of cli [Internet]. 2018. Available from: http://www.ipcc.ch/report/sr15/

17. Berghout N. Deployment pathways for decarbonizing industry and electricity generation. University of Utrecht; 2015.

18. IEA. Storing CO2 through enhanced oil recovery [Internet]. 2015. Available from: http://www.iea.org/publications/insights/insightpublications/CO2EOR_3Nov2015.pdf 19. Budzianowski WM. Negative carbon intensity of renewable energy technologies

involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev. 2012;16(9):6507–21.

20. van Dyk S, Su J, Mcmillan JD, Saddler J (John). Potential synergies of drop-in biofuel production with further co-processing at oil refineries. Biofuels, Bioprod Biorefining. 2019;13(3):760–75.

21. Brandt AR, Plevin RJ, Farrell AE. Dynamics of the oil transition: Modeling capacity, depletion, and emissions. Energy [Internet]. 2010;35(7):2852–60. Available from: http://dx.doi.org/10.1016/j.energy.2010.03.014

22. Brandt AR, Farrell AE. Scraping the bottom of the barrel: Greenhouse gas emission consequences of a transition to low-quality and synthetic petroleum resources. Clim Change. 2007;84(3–4):241–63.

23. Ramirez JA, Brown RJ, Rainey TJ. A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies.

2015;8(7):6765–94.

24. Dyk S van, Su J, Mcmillan JD, Saddler JN. DROP-IN BIOFUELS : The key role that co-processing will play in its production. IEA BioenergyTask 39. 2019.

(4)

renewable feeds. Prog Energy Combust Sci. 2018;68:24–69.

26. Melero JA, Iglesias J, Garcia A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ Sci. 2012;5(6):7393– 420.

27. Cruz PL, Montero E, Dufour J. Modelling of co-processing of HDO-oil with VGO in a FCC unit. Fuel [Internet]. 2017;196:362–70. Available from:

http://dx.doi.org/10.1016/j.fuel.2017.01.112

28. Ali AAM, Mustafa MA, Yassin KE. A techno-economic evaluation of bio-oil co-processing within a petroleum refinery. Biofuels [Internet]. 2018;0(0):1–9. Available from: https://doi.org/10.1080/17597269.2018.1519758

29. Wu L, Wang Y, Zheng L, Wang P, Han X. Techno-economic analysis of bio-oil co-processing with vacuum gas oil to transportation fuels in an existing fluid catalytic cracker. Energy Convers Manag. 2019;197(July).

30. Agblevor FA, Mante O, McClung R, Oyama ST. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels. Biomass and Bioenergy [Internet]. 2012;45:130–7. Available from: http://dx.doi.org/10.1016/j.biombioe.2012.05.024

31. Choi YS, Elkasabi Y, Tarves PC, Mullen CA, Boateng AA. Co-cracking of bio-oil distillate bottoms with vacuum gas oil for enhanced production of light compounds. J Anal Appl Pyrolysis [Internet]. 2018;132(September 2017):65–71. Available from: https://doi.org/10.1016/j.jaap.2018.03.014

32. Fogassy G, Thegarid N, Schuurman Y, Mirodatos C. From biomass to bio-gasoline by FCC co-processing: Effect of feed composition and catalyst structure on product quality. Energy Environ Sci. 2011;4(12):5068–76.

33. Lappas AA, Bezergianni S, Vasalos IA. Production of biofuels via co-processing in conventional refining processes. Catal Today. 2009;145(1–2):55–62.

34. Thegarid N, Fogassy G, Schuurman Y, Mirodatos C, Stefanidis S, Iliopoulou EF, et al. Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl Catal B Environ [Internet]. 2014;145:161–6. Available from:

http://dx.doi.org/10.1016/j.apcatb.2013.01.019

35. Hoffmann J, Jensen CU, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries - Part 1: Fractional distillation and characterization. Fuel TA - TT -. 2016;165:526–35.

36. Auersvald M, Shumeiko B, Vrtiška D, Straka P, Staš M, Šimáček P, et al. Hydrotreatment of straw bio-oil from ablative fast pyrolysis to produce suitable

(5)

refinery intermediates. Fuel [Internet]. 2019;238(June 2018):98–110. Available from: https://doi.org/10.1016/j.fuel.2018.10.090

37. Berghout N, Meerman H, van den Broek M, Faaij A. Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant – A case study for a complex oil refinery. Appl Energy. 2019;236(July):354–78.

38. IEA. Energy Technology Perspectives 2014 [Internet]. IEA. Paris; 2016. Available from:

http://www.oecd-ilibrary.org/energy/energy-technology-perspectives-2014_energy_tech-2014-en

39. IPIECA. Saving Energy in the Oil and Gas Industry. Int Pet Ind Environ Conserv Assoc [Internet]. 2013; Available from: http://www.ipieca.org/publication/saving-energy-oil-and-gas-industry-2013

40. IPIECA. Saving Energy in the Oil and Gas Industry. 2007.

41. Oil and Gas Climate Initiative. Taking Action. Accelerating a low emissions future. 2016.

42. WEC. World Energy Perspective - Energy Efficiency Technologies [Internet]. World Energy Council. 2013. Available from:

http://www.worldenergy.org/wp- content/uploads/2014/03/World-Energy-Perspectives-Energy-Efficiency-Technologies-Overview-report.pdf

43. Brandt AR. Oil Depletion and the Energy Efficiency of Oil Production:The Case of California. Sustainability. 2011;3:1833–54.

44. Nguyen T-V, Voldsund M, Breuhaus P, Elmegaard B. Energy efficiency measures for offshore oil and gas platforms. Energy [Internet]. 2016;117:1–16. Available from: http://www.sciencedirect.com/science/article/pii/S036054421630305X

45. Nguyen T-V, Tock L, Breuhaus P, Maréchal F, Elmegaard B. CO2-mitigation options for the offshore oil and gas sector. Appl Energy [Internet]. 2016;161(April 2016):673– 94. Available from:

http://www.sciencedirect.com/science/article/pii/S0306261915012143

46. McGlade C, Ekins P. Un-burnable oil: An examination of oil resource utilisation in a decarbonised energy system. Energy Policy [Internet]. 2014;64:102–12. Available from: http://dx.doi.org/10.1016/j.enpol.2013.09.042

47. Morrow WR, Marano J, Hasanbeigi A, Masanet E, Sathaye J. Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry Cost of Conserved Energy. Energy. 2015;93:95–105.

(6)

assessment of resource efficiency in petroleum refining. Fuel [Internet]. 2015;157:292–8. Available from: http://dx.doi.org/10.1016/j.fuel.2015.03.038

49. Elgowainy A, Han J, Cai H, Wang M, Forman GS, Divita VB. Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum Products at U.S. Refineries. Environ Sci Technol. 2014;48:7612–24.

50. Worrell E, Corsten M, Galitsky C. Energy efficiency improvement and cost saving opportunities for Petroleum Refineries. Environmental Protection Agency, EPA. 2015. 51. U.S. Department of Energy. Bandwidth study on energy use and potential energy

saving opportunities in U.S. petroleum refining, U.S. Department of Energy. 2015. 52. Rahman MM, Canter C, Kumar A. Well-to-wheel life cycle assessment of

transportation fuels derived from different North American conventional crudes. Appl Energy [Internet]. 2015;156:159–73. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S0306261915008338

53. Cai H, Brandt AR., Yeh S, Englander J, Han J, Elgowainy A, et al. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels. Environ Sci Technol. 2015;49(13):8219–27.

54. Brandt AR, Dale M, Barnhart CJ. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach. Energy [Internet]. 2013;62:235– 47. Available from: http://dx.doi.org/10.1016/j.energy.2013.09.054

55. Brandt AR. Review of mathematical models of future oil supply: Historical overview and synthesizing critique. Energy [Internet]. 2010;35(9):3958–74. Available from: http://dx.doi.org/10.1016/j.energy.2010.04.045

56. EIA. Country Analysis Brief: Colombia. US Energy Information Administration Independet statistic and Analysis [Internet]. 2016;1–7. Available from:

http://www.ieee.es/Galerias/fichero/OtrasPublicaciones/Internacional/2016/EIA_Colo mbia_29jun2016.pdf

57. UPME. Produccion mensual de crudo. Serie histórica. [Internet]. 2017 [cited 2011 Jul 20]. Available from:

http://www.upme.gov.co/generadorconsultas/Consulta_Series.aspx?idModulo=3&tipo Serie=138

58. U.S. Securities and Exchange Commission. Annual report pursuant to section 13 of the securities exchange act of 1934. Form 20-F [Internet]. 2017 [cited 2011 Jul 20].

