• No results found

Constraining spatial variations of the fine-structure constant in symmetron models

N/A
N/A
Protected

Academic year: 2021

Share "Constraining spatial variations of the fine-structure constant in symmetron models"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Constraining spatial variations of the fine-structure constant in symmetron models

A.M.M. Pinho

a,b,c

, M. Martinelli

d

, C.J.A.P. Martins

a,e,

aCentrodeAstrofísica,UniversidadedoPorto,RuadasEstrelas,4150-762Porto,Portugal bFaculdadedeCiências,UniversidadedoPorto,RuadoCampoAlegre687,4169-007Porto,Portugal

cInstitutfürTheoretischePhysik,Ruprecht-Karls-UniversitätHeidelberg,Philosophenweg16,69120Heidelberg,Germany dInstituteLorentz,LeidenUniversity,POBox9506,Leiden2300RA,TheNetherlands

eInstitutodeAstrofísicaeCiênciasdoEspaço,CAUP,RuadasEstrelas,4150-762Porto,Portugal

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received13February2017

Receivedinrevisedform11April2017 Accepted12April2017

Availableonline14April2017 Editor: M.Trodden

Keywords:

Cosmology

Fundamentalcouplings Fine-structureconstant Astrophysicalobservations

Weintroduceamethodologytotestmodelswithspatialvariationsofthefine-structureconstantα,based onthe calculation ofthe angularpower spectrum ofthesemeasurements. Thismethodologyenables comparisonsofobservationsandtheoreticalmodelsthroughtheirpredictionsonthestatisticsoftheα

variation.Hereweapplyittothecaseofsymmetronmodels.Wefindnoindicationsofdeviationsfrom the standard behavior, with currentdata providingan upper limitto thestrength ofthe symmetron couplingtogravity(logβ2<0.9)whenthisistheonlyfreeparameter,andnot abletoconstrainthe modelwhenalsothesymmetrybreakingscalefactoraS S Bisfreetovary.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Astrophysicaltestsofthestabilityofdimensionlessfundamen- talcouplingssuchasthefine-structureconstant

α

areapowerful probeof cosmology aswell as offundamental physics [1,2]. The analysisofa datasetof293archival datameasurementsfromthe Keck and VLT telescopes by Webb et al. provided an indication of spatial variations with an amplitude of a few parts per mil- lion,withastatisticalsignificanceof4−

σ

[3].Eventhoughthere are concerns aboutpossible systematiceffects inthis dataset [4]

andthe statistical significance itself decreases when this dataset is analyzed jointly withmore recent data [5], it is important to considerthe theoreticalimplications of such results,alsobearing inmindthatforthcomingastrophysical facilitieswillenable much moreprecisetestsinthenearfuture.

Ataphenomenologicallevelitiscommontofittheastrophys- icalmeasurementswithasimpledipole,withorwithoutanaddi- tionaldependenceonredshiftorlook-backtime[3,5].Ontheother hand, from a theoretical point of view simplistic dipole models wouldrequirestrong fine-tuning toexplain such abehavior, and

*

Correspondingauthorat:CentrodeAstrofísica,UniversidadedoPorto,Ruadas Estrelas,4150-762Porto,Portugal.

E-mailaddresses:am.pinho@thphys.uni-heidelberg.de(A.M.M. Pinho), martinelli@lorentz.leidenuniv.nl(M. Martinelli),Carlos.Martins@astro.up.pt (C.J.A.P. Martins).

aphysicallymotivatedapproachwouldrelyonenvironmentalde- pendencies[6].Thisthereforecallsformorerobustmethodologies whichenableaccuratecomparisonsbetweenmodelsandobserva- tions.EarlyworkalongtheselineswasdonebyMurphyet al.,who calculatedthetwo-pointcorrelationfunctionoftheKecksubsam- pleoftheaforementionedarchivaldata,findingittobeconsistent withzero[7].Inthispaperwe movefromthetwopoint angular correlationfunction tothecalculationoftheangularpowerspec- trumofthesemeasurements.Theaimofadoptingthisapproachis tobe abletocompress thedatainformationinsucha wayto al- lowforcomparisonwiththepredictionsoftheoreticalmodels.As aproofofconcept,inthispaperweapplythismethodtothecase ofthesymmetronmodel,forwhichtheenvironmentaldependence of

α

hasbeenpreviouslystudiedusingN-bodysimulations[8].

InSection 2we presentaconciseoverviewofthesymmetron model.Section3presentsthe methodologyusedtocompress the

α

measurements intoangularpower spectra.Insection 4wecal- culate the theoretical power spectrum for thesymmetron model andpresentouranalysis methodology,leading to theresults dis- cussedinSection5.Finally,inSection6wesummarizeourresults andtheoutlookforthismethodology.

2. Symmetronmodel

The symmetron modelis a scalar-tensormodification ofgrav- ity,introducedinordertoachieve anadditionallongrangescalar http://dx.doi.org/10.1016/j.physletb.2017.04.027

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

force while still satisfyinglocal gravity constraints thanks to the environment density dependence of its coupling to matter. This modificationofgravityisdescribedbytheaction[9]

S

=



dx4

g



R 2M2pl

1

2

(∂φ)

2

V

(φ)

 +

Sm

(

m

;

gμνA2

(φ))

(1) where g=det(gμν),Mpl=1/

8

π

G and Sm isthematter-action.