Available from:

(7)

59. ANH. Reservas crudo por departamento 2016 [Internet]. 2017 [cited 2017 Nov 7]. Available from:

http://www.anh.gov.co/Operaciones-Regalias-y-Participaciones/Documents/publicacion depto crudo 1p.pdf

60. Ecopetrol S.A. Operational and Financial Report [Internet]. Bogotá; 2015. Available from: http://www.ecopetrol.com.co/documentos/inversionistas/Reporte-Resultados-4Q-2015.pdf

61. Worrell E, Price L, Martin N, Farla J, Schaeffer R. Energy intensity in the iron and steel industry: a comparison of physical and economic indicators. Energy Policy. 1997;25(7–9):727–44.

62. Ramírez A, Blok K, Neelis M, Patel M. Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry. Energy Policy. 2006;34(14):1720–35. 63. Worrell E, Beer JGDE, Faaij APC, Blok K. Energy savings in the production route for

plastics. Energy Convers Manag. 1994;35(12):1073–85.

64. Fleiter T, Fehrenbach D, Worrell E, Eichhammer W. Energy efficiency in the German pulp and paper industry - A model-based assessment of saving potentials. Energy [Internet]. 2012;40(1):84–99. Available from:

http://dx.doi.org/10.1016/j.energy.2012.02.025

65. UPME. Informe mensual de evolución de variables de generación. Julio 2012. [Internet]. Bogotá; 2012. Available from: http://www.siel.gov.co/portals/0/Boletin UPME Julio 2012.pdf

66. Meier AK, Rosenfeld A. Supply Curves of Conserved Energy. Energy. 1982;7(4):347– 58.

67. Worrell E, Martin N, Price L. Potentials for energy efficiency improvement in the US cement industry. Energy. 2000;25:1189–214.

68. Fleiter T, Eichhammer W, Wietschel M, Hagemann M, Hirzel S. Costs and potentials of energy savings in European industry - a critical assessment of the concept of conservation supply curves. Proceeding ECEEE 2009 [Internet]. 2009;1261–72. Available from: https://www.etde.org/etdeweb/details_open.jsp?osti_id=967850 69. Kermeli K, Weer P, Crijns-Graus W, Worrell E. Energy efficiency improvement and

GHG abatement in the global production of primary aluminium. Energy Effic. 2015;8:629–66.

70. Ecopetrol S.A. Evaluación del análisis de ciclo de vida de los combustibles fósiles de Ecopetrol. [Unpublished results]. 2011.

(8)

72. Ecopetrol S.A. Línea base y caracterización energética de la cadena de producción de crudo de la Gerencia Regional Central (GEC). [Unpublished results]. 2013.

73. Ecopetrol S.A., Clearstone Engineering, PTAC. Potential Cost-effective GHG reduction opportunities at selected oil production facilities. [Unpublished results]. 2013.

74. Ecopetrol S.A., EPA. Oportunidades de reducción de emisiones de Metano en Ecopetrol: Fase 2. [Unpublished results]. 2013.

75. Ecopetrol S.A. Integrated sustainable management report. Bogotá; 2015.

76. Ecopetrol S.A. Consultoría para la Optimización del Uso y Costo de la Energía en la Cadena de Producción de Crudo de la Gerencia Regional Central – GEC.

[Unpublished results]. 2014.

77. Ecopetrol S.A. Iniciativas de recuperación temprana de 330 BPD de condensados de gas a partir del gas de tea de las baterias 1 y 2 de Orito.[Internal document]. 2014. 78. EPA. Parameters for Properly Designed and Operated Flares [Internet]. 2012.

Available from: https://www3.epa.gov/airtoxics/flare/2012flaretechreport.pdf 79. EIA. Capital Cost Estimates for Utility Scale Electricity Generating Plants. US

Department of Energy. 2016.

80. International Energy Agency (IEA). Industrial Combustion Boilers. 2010;(May):1–5. 81. Nian V, Sun Q, Ma Z, Li H. A Comparative Cost Assessment of Energy Production

from Central Heating Plant or Combined Heat and Power Plant. Energy Procedia [Internet]. 2016;104:556–61. Available from:

http://dx.doi.org/10.1016/j.egypro.2016.12.094

82. Tidball R, Bluestein J, Rodriguez N, Knoke S. Cost and performance assumptions for modeling electricity generation technologies. National Renewable Energy Lab, NREL. 2010.

83. Pantaleo AM, Fordham J, Oyewunmi OA, Markides CN. Intermittent waste heat recovery: Investment profitability of ORC cogeneration for batch, gas-fired coffee roasting. Energy Procedia [Internet]. 2017;129:575–82. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S1876610217341243

84. Schleich J, Gassmann X, Faure C, Meissner T. Making the implicit explicit: A look inside the implicit discount rate. Energy Policy [Internet]. 2016;97:321–31. Available from: http://dx.doi.org/10.1016/j.enpol.2016.07.044

85. Laitner JAS, Worrell E, Galitsky C, Hanson donald A. Characterizing Emerging Industrial Technologies in Energy Models. In: Proceedings of the 2003 ACEE

(9)

Summer Study on Energy Efficiency in Industry. 2003. p. 1–14.

86. Kesicki F, Strachan N. Marginal abatement cost ( MAC ) curves : confronting theory and practice. Environ Sci Policy [Internet]. 2011;14(8):1195–204. Available from: http://dx.doi.org/10.1016/j.envsci.2011.08.004

87. DeCanio SJ. Barriers within firms to energy-efficient investments. Energy Policy. 1993;21(9):906–14.

88. Jaffe AB, Stavins RN. The energy paradox and the diffusion of conservation technology. Vol. 16, Resource and Energy Economics. 1994. 91–122 p.

89. Congreso de la República de Colombia. Ley 1819 de 2016. Impuesto sobre la renta de las personas naturales. [Internet]. 2016 [cited 2018 May 1]. Available from:

http://www.secretariasenado.gov.co/senado/basedoc/ley_1819_2016.html

90. Zhang S, Worrell E, Crijns-Graus W. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Appl Energy [Internet].

2015;147:192–213. Available from: http://dx.doi.org/10.1016/j.apenergy.2015.02.081 91. Zhang S, Worrell E, Crijns-Graus W. Mapping and modeling multiple benefits of

energy efficiency and emission mitigation in China’s cement industry at the provincial level. Appl Energy. 2015;155.

92. Ozren O. Oil Refineries in the 21st Century: Energy Efficient, Cost Effective, Environmentally benign. Weinheim, Germany.: Wiley-VCH-Verlag; 2005.

93. Bergh C. Energy Efficiency in the South African Crude Oil Refining Industry : Drivers , Barriers and Opportunities. University of Cape Town; 2012.

94. Abella JP, Bergerson J. Model to Investigate Energy and Greenhouse Gas Implications of Refining Petroleum: Impacts of crude quality and refinery configuration. Environ Sci Technol [Internet]. 2012;46:13037–47. Available from:

http://search.proquest.com/docview/1272718896?accountid=8144%5Cnhttp://sfx.aub.

aau.dk/sfxaub?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&genre=book&sid=ProQ:Pollution+Abs tracts&atitle=&title=Model+to+Investigate+Energy+and+Greenhouse+Gas+Imp 95. Berghout N, Kuramochi T, Broek M van den, Faaij APC. Techno-economic

performance and spatial footprint of infrastructure configurations for large scale CO2 capture in industrial zones. Int J Greenh Gas Control [Internet]. 2015;39:256–84. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1750583615001826 96. U.S. National Oceanic and Atmospheric Administration (NOAA), Global Gas Flaring

(10)

[Internet]. 2016 [cited 2012 Jun 20]. Available from:

http://www.worldbank.org/en/programs/gasflaringreduction

97. Soltanieh M, Zohrabian A, Gholipour MJ, Kalnay E. A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int J Greenh Gas Control [Internet]. 2016;49:488–509. Available from:

http://dx.doi.org/10.1016/j.ijggc.2016.02.010

98. Johnson MR, Coderre AR. Opportunities for CO2 equivalent emissions reductions via flare and vent mitigation: A case study for Alberta, Canada. Int J Greenh Gas Control [Internet]. 2012;8:121–31. Available from:

http://dx.doi.org/10.1016/j.ijggc.2012.02.004

99. EPA. Overview of the Oil and Gas industry [Internet]. Environmental Protection Agency. 2015 [cited 2002 Jul 20]. Available from: https://www.epa.gov/natural-gas-star-program/overview-oil-and-natural-gas-industry %0D

100. EPA. Control Techniques Guidelines for the Oil and Natural Gas Industry [Internet]. 2016. Available from:

https://www.epa.gov/sites/production/files/2016-10/documents/2016-ctg-oil-and-gas.pdf

101. EPA. Natural Gas STAR Program [Internet]. U.S. Environmental Protection Agency. 2016 [cited 2017 Feb 1]. Available from: https://www.epa.gov/natural-gas-star-program/recommended-technologies-reduce-methane-emissions

102. EPA. Reducing Methane Emissions From Compressor Rod Packing Systems. U S Environmental Protection Agency [Internet]. 2006;1–8. Available from:

https://19january2017snapshot.epa.gov/sites/production/files/2016-06/documents/ll_rodpack.pdf

103. EPA. Lessons Learned Installing Vapor Recovery Units on Storage Tanks Installing Vapor Recovery Units on Storage Tanks. US Environmental Protection Agency [Internet]. 2006; Available from: https://www.epa.gov/sites/production/files/2016-06/documents/ll_final_vap.pdf

104. Quoilin S, Broek M Van Den, Declaye S, Dewallef P, Lemort V. Techno-economic survey of organic rankine cycle (ORC) systems. Renew Sustain Energy Rev. 2013;22:168–86.

105. Kayadelen HK, Ust Y. Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles. Energy [Internet]. 2017;121:751–71. Available from:

(11)

106. Carbonetto B, Pechhi P. Going green with FCC expander technology. Hydrocarb Process. 2011;90(1):79–83.

107. Suntivarakorn R, Treedet W. Improvement of Boiler’s Efficiency Using Heat Recovery and Automatic Combustion Control System. Energy Procedia [Internet]. 2016;100(September):193–7. Available from:

http://dx.doi.org/10.1016/j.egypro.2016.10.164

108. U.S. Department of Energy. Steam Challenge. US Department of Energy Steam Challenge program [Internet]. 1998;1–8. Available from:

https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/stmchlng.pdf 109. Bloss D, Bockwinkel R, Rivers N. Capturing Energy Savings with Steam Traps. Proc

1997 ACEEE Summer Study Energy Effic Ind [Internet]. 1997;559–63. Available from: http://aceee.org/files/proceedings/1997/data/papers/SS97_Panel1_Paper53.pdf 110. Jones T. Steam Partnership: Improving Steam Efficiency through Marketplace

Partnerships. Proc 1997 ACEEE Summer Study Energy Effic Ind [Internet]. 1997;449–58. Available from:

http://aceee.org/files/proceedings/1997/data/papers/SS97_Panel1_Paper40.pdf 111. Ecopetrol S.A., Clearstone Engineering, PTAC. Potential Cost-effective GHG

reduction opportunities at Ecopetrol’s Barrancabermeja oil refinery. [Unpublished results]. 2013.

112. Bisanovic S, Hajro M, Samardzic M. One approach for reactive power control of capacitor banks in distribution and industrial networks. Int J Electr Power Energy Syst [Internet]. 2014 [cited 2017 Apr 18];60:67–73. Available from:

http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleL

istID=-1185200252&_sort=r&_st=0&md5=f9a1acbfbdde3a6cd52e1f2cc90bad47&searchtype =a

113. IPIECA. Energy efficient activation [Internet]. 2014 [cited 2017 May 1]. Available from: http://www.ipieca.org/resources/energy-efficiency-solutions/units-and-plants-practices/energy-efficient-activation/

114. EPA. Leak Detection and Repair. A best practice guide. [Internet]. U.S. Environmental Protection Agency - Office of Enforcement and Compliance Assurance. 2007.

Available from: https://www.epa.gov/sites/production/files/2014-02/documents/ldarguide.pdf

(12)

Department of Energy Motor challenge program [Internet]. 2011; Available from: https://energy.gov/sites/prod/files/2014/04/f15/mc-0382.pdf

116. EPA. Optimize Glycol Circulation And Install Flash Tank Separators In Glycol Dehydrators Glycol Dehydrators. U S Environmental Protection Agency [Internet]. 2006;1–10. Available from: https://www.epa.gov/sites/production/files/2016-06/documents/ll_flashtanks3.pdf

117. Koelbl BS, van den Broek MA, van Ruijven BJ, Faaij APC, van Vuuren DP. Uncertainty in the deployment of Carbon Capture and Storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty. Int J Greenh Gas Control [Internet]. 2014;27:81–102. Available from:

http://www.sciencedirect.com/science/article/pii/S1750583614001170

118. Hill B, Hovorka S, Melzer S. Geologic Carbon Storage Through Enhanced Oil Recovery. Energy Procedia [Internet]. 2013;37:6808–30. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1876610213008576

119. Koottungal L. 2014 worldwide EOR survey. Oil Gas J. 2014;110:57–69.

120. Godec M, Kuuskraa V, Van Leeuwen T, Stephen Melzer L, Wildgust N. CO2 storage in depleted oil fields: The worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia [Internet]. 2011;4:2162–9. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S1876610211002992 121. IEA. World Energy Balances 2017. [Internet]. 2017. Available from:

https://www.mendeley.com/research-papers/world-energy-balances-overview-global-trends/?utm_source=desktop&utm_medium=1.17.11&utm_campaign=open_catalog& userDocumentId=%7Bd864e92a-e87b-3d8f-8e67-7a8b5bafbb65%7D

122. DANE. Histórico de exportaciones de café, carbón, petróleo y sus derivados, ferroníquel y no tradicionales. 1992 - 2018 p (Diciembre). Departamento Administrativo Nacional de Estadística (DANE). 2018.

123. Banco de la República. Governor’s Report [Internet]. 2017. Available from: http://www.banrep.gov.co/sites/default/files/paginas/informe-gerente-2017-abr-eng.pdf

124. World Energy Council. Energy resources. Latin America & The Caribbean [Internet]. 2018 [cited 2018 May 1]. Available from:

https://www.worldenergy.org/data/resources/region/latin-america-the-caribbean/oil/ 125. BP. BP Statistical review of World energy. 2018.

(13)

127. ANH. Estadísticas de produccion de crudo en Colombia-2017. [Internet]. 2018. Available from:

http://www.anh.gov.co/Operaciones-Regalias-y- Participaciones/Sistema-Integrado-de-Operaciones/Paginas/Estadisticas-de-Produccion.aspx

128. ANH. Estadísticas e información de reservas. [Internet]. Sistema integrado de reservas. 2019 [cited 2019 Feb 1]. Available from:

http://www.anh.gov.co/Operaciones-Regalias-y-Participaciones/Documents/MME_departamentos_crudo-20180523.pdf 129. ANH. Informe de gestión 2017 [Internet]. 2018. Available from:

http://www.anh.gov.co/la-anh/Informes de Gestin/Informe de gestión 2017.pdf 130. ANH. Resumen mensual sobre movimiento y producción de petróleo. [Accessed

through: participacionciudadana@anh.gov.co]. Bogotá; 2018.

131. Castro R, Maya G, Mantilla J, Diaz V, Amaya R, Lobo A, et al. Waterflooding in Colombia: Past, Present, and Future. Soc Pet Eng [Internet]. 2014; Available from: https://www.onepetro.org/conference-paper/SPE-169459-SP

132. Yáñez E, Ramírez A, Uribe A, Castillo E, Faaij APC. Unravelling the potential of energy efficiency in the Colombian oil industry. J Clean Prod. 2018;176.

133. Safi R, Agarwal RK, Banerjee S. Numerical simulation and optimization of CO2 utilization for enhanced oil recovery from depleted reservoirs. Chem Eng Sci. 2016;144:30–8.

134. Bossie-Codreanu D, Le Gallo Y. A simulation method for the rapid screening of potential depleted oil reservoirs for CO2 sequestration. Energy. 2004;29(9–10):1347– 59.

135. Damen K, Faaij APC, Van Bergen F, Gale J, Lysen E. Identification of early

opportunities for CO2 sequestration - Worldwide screening for EOR and CO2-ECBM projects. Energy. 2005;30(10):1931–52.

136. Olea RA. Carbon dioxide enhanced oil recovery performance according to the literature. [Internet]. U.S. Geological survey scientific investigation report. 2017. Available from: https://www.netl.doe.gov/File

Library/Research/Oil-Gas/publications/brochures/CO2-EOR-Primer-2017.pdf

137. Bachu S. Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada. Int J Greenh Gas Control. 2016;44:152–65.

138. Núñez-López V, Holtz MH, Wood DJ, Ambrose WA, Hovorka SD. Quick-look assessments to identify optimal CO2 EOR storage sites. Environ Geol.

(14)

2008;54(8):1695–706.

139. Verma MK, Jewell S, Survey UG. Fundamentals of Carbon Dioxide-Enhanced Oil Recovery ( CO 2 -EOR )— A Supporting Document of the Assessment Methodology for Hydrocarbon Recovery Using CO 2 -EOR Associated with Carbon Sequestration. 2015.

140. Attanasi ED, Freeman PA. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States: U.S. Geological Survey Open-File Report 2015–1239. [Internet]. 2016. Available from: http://dx.doi.org/10.3133/ofr20151239

141. NPC. Enhanced Oil Recovery [Internet]. 1984. Available from: https://www.npc.org/reports/rd1984-Enhanced_Oil_Recovery.pdf

142. Taber JJ, Martin FD, Seright RS. EOR Screening Criteria Revisited—Part 1: Introduction to screening criteria and enhanced recovery field projects. SPE Reserv Eng. 1997;(August):189–98.

143. Taber JJ, Martin FD, Seright RS. EOR Screening Criteria Revisited—Part 2: Applications and Impact of Oil Prices. SPE Reserv Eng. 1997;12(3):199–205.

144. Tang Y, Su Z, He J, Yang F. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO 2 Huff-n-Puff Process with Compound

Surfactant. J Chem. 2016;2016.

145. Foroozesh J, Jamiolahmady M, Sohrabi M. Mathematical modeling of carbonated water injection for EOR and CO2 storage with a focus on mass transfer kinetics. Fuel [Internet]. 2016;174:325–32. Available from:

http://dx.doi.org/10.1016/j.fuel.2016.02.009

146. Hedriana O, Sugihardjo, Usman. Assessment of CO2 - EOR and Storage Capacity in South Sumatera and West Java Basins. Energy Procedia [Internet].

2017;114(November 2016):4666–78. Available from: http://dx.doi.org/10.1016/j.egypro.2017.03.1598

147. Azzolina NA, Nakles D V., Gorecki CD, Peck WD, Ayash SC, Melzer LS, et al. CO2 storage associated with CO2 enhanced oil recovery: A statistical analysis of historical operations. Int J Greenh Gas Control [Internet]. 2015;37:384–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1750583615001413

148. Gozalpour F, Ren SR, Tohidi B. CO2 EOR and Storage in Oil Reservoir. Oil Gas Sci Technol [Internet]. 2005;60(3):537–46. Available from:

(15)

149. Advanced Resources International. Basin oriented strategies for CO2 enhanced oil recovery: Williston Basin [Internet]. 2006. Available from: https://www.adv-res.com/pdf/Basin

150. Núñez-López V. Personal comunication. Commercial experiences in the Gulf coast in the US. 2018.

151. IEAGHG. CO2 Storage in Depleted Oilfields: Global Application Criteria for Carbon Dioxide Enhanced Oil Recovery [Internet]. Energy. 2009. Available from:

https://ieaghg.org/docs/General_Docs/Reports/2009-12.pdf

152. Holm LW, Josendal VA. Effect of oil composition on miscible- type displacement by carbon dioxide. Soc Pet Eng. 1982;22:87–98.

153. Mungan N. Carbon dioxide flooding fundamentals. J Can Pet Technol. 1981;(87). 154. Lasater J. Bubble point pressure correlation. J Pet Technol. 1958;10:65–7.

155. Lake LW, Johns R, Rossen B, Pope G. Fundamentals of Enhanced Oil Recovery. Society of Petroleum Engineers; 2014. 496 p.

156. Verma MK. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery: U.S. Geological Survey Scientific Investigations Report 2017– 5062–A–E. 2017; Available from: https://doi.org/10.3133/ sir20175062

157. Peck WD, Azzolina NA, Ge J, Gorecki CD, Gorz AJ, Melzer LS. Best Practices for Quantifying the CO2Storage Resource Estimates in CO2Enhanced Oil Recovery. Energy Procedia [Internet]. 2017;114(November 2016):4741–9. Available from: http://dx.doi.org/10.1016/j.egypro.2017.03.1613

158. Lee E, Hornafius JS, Dean E, Kazemi H. Potential of Denver Basin oil fields to store CO2 and produce Bio-CO2-EOR oil. Int J Greenh Gas Control [Internet].

2019;81(August 2017):137–56. Available from: https://doi.org/10.1016/j.ijggc.2018.11.013

159. Ecopetrol S.A. Programa de inyección de Gas 2011-202. [Internal document-Unpublished results]. 2011.

160. Goodman A, Hakala A, Bromhal G, Deel D, Rodosta T, Frailey S, et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int J Greenh Gas Control [Internet]. 2011;5(4):952–65. Available from: http://dx.doi.org/10.1016/j.ijggc.2011.03.010

161. Holtz MH, Núñez-López V, Breton CL. Moving Permian Basin Technology to the Gulf Coast: the Geologic Distribution of CO~ 2 EOR Potential in Gulf Coast Reservoirs. Vol. 115, Publications-West Texas Geological Society. 2006.

(16)

162. Standing MB. A Pressure-Volume-Temperature Correlation For Mixtures Of

California Oils And Gases. Drilling and Production Practice. New York, New York: American Petroleum Institute; 1947.

163. Jarrell PM, Fox CE, Stein MH, Webb SL. Practical aspects of CO2 flooding: Richardson, Tex. Soc Pet Eng Monogr Ser. 2002;2:220.

164. Holtz MH, López VN, Breton CL, Núñez-López V, Breton CL. Moving Permian Basin Technology to the Gulf Coast: the Geologic Distribution of CO~ 2 EOR Potential in Gulf Coast Reservoirs. Publ Texas Geol Soc. 2006;115:189.

165. Choi JW, Nicot JP, Hosseini SA, Clift SJ, Hovorka SD. CO2 recycling accounting and EOR operation scheduling to assist in storage capacity assessment at a U.S. gulf coast depleted reservoir. Int J Greenh Gas Control [Internet]. 2013;18:474–84. Available from: http://dx.doi.org/10.1016/j.ijggc.2013.01.033

166. Yang W, Peng B, Liu Q, Wang S, Dong Y, Lai Y. Evaluation of CO2enhanced oil recovery and CO2storage potential in oil reservoirs of Bohai Bay Basin, China. Int J Greenh Gas Control [Internet]. 2017;65(December 2016):86–98. Available from: http://dx.doi.org/10.1016/j.ijggc.2017.08.012

167. Nie J, Horton BK, Saylor JE, Mora A, Mange M, Garzione CN, et al. Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth-Science Rev. 2012;110(1–4):111–26.

168. Rangel A, Osorno JF, Ramirez JC, De Bedout J, González JL, Pabón JM. Geochemical assessment of the Colombian oils based on bulk petroleum properties and biomarker parameters. Mar Pet Geol. 2017;86:1291–309.

169. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:1–10.

170. ANH. Geovisor ANH v2.1.0 [Internet]. Agencia Nacional de Hidrocarburos-ANH. 2015 [cited 2019 Jan 31]. Available from: https://geovisor.anh.gov.co/

171. ANH. Información general cuencas sedimentarias de Colombia. 2011.

172. ANH. Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal [Internet]. Agencia Nacional de Hidrocarburos - A.N.H.-. 2007. 92 p. Available from: http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencas-sedimentarias/Documents/colombian_sedimentary_basins.pdf 173. Ecopetrol S.A. Indicadores de produccion [Internet]. 2018 [cited 2018 Aug 20].

(17)

174. MinTic. Datos abiertos-Gobierno digital. Ministerio de Tecnologías de la Información y las Comunicaciones-Colombia. [Internet]. 2018 [cited 2018 Aug 20]. Available from: https://www.datos.gov.co/Minas-y-Energ-a/Reservas-De-Petroleo/2njd-akei 175. Ecopetrol S.A. Forecast estimation by oil field through EOR. [Personal

communication]. 2018.

176. Ecopetrol S.A. Análisis de screening para la gerencias regionales del Magdalena medio y Sur. [Unpublished results]. 2012.

177. IHS MARKIT. Oil field summary report. [Private access for Ecopetrol S.A.]. 2018. 178. Ketner C, David G. Colombia continues to yield major oil , gas discoveries. Oil and

Gas Journal [Internet]. 1996;94:40–5. Available from:

http://www.ogj.com/articles/print/volume-94/issue-29/in-this-issue/general-interest/colombia-continues-to-yield-major-oil-gas-discoveries.html

179. ANH. Resultados, Retos y Estrategias de Crecimiento del Sector de Hidrocarburos [Internet]. 2015. Available from: http://www.anh.gov.co/Operaciones-Regalias-y-Participaciones/Sistema-Integrado-de-Operaciones/Documents/EY - ANH.ppt 180. OECD. Crude oil production [Internet]. OECD data. 2018 [cited 2018 Aug 20].

Available from: https://data.oecd.org/energy/crude-oil-production.htm

181. H. K. van Poollen and Associates I. Fundamentals of enhanced oil recovery. PennWell Books D of PPC, editor. Tulsa, Okla.; 1981. 155 p.

182. Holtz MH, Nance PK, Finley RJ. Reduction of Greenhouse Gas Emissions through Underground CO2 Sequestration in Texas Oil and Gas Reservoirs. GCCC Digital Publication Series #99-01. 1999.

183. Ghedan S. Global laboratory experience of CO2-EOR flooding. In: 2009 SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, United Arab Emirates. Society of Petroleum Engineers, SPE 125581; 2009. p. 15.

184. IHS MARKIT. CO2 EOR Potential in North Dakota [Internet]. 2016. Available from: http://www.legis.nd.gov/files/committees/64-2014 appendices/IHS Energy - Final Report.pdf

185. Remson D. Storing CO2 and producing domestic crude oil with next generation CO2-EOR technology. 2010.

186. Shaw J, Bachu S. Screening, evaluation, and ranking of oil reservoirs suitable for CO2-flood EOR and carbon dioxide sequestration. J Can Pet Technol. 2002;41(9):51– 61.

(18)

sequestration potential in low permeability reservoirs, Yanchang Oilfield, China. J Energy Inst [Internet]. 2014;87(4):306–13. Available from:

http://dx.doi.org/10.1016/j.joei.2014.03.031

188. Kovscek AR. Screening criteria for CO2storage in oil reservoirs. Pet Sci Technol. 2002;20(7–8):841–66.

189. Alvarado V, Ranson A, Hernandez K, Manrique E, Matheus J. Selection of EOR/ior opportunities based on machine learning. In: Proceedings of the European Petroleum Conference, Aberdeen, UK, 29–31 October 2002. 2002.

190. Kang P-S, Lim JS, Huh C. Screening criteria and considerations of offshore enhanced oil recovery. Energies. 2016;9(1):1–18.

191. Wang H, Liao X, Dou X, Shang B, Ye H, Zhao D, et al. Potential evaluation of CO2 sequestration and enhanced oil recovery of low permeability reservoir in the Junggar Basin, China. Energy and Fuels. 2014;28(5):3281–91.

192. Ampomah W, Balch RS, Grigg RB, McPherson B, Will RA, Lee S-Y, et al. Co-optimization of CO 2 -EOR and storage processes in mature oil reservoirs. Greenh Gases Sci Technol [Internet]. 2017;7(1):128–42. Available from:

http://doi.wiley.com/10.1002/ghg.1618

193. Mathisen A, Skagestad R. Utilization of CO2from Emitters in Poland for CO2-EOR. Energy Procedia [Internet]. 2017;114(1876):6721–9. Available from:

http://dx.doi.org/10.1016/j.egypro.2017.03.1802

194. Monson CC, Korose CP, Frailey SM. Screening methodology for regional-scale CO2 EOR and storage using economic criteria. Energy Procedia [Internet]. 2014;63:7796– 808. Available from: http://dx.doi.org/10.1016/j.egypro.2014.11.814

195. Lake LW, Walsh M. Enhanced Oil Recovery (EOR) -Field Data-Literature search. Austin; 2008.

196. Tzimas E, Georgakaki A, Garcia Cortes C, Peteves SD. Enhanced oil recovery using carbon dioxide in the European Energy System [Internet]. Institute for energy. 2005. Available from:

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC32102/P2005-277=EUR21895EN=PUBSY Request 2102.pdf

197. Lee S, Kam SI. Enhanced Oil Recovery by using CO2 foams: Fundamentals and Fields Applications. In: Enhanced Oil Recovery Field Case Studies. 2013.

198. Welkenhuysen K, Meyvis B, Swennen R, Piessens K. Economic threshold of CO2-EOR and CO2storage in the North Sea: A case study of the Claymore, Scott and

(19)

Buzzard oil fields. Int J Greenh Gas Control [Internet]. 2018;78(September):271–85. Available from: https://doi.org/10.1016/j.ijggc.2018.08.013

199. IEAGHG. “Understanding the Cost of Retrofitting CO2 capture in an Integrated Oil Refinery” 2017/TR8. 2017.

200. Middleton RS, Levine JS, Bielicki JM, Carey HSVW, Stauffer PH. Jumpstarting commercial-scale CO 2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf. Greenh Gases Sci Technol. 2015;5:241–53.

201. IEA. CO2-EOR global status. Global database. 2019. 202. IEA. CO2-EOR gloabl status. Global database. 2019.

203. Yáñez E, Núñez-López V, Ramírez A, Castillo E, Faaij A. Rapid screening and probabilistic estimation of the potential for CO2-EOR and associated geological CO2 storage in Colombian petroleum basins [Manuscript submitted for publication]. Pet Geosci. 2020;

204. UPME. Plan Indicativo De Abastecimiento De Combustibles Liquidos [Internet]. 2018. Available from:

http://www1.upme.gov.co/Hidrocarburos/publicaciones/Plan_liquidos_2018/Plan_de_ Abastecimiento_de_Combustibles_Liquidos.pdf

205. Ecopetrol S.A. Sistema de gestión de emisiones atmosféricas-SIGEA. 2018. 206. MINMINAS, DANE. Análisis de la producción de Cemento, Clinker y caliza

cementera. [Internet]. Análisis Minero. 2017. Available from:

https://www.minminas.gov.co/documents/10192/23888351/290617_produccion_ceme nto_mayo_2017.pdf/ddb16267-47ef-4330-9152-c352d7c45008

207. XM. Capacidad efectiva neta [Internet]. Informe de operación del SIN y administración del mercado. 2018 [cited 2018 Nov 1]. Available from:

http://informesanuales.xm.com.co/2015/SitePages/operacion/2-6-Capacidad-efectiva-neta.aspx

208. Kuramochi T, Ramírez A, Turkenburg W, Faaij APC. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog Energy Combust Sci [Internet]. 2012;38(1):87–112. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S0360128511000293

209. IEAGHG. Effects of Plant Location on the Costs of CO2 Capture IEAGHG Technical Report 2018-04. 2018.

210. Knoope MMJ, Guijt W, Ramírez A, Faaij APC. Improved cost models for optimizing CO2pipeline configuration for point-to-point pipelines and simple networks. Int J

(20)

Greenh Gas Control [Internet]. 2014;22:25–46. Available from: http://dx.doi.org/10.1016/j.ijggc.2013.12.016

211. Berghout N, van den Broek M, Faaij AAPC. Techno-economic performance and challenges of applying CO2 capture in the industry: A case study of five industrial plants. Int J Greenh Gas Control [Internet]. 2013;17(2013):259–79. Available from: http://dx.doi.org/10.1016/j.ijggc.2013.04.022

212. Berghout N, van den Broek M, Faaij A. Deployment of infrastructure configurations for large-scale CO 2 capture in industrial zones a case study for the Rotterdam Botlek area (part B). Int J Greenh Gas Control [Internet]. 2017;60(2017):24–50. Available from: http://dx.doi.org/10.1016/j.ijggc.2017.02.015

213. Bolsa Mercantil de Colombia. Informe mensual mercado de Gas Natural [Internet]. 2019. Available from:

http://www.bmcbec.com.co/media/2617/informe_mensual_febrero_2019.pdf

214. UPME. Precio Base Para La Liquidación Del Carbón Térmico De Consumo Interno. [Internet]. 2016. Available from:

http://www1.upme.gov.co/simco/PromocionSector/Normatividad/Documents/SOPOR TE_PRECIOS_BASE_CARBON_I_TRIM_2017.pdf#search=carbon

215. Ecopetrol S.A. Matriz energética en Ecopetrol. [internal document, not published]. 2017.

216. Hernández C. MA, Nieves de la Hoz CE. Perfil Logístico del Sector Cemento en Colombia. Universidad del Rosario; 2015.

217. Fedebiocombustibles. Estadísticas de producción y venta de alcohol carburante (Etanol). [Internet]. 2018 [cited 2018 Jan 4]. Available from:

http://www.fedebiocombustibles.com/v3/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm

218. NETL. Carbon Dioxide Enhanced Oil Recovery-Untapped Domestic Energy Supply and Long Term Carbon Storage Solution. 2012.

219. ARI. GLOBAL TECHNOLOGY ROADMAP FOR CCS IN INDUSTRY - Sectoral Assessment CO2 Enhanced Oil Recovery [Internet]. 2011. Available from:

http://www.unido.org/fileadmin/user_media/Services/Energy_and_Climate_Change/E nergy_Efficiency/CCS/EOR.pdf

220. King CW, Gülen G, Cohen SM, Núñez-López V. The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood. Environ Res Lett. 2013;8(3):34030.

(21)

221. Tayari F, Blumsack S, Johns RT, Tham S, Ghosh S, A- T, et al. Techno-economic assessment of reservoir heterogeneity and permeability variation on economic value of enhanced oil recovery by gas and foam flooding. J Pet Sci Eng [Internet].

2018;166(July 2017):913–23. Available from: https://doi.org/10.1016/j.petrol.2018.03.053

222. Advanced Resources International, ARI. Acquisition and Development of Selected Cost Data for Saline Storage and Enhanced Oil Recovery (EOR) Operations. DOE/NETL-2014/1658. [Internet]. 2014. Available from:

http://www.netl.doe.gov/File Library/ Research/Energy Analysis/Publications/saline-and-eor-operation-cost- estimation-recommendations-ari-final-7-2.pdf

223. EIA. Oil and Gas Lease Equipment and Operating Costs 1994 through 2009 [Internet]. 2010 [cited 2018 Jun 1]. Available from:

http://www.eia.gov/pub/oil_gas/natural_gas/data_publications/cost_indices_ equipment_production/current/coststudy.html

224. Fukai I, Mishra S, Moody MA. Economic analysis of CO2-enhanced oil recovery in Ohio: Implications for carbon capture, utilization, and storage in the Appalachian Basin region. Int J Greenh Gas Control [Internet]. 2016;52:357–77. Available from: http://dx.doi.org/10.1016/j.ijggc.2016.07.015

225. Lorsong J. CO2-EOR and Storage. In: IEAGHG CCS Summer School - Nottingham [Internet]. 2013. Available from:

http://www.ieaghg.org/docs/General_Docs/Summer_School_2013/CO2_EOR__Lorso ng_July_13SEC.pdf

226. Congreso de la República de Colombia. Ley 756 de 2002-Art 16 [Internet]. 2002 [cited 2019 Aug 9]. p. 1–32. Available from:

http://www.secretariasenado.gov.co/senado/basedoc/ley_0756_2002.html

227. Middleton RS, Yaw SP, Hoover BA, Ellett KM. SimCCS: An open-source tool for optimizing CO2 capture, transport, and storage infrastructure. Environ Model Softw [Internet]. 2020;124(January 2018). Available from:

https://doi.org/10.1016/j.envsoft.2019.104560

228. NETL. Carbon Dioxide Transport and Storage Costs in NETL Studies - Quality guidelines for energy systems studies. [Internet]. 2017. Available from:

https://www.netl.doe.gov/projects/files/QGESSCarbonDioxideTransportandStorageCo stsinNETLStudies_110617.pdf

(22)

https://ieaghg.org/docs/General_Docs/Reports/2013-18.pdf

230. Knoope MMJ, Ramírez A, Faaij APC. A state-of-the-art review of techno-economic models predicting the costs of CO2pipeline transport. Int J Greenh Gas Control [Internet]. 2013;16:241–70. Available from:

http://dx.doi.org/10.1016/j.ijggc.2013.01.005

231. IEAGHG. Pipline Transmission of CO2 and Energy. Transmission study-report [Internet]. 2002. Available from:

https://ieaghg.org/docs/General_Docs/Reports/PH4_6

232. DIAN. Resolución 000009 de 30-Ene-2019-por el cual se ajustan las tarifas del impuesto nacional a la Gasolina y al ACPM , y del Impuesto Nacional al carbono. [Internet]. Vol. 000009. 2019. Available from:

https://www.dian.gov.co/normatividad/Normatividad/Resolución

233. Van ’T Veld K, Phillips OR, Van’t Veld K, Phillips OR. The economics of enhanced oil recovery: Estimating incremental oil supply and CO2 demand in the powder river basin. Energy J. 2010;31(4):31–55.

234. Ecopetrol S.A. Actualización fuentes de CO2 en GRB. 2013.

235. ARGOS. Reporte Integrado 2014-Grupo Argos [Internet]. 2015. Available from: https://www.grupoargos.com/uploads/020615024414Reporte-Integrado-completo-2014.pdf

236. ARGOS. Argos-Presencia [Internet]. 2018 [cited 2018 Jul 1]. Available from: https://www.argos.co/colombia/productos/cemento/presencia

237. CEMEX. Plantas producción. 2018.

238. CEMEX. Donde estamos [Internet]. 2018 [cited 2018 Jul 1]. Available from: http://www.cemexcolombia.com/DondeEstamos.aspx

239. IPCC. CO2 Emissions from Cement Production. Good Pract Guid Uncertain Manag Natl Greenh Gas Invent [Internet]. 2000;175–82. Available from: http://www.ipcc- nggip.iges.or.jp/public/gp/bgp/3_1_Cement_Production.pdf%5Cnhttp://www.ipcc-nggip.iges.or.jp/public/gp/english/

240. DANE. Estadísticas de cemento gris (ECG_ - Históricos [Internet]. Boletín Técnico. 2018 [cited 2012 Aug 20]. Available from:

http://www.dane.gov.co/index.php/estadisticas-por-tema/construccion/estadisticas-de-cemento-gris/historicos-estadisticas-de-cemento-gris

241. CONCENTRA. Mapas y aplicaciones. 2018.

(23)

y mejora de la base de datos de factores de emisión de los combustibles colombianos- FECOC. [Internet]. 2016. Available from:

http://www.upme.gov.co/calculadora_emisiones/aplicacion/Informe_Final_FECOC.pd f

243. Fedebiocombustibles. Plantas productoras de alcohol carburante. [Internet]. 2017 [cited 2017 Nov 1]. Available from: http://www.fedebiocombustibles.com/estadistica-mostrar_info-titulo-Alcohol_Carburante_(Etanol).htm

244. Ecopetrol S.A. Memoria de cálculo balance de materia y energía general. Bioenergy. [Unpublished results]. 2012.

245. IEAGHG. Cost of CO2 Capture in the Industrial Sector: Cement and Iron and Steel Industries. 2018.

246. IEA. World Energy Outlook [Internet]. 2015. 726 p. Available from: https://www-oecd-ilibrary-org.proxy-ub.rug.nl/energy/world-energy-outlook-2017_weo-2017-en 247. Uniandes;, PNUD;, MADS. Productos Analíticos para Apoyar la toma de decisiones

sobre acciones de mitigación a nivel sectorial oferta de Energía: Generación Eléctrica, Petróleo, Gas y Carbón. Bogotá; 2014.

248. WBCSD, IEA. Cement roadmap. 2010;1–4. Available from:

https://www.iea.org/publications/freepublications/publication/Cement_Roadmap_Fold out_WEB.pdf

249. Torres J, Molina D, Pinto C, Rueda F. Estudio de la mezcla de gasolina con 10% de etanol anhidro. evaluación de propiedades fisicoquímicas. Ciencia, Tecnol y Futur. 2002;2:71–82.

250. Leeson D, Mac Dowell N, Shah N, Petit C, Fennell PS. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int J Greenh Gas Control [Internet]. 2017;61:71–84. Available from: http://dx.doi.org/10.1016/j.ijggc.2017.03.020

251. Vatopoulos K, Tzimas E. Assessment of CO2 capture technologies in cement manufacturing process. J Clean Prod. 2012;32:251–61.

252. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Dowell N Mac, et al. Carbon capture and storage update. Energy Environ Sci. 2014;7:130–89.

253. IEAGHG. Deployment of CCS in the Cement Industry [Internet]. Technical report. 2013. Available from: http://ieaghg.org/docs/General_Docs/Reports/2013-19.pdf 254. Rochedo PRR, Costa IVL, Império M, Hoffmann BS, Merschmann PRDC, Oliveira

(24)

CCN, et al. Carbon capture potential and costs in Brazil. J Clean Prod. 2016;131:280– 95.

255. Van Leeuwen T, Ferguson R, Kuuskraa V. Electricity Use of Enhanced Oil Recovery with Carbon Dioxide (CO2-EOR). NETL, DOE/NETL-2009/ 1354. [Internet]. 2009. Available from: http://netl.doe.gov/File%2520Library/Research/Energy%25

20Analysis/Publications/DOE-NETL-2009-1354-ElectricityUseCO2-EOR.pdf. 256. Kreutz T, Williams R, Consonni S, Chiesa P. Co-production of hydrogen, electricity

and CO2 from coal with commercially ready technology. Part B: Economic analysis. Int J Hydrogen Energy. 2005;30(7):769–84.

257. (S&T) Squared Consultants Inc. GHGenius [Internet]. [cited 2020 Apr 27]. Available from: https://ghgenius.ca/index.php

258. Darda S, Papalas T, Zabaniotou A. Biofuels journey in Europe: Currently the way to low carbon economy sustainability is still a challenge. J Clean Prod [Internet]. 2019;208:575–88. Available from: https://doi.org/10.1016/j.jclepro.2018.10.147 259. Faaij A. Modern biomass conversion technologies. Vol. 11, Mitigation and Adaptation

Strategies for Global Change. 2006. 343–375 p.

260. Dyk S Van, Su J, Ebadian M, Connor DO, Lakeman M. Potential yields and emission reductions of biojet fuels produced via hydrotreatment of biocrudes produced through direct thermochemical liquefaction. Biotechnol Biofuels [Internet]. 2019;1–12. Available from: https://doi.org/10.1186/s13068-019-1625-2

261. Karatzos S, Mcmillan J, Saddler J. The potential and challenges of “drop in” biofuels. A Report by IEA Bioenergy Task 39 [Internet]. IEA Bioenergy - Task 39. 2014. 202 p. Available from:

http://task39.org/files/2014/01/Task-39-drop-in-biofuels-report-summary-FINAL-14-July-2014-ecopy.pdf

262. Bezergianni S, Dimitriadis A, Karonis D. Diesel decarbonization via effective catalytic Co-hydroprocessing of residual lipids with gas-oil. Fuel [Internet]. 2014;136:366–73. Available from: http://dx.doi.org/10.1016/j.fuel.2014.07.038

263. van Dyk S, Su J, Mcmillan JD, Saddler J (John). Potential synergies of drop-in biofuel production with further co-processing at oil refineries. Biofuels, Bioprod Biorefining. 2019;13(3):760–75.

264. Greenea. Greenea, New Players Join the HVO Game. [Internet]. BIOFUELS, WASTE BASED BIOFUELS. 2017 [cited 2020 Jul 3]. Available from:

https://www.greenea.com/publication/new-players-join-the-hvo-game/

(25)

diesel. Renew Sustain Energy Rev [Internet]. 2013;21:110–6. Available from: http://dx.doi.org/10.1016/j.rser.2012.12.042

266. Pinho A de R, de Almeida MBB, Mendes FL, Casavechia LC, Talmadge MS, Kinchin CM, et al. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel [Internet]. 2017;188:462– 73. Available from: http://dx.doi.org/10.1016/j.fuel.2016.10.032

267. Pinho ADR, De Almeida MBB, Mendes FL, Ximenes VL, Casavechia LC. Co-processing raw bio-oil and gasoil in an FCC Unit. Fuel Process Technol [Internet]. 2015;131:159–66. Available from: http://dx.doi.org/10.1016/j.fuproc.2014.11.008 268. Al-Sabawi M, Chen J. Hydroprocessing of biomass-derived oils and their blends with

petroleum feedstocks: A review. Energy and Fuels. 2012;26(9):5373–99.

269. Al-Sabawi M, Chen J, Ng S. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review. Energy and Fuels. 2012;26(9):5355–72. 270. Stefanidis S, Kalogiannis KG, Lappas AA. Co-processing bio-oil in the refinery for

drop-in biofuels via fluid catalytic cracking. Wiley Interdiscip Rev Energy Environ. 2018;7(3):1–18.

271. Bhatt AH, Zhang Y, Heath G. Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards. Appl Energy [Internet]. 2020;268(May):114937. Available from:

https://doi.org/10.1016/j.apenergy.2020.114937

272. Wu L, Wang Y, Zheng L, Shi M, Li J. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery. Energy Convers Manag. 2019;195(April):620–9.

273. Gudde N, Larivé J, Yugo M. Refinery 2050: Conceptual Assessment. Exploring opportunities and challenges for the EU refining industry to transition towards a low-CO2 intensive economy. Concawe Special Task Force Refinery 2050 (STF-2). 2019. 274. Baldwin B, Li Z, Magrini K, Wang H, Investigators P. DOE Bioenergy Technologies Office ( BETO ) 2019 Project Peer Review Strategies for Co-Processing in Refineries ( SCR ). 2019.

275. Chum HL, Pinho ADR. DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review. 2015.

276. Ramirez A, Blok K, Faaij A, Meerman H, Worrell E, Gert JK, et al. System approach for a sustainable industry. Understanding the need for systems analysis to support the energy transition of the industrial sector. [Internet]. 2019. Available from:

(26)

https://www.topsectorenergie.nl/sites/default/files/uploads/FinalReport-System approach for a sustainable industry_0.pdf

277. Kaiser MJ. A review of refinery complexity applications. Pet Sci. 2017;14(1):167–94. 278. Martinez-Gonzalez A, Casas-Leuro O, Acero Reyes J, Castillo Monroy E. Comparison

of Potential environmental impacts on the production and use of high and low sulfur regular diesel by life cycle assessment. CT&F, Ciencia, Tecnol y Futur. 2011;4:47–60. 279. International Energy Agency (IEA). Oil Refineries. ETSAP-Technoloy Brief P04.

2015;(April 2014):1–11.

280. Energy Information Administration (EIA ). Petroleum Market Module (PMM) of the National Energy Modeling System: Model Documentation . Washington DC.; 2013. 281. OANDA. Currency converter [Internet]. 2017 [cited 2018 May 1]. Available from:

www.oanda.com

282. European Central Bank. Harmonised Index of Consumer Prices [Internet]. 2019 [cited 2019 Jun 1]. Available from:

https://www.ecb.europa.eu/stats/macroeconomic_and_sectoral/hicp/html/index.en.html 283. Berghout N, van den Broek M, Faaij A. Deployment of infrastructure configurations

for large-scale CO2 capture in industrial zones a case study for the Rotterdam Botlek area (part B). Int J Greenh Gas Control [Internet]. 2017;60(2017):24–50. Available from: http://dx.doi.org/10.1016/j.ijggc.2017.02.015

284. U.S. Department of Energy. Strategic Petroleum Reserve Crude Oil Assay Manual. 2017.

285. Hsu CS, Robinson PR. Handbook Petroleum Technology [Internet]. 2017. 1243 p. Available from: https://www.springer.com/gp/book/9783319493459

286. UOP. Opportunities for biorenewables in oil refineries-Final technical report.

2005;3:1910–1400. Available from: https://www.osti.gov/scitech/servlets/purl/861458 287. Agblevor FA, Mante O, McClung R, Oyama ST. Co-processing of standard gas oil and

biocrude oil to hydrocarbon fuels. Biomass and Bioenergy [Internet]. 2012;45:130–7. Available from: http://dx.doi.org/10.1016/j.biombioe.2012.05.024

288. Castello D, Rosendahl L. Coprocessing of pyrolysis oil in refineries. In: Direct thermochemical liquefaction for energy applications [Internet]. Elsevier Ltd; 2018. p. 293–317. Available from: https://doi.org/10.1016/B978-0-08-101029-7.00008-4 289. Klerk A de. Fischer-tropsch refining. [Internet]. Wiley; 2011. Available from:

https://www.wiley.com/en-nl/Fischer+Tropsch+Refining-p-9783527635610

(27)

et al. A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chem. 2014;16(2):407–53.

291. Fogassy G, Thegarid N, Schuurman Y, Mirodatos C. From biomass to bio-gasoline by FCC co-processing: Effect of feed composition and catalyst structure on product quality. Energy Environ Sci. 2011;4(12):5068–76.

292. Fogassy G, Thegarid N, Toussaint G, van Veen AC, Schuurman Y, Mirodatos C. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl Catal B Environ [Internet]. 2010;96(3–4):476–85. Available from: http://dx.doi.org/10.1016/j.apcatb.2010.03.008

293. de Miguel Mercader F, Groeneveld MJ, Kersten SRA, Way NWJ, Schaverien CJ, Hogendoorn JA. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B Environ [Internet]. 2010;96(1– 2):57–66. Available from: http://dx.doi.org/10.1016/j.apcatb.2010.01.033

294. Wang C, Li M, Fang Y. Coprocessing of Catalytic-Pyrolysis-Derived Bio-Oil with VGO in a Pilot-Scale FCC Riser. Ind Eng Chem Res. 2016;55(12):3525–34. 295. Bridgwater A V. Degradation of lignin in ionic liquid with HCl as catalyst. Environ

Prog Sustain Energy. 2015;35(3):809–14.

296. PNNL. Refinery Integration of Renewable Feedstocks. 2014. p. 1–21.

297. Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy [Internet]. 2012;38:68–94. Available from:

http://dx.doi.org/10.1016/j.biombioe.2011.01.048

298. Huber GW, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chemie - Int Ed. 2007;46(38):7184–201.

299. Lindfors C, Paasikallio V, Kuoppala E, Reinikainen M, Oasmaa A, Solantausta Y. Co-processing of dry bio-oil, catalytic pyrolysis oil, and hydrotreated bio-oil in a micro activity test unit. Energy and Fuels. 2015;29(6):3707–14.

300. Venderbosch RH, Heeres HJ. Coprocessing of (upgraded) pyrolysis liquids in conventional oil refineries. In: Biomass Power for the World: Transformations to Effective Use. 2015. p. 515–40.

301. Lappas AA, Bezergianni S, Vasalos IA. Production of biofuels via co-processing in conventional refining processes. Catal Today. 2009;145(1–2):55–62.

302. Melero JA, Clavero MM, Calleja G, García A, Miravalles R, Galindo T. Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil. Energy and Fuels. 2010;24(1):707–17.

(28)

303. Malleswara Rao T V., Dupain X, Makkee M. Fluid catalytic cracking: Processing opportunities for Fischer-Tropsch waxes and vegetable oils to produce transportation fuels and light olefins. Microporous Mesoporous Mater [Internet]. 2012;164:148–63. Available from: http://dx.doi.org/10.1016/j.micromeso.2012.07.016

304. Si Z, Zhang X, Wang C, Ma L, Dong R. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts. 2017;7(6):1–22.

305. Van De Beld B, Holle E, Florijn J. The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Appl Energy [Internet]. 2013;102:190–7. Available from: http://dx.doi.org/10.1016/j.apenergy.2012.05.047

306. Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM, et al.

Characterisation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel. 2013;103:247–57.

307. Santori G, Di Nicola G, Moglie M, Polonara F. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl Energy [Internet]. 2012;92:109–32. Available from:

http://dx.doi.org/10.1016/j.apenergy.2011.10.031

308. Oasmaa A, Peacocke C. Properties and fuel use of biomass-derived fast pyrolysis liquids. A guide. Vol. 731, Vtt Publications. 2010. 79 p. + app. 46 p.

309. McCormick RL, Ratcliff MA, Christensen E, Fouts L, Luecke J, Chupka GM, et al. Properties of oxygenates found in upgraded biomass pyrolysis oil as components of spark and compression ignition engine fuels. Energy and Fuels. 2015;29(4):2453–61. 310. Ecopetrol S.A. Caracterización cargas y productos coprocesamiento bioaceite HDT y

FCC. [Internal document by Jose Aristóbulo Sarmiento-Unpublished]. 2018. 311. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ. Hydrotreatment of fast

pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res. 2009;48(23):10324–34.

312. Meerman JC, Larson ED. Negative-carbon drop-in transport fuels produced via catalytic hydropyrolysis of woody biomass with CO 2 capture and storage. Sustain Energy Fuels [Internet]. 2017;1(4):866–81. Available from:

http://xlink.rsc.org/?DOI=C7SE00013H

313. Jensen CU, Rasmussen KM. Co-processing Bio-crude at Petroleum Refineries. Aalborg University. Aalborg University; 2014.

314. Ecopetrol S.A. [Unpublished results]. Economic analysis for Biocetano production. 2018.

(29)

315. Mosquera Montoya M, Valderrama Villabona M, Ruíz Álvarez E, López Alfonso D, Enrique Castro Zamudio L, Andrés Fontanilla C, et al. Economic Production Costs for the Fruit of Oil Palms and Crude Palm Oil in 2016: Estimation in a Group of

Colombian Producers Palabras. Fedepalma [Internet]. 2017;38(2):11–27. Available from: http://web.fedepalma.org/media/01-Palmas-38-2-2017_VF_sin_marcas.pdf 316. NL Agency. Ministry of Economic Affairs A and I. Valorization of palm oil ( mill )

residues. 2013.

317. Jones S, Meyer P, Snowden-Swan L, Padmaperuma A, Tan E, Dutta A, et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels: Fast pyrolysis and hydrotreating bio-oil pathway. PNNL-23053 [Internet]. PNNL. 2013. Available from:

http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23053.pdf%5Cnhttp://www.nrel.gov/docs/fy14osti/61178.pdf

318. Peters JF, Iribarren D, Dufour J. Life cycle assessment of pyrolysis oil applications. Biomass Convers Biorefinery Process Biog Mater Energy Chem TA - TT -. 2015;5(1):1–19.

319. Vasalos IA, Lappas AA, Kopalidou EP, Kalogiannis KG. Biomass catalytic pyrolysis: Process design and economic analysis. Wiley Interdiscip Rev Energy Environ.

2016;5(3):370–83.

320. Iribarren D, Peters JF, Dufour J. Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel [Internet]. 2012;97:812–21. Available from:

http://dx.doi.org/10.1016/j.fuel.2012.02.053

321. Nidia Elizabeth Ramirez-Contreras, Munar-Florez D, Garcia-Nuñez J, Mosquera-Montoya M, Faaij APC. GHG balance and economic performance of palm oil production in Colombia; Current status and long-term perspectives. J Clean Prod [Internet]. 2019;120757. Available from: https://doi.org/10.1016/j.jclepro.2020.120757 322. Ecopetrol S.A. Resultados 2018 [Internet]. 2019. Available from:

https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/nuestra-empresa/sala-de-

prensa/boletines-de-prensa/boletines-2019/boletines-2018/resultados+grupo+ecopetrol+2018

323. (UPME) U de PME. Doc_calculo_del_FE_del_SIN_2016 [Internet]. 2017. Available from:

https://www1.upme.gov.co/ServicioCiudadano/Documents/Proyectos_normativos/Doc _calculo_del_FE_del_SIN_2016.docx

(30)

324. GHG Protocol. Allocation of GHG Emissions from a Combined Heat and Power (CHP) Plant [Internet]. CalculationTools. 2006. Available from:

https://ghgprotocol.org/sites/default/files/CHP_guidance_v1.0.pdf

325. MINMINAS, IDB, EMPA. Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia. [Internet]. 2012. Available from:

https://www.minenergia.gov.co/documents/10180/488888/Capitulo_0_Resumen_ejecu tivo_final.pdf/f032d18c-205f-499b-8d59-d1b359e7c572

326. Hoffmann J, Jensen CU, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries - Part 1: Fractional distillation and characterization. Fuel TA - TT -. 2016;165:526–35.

327. Worrell E, Galitsky C. Profile of the Petroleum Refining Industry in California, California Industries of the Future Program [Internet]. Berkeley: Lawrence Berkeley National Laboratory. Available at http://ies. lbl. gov/iespubs/55450. pdf. 2004. Available from:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Profile+of+the+Petr oleum+Refining+Industry+in+California+California+Industries+of+the+Future+Progr am#0%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Profile+ of+the+Petroleum+Re

328. Valle B, Remiro A, García-Gómez N, Gayubo AG, Bilbao J. Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: a review. J Chem Technol Biotechnol TA - TT -. 2019;94(3):670–89.

329. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ, Tester JW.

Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1(1):32–65.

330. Jensen CU, Hoffmann J, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries. Part 2: A parametric hydrotreating study. Fuel [Internet].

2015;165:536–43. Available from: http://dx.doi.org/10.1016/j.fuel.2015.08.047 331. Ardiyanti AR. Hydrotreatment of fast pyrolysis oil: catalyst development and

process-product relations. University of Groningen; 2013.

332. De Jong S, Antonissen K, Hoefnagels R, Lonza L, Wang M, Faaij A, et al. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol Biofuels. 2017;10(1):1–18.

333. Tzanetis KF, Posada JA, Ramirez A. Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction

(31)

conditions on production costs and GHG emissions performance. Renew Energy [Internet]. 2017;113:1388–98. Available from:

http://dx.doi.org/10.1016/j.renene.2017.06.104

334. Connor DO. Advanced Biofuels – GHG Emissions and Energy Balances. A REPORT TO IEA BIOENEGY TASK 39. 2013.

335. Hsu D. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing - Technical Report NREL-TP-6A20-49341. 2011.

336. Dupuis DP, Grim RG, Nelson E, Tan ECD, Ruddy DA, Hernandez S, et al. High-Octane Gasoline from Biomass: Experimental, Economic, and Environmental Assessment. Appl Energy [Internet]. 2019;241(February):25–33. Available from: https://doi.org/10.1016/j.apenergy.2019.02.064

337. Zacher AH, Olarte M V., Santosa DM, Elliott DC, Jones SB. A review and perspective of recent bio-oil hydrotreating research. Green Chem. 2014;16(2):491–515.

338. IEA. Oil Refineries. ETSAP-Technoloy Brief P04. 2015.

339. Castillo E. Biocombustibles avanzados a partir del aceite de palma. Palmas. 2016;37(II):191–4.

340. Mosquera-Montoya M, Ruiz-Alvarez E, Mesa-Fuquen E. Economic Assessment of Technology Adoption in Oil Palm Plantations from Colombia. Int J Financ Res. 2017;8(3):74.

341. Yáñez E, Ramírez A, Núñez-López V, Castillo E, Faaij A. Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry. Int J Greenh Gas Control. 2020;94(October).

342. Hoffmann J, Jensen CU, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries - Part 1: Fractional distillation and characterization. Fuel

[Internet]. 2016;165:526–35. Available from: http://dx.doi.org/10.1016/j.fuel.2015.10.094

343. Jensen CU, Hoffmann J, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries. Part 2: A parametric hydrotreating study. Fuel [Internet].

2015;165:536–43. Available from: http://dx.doi.org/10.1016/j.fuel.2015.08.047

344. Maniatis K, Landälv I, Waldheim L, Van Den Heuvel E, Kalligeros S. Building Up the Future-Sub Group on Advanced Biofuels-Sustainable Transport Forum [Internet]. 2017. Available from:

http://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetailDoc &id=33288&no=1

Referenties

GERELATEERDE DOCUMENTEN

Een voorwaarde voor effectieve invloed is dat er meer inzicht komt in aspecten van ruimtelijke vormgeving die van belang zijn voor de verkeers- veiligheid en dat

Greenhouse gas mitigation strategies for the oil industry - bottom-up system analysis on the transition of the Colombian oil production and refining sector.. Yanez Angarita,

Aspects such as the interaction and combined deployment of mitigation options, a chain perspective analysis for the oil sector, use of real operational data, scale,

In the former, this is mainly due to flaring (which accounts for 47% of the total primary energy consumed in the process) associated with inefficient recovery of gas from the

This option would increase the CO 2 storage and oil recovery potentials in this region, but a technical and economic analysis should be carried out and include

The final production cost of fuel (mix) from HTLO included a standard transport cost of biomass to the refinery with their associated GHG emissions as included for other pathways

up assessment, based on data on process unit level of existing oil production facilities and a refinery, a broader portfolio of conventional and innovative technologies, determining

Greenhouse gas mitigation strategies for the oil industry - bottom-up system analysis on the transition of the Colombian oil production and refining sector.. University