The conformal coupling between the scalar field and the matter fieldsmexpressedby ˜gμν=gμν A2(φ),isassumedtobethesim- plestoneconsistentwiththepotentialsymmetry,

A

(φ) =

1

+

1 2

 φ

M



2

,

(2)

withM and

μ

arbitrarymassscales.Thiscouplingleadstoafifth force,whichinthenon-relativisticlimitisgivenby

Fφ

d A

(φ)

d

φ

∇φ = φ

∇φ

M2

.

(3)

Thepotentialischosentobeofthesymmetrybreakingform

V

(φ) = −

1

2

μ

2

φ

2

+

1

4

λφ

4

.

(4)

The dynamicsof the scalarfield φ is determinedby an effective potentialwhichinthenon-relativisticlimit(relevantfortheastro- physicalmeasurements)hastheform

Ve f f

(φ) =

V

(φ) +

A

(φ) ρ

m

=

1 2

 ρ

m

μ

2M2

1



μ

2

φ

2

+

1

4

λφ

4

;

(5)

thismeansthatintheearlyUniverseor,ingeneral,whenthemat- terdensityis high, the effective potential hasa minimum φ=0 where thefield will reside. As the Universe expands, the matter densitydilutes untilitreachesa criticaldensity

ρ

S S B=

μ

2M2 for whichthesymmetrybreaksandthefieldmovestooneofthetwo newminimaφ= ±φ0= ±

μ

/

λ.

The fifth-forcebetweentwo testparticles residing in aregion ofspacewherethefieldhasthevalueφ= φlocal canbecalculated tobe[9]

Fφ

Fgravity

=

2

β

2

 φ

local

φ

0



2

2

β

2



1

ρ

μ

2M2



,

(6)

for separations of the Compton wavelength λlocal = 1/ Ve f f,φφlocal), where the coupling strength to gravity is given by

β = φ

0Mpl

M2 (7)

For larger separations or in the cosmological background before symmetry breaking, φlocal0 and the force is suppressed. After symmetry breaking, the field moves towards φ= ±φ0 and the force is comparable to gravity for β=O(1). Non-linear effects inthe field-equationensure that theforce is effectivelyscreened inhigh densityregions. The symmetry breaks atthe scale factor aS S B= (

ρ

m,0/

ρ

S S B)andtherangeofthefifth-forcewhenthesym- metry is broken isgiven by λφ0=1/(

2

μ

), where localgravity constrains satisfy λφ01 Mpc/h for symmetry breaking closeto today,i.e.aS S B1[10].

Sincethesymmetronscalarfieldisadynamicaldegreeoffree- dom, one naturally expects it to couple to the other degrees of freedom inthe Lagrangian,unless a newsymmetry ispostulated to suppressthesecouplings. Inparticular, we can assume that it coupleswiththeelectromagneticsectorofthetheory[8]

Fig. 1. TheoreticalpowerspectrumPδα(k,a)givenbyeq.(10)asafunctionofthe wavenumberk fora=1=1φ0=1 Mpc/handdifferentsymmetrybreaking scalefactorsaS S B= [0.33,0.5,0.66].Notethatstrictlyspeakingeq.(10)onlyap- pliesinthelinearregime,sothebehavior beyondthisshouldbetakenwithcare.

Following[8]anormalizationfactorx=0.06(0.5/aS S B)wasused.(Forinterpreta- tionofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

SE M

= −



dx4

g BF

(φ)

1

4Fμν2

,

(8)

where BF is the gauge kinetic function which leads to

α

=

α

0BF1(φ). Withthesame choiceof quadraticcoupling BF1(φ)= 1+12βγ2

φ M

2

onegetsthefollowingvariationofthefinestructure constant

δ

α

 α α =

α (φ)α

0

α

0

=

BF1

(φ)

1

=

1 2

γ

φ

M



2

.

(9)

Consideringperturbations ofthe scalarfield inFourierspace, the power spectrum for variations of

α

in the linear regime can be connectedtothematterpowerspectrum Pm(k,a)asfollows[8]

α

(

k

,

a

) =

3



mH20

β

γ2

β

2 a

(

k2

+

a2m2φ

)

φ φ

0

2

2

Pm

(

k

,

a

),

(10)

wheremand H0 arethepresent-daymatterdensityandHubble parameter, βγ isthescalar-photon couplingrelative tothescalar- mattercoupling,k istheco-movingwavenumber,m2φ=Ve f f,φφ( ¯φ) is thescalarmass inthecosmologicalbackground,and(φ/φ0)is thebackgroundscalarfieldvalue.ForaaS S B wecanwrite

φ (

a

)

φ

0

2

=

1

− 

aS S B a



3

,

m2φ

(

a

) =

1

λ

2φ0

=

1

− 

a

S S B

a



3

.

(11)

α isplottedinFig. 1;itisalsousefultowriteitas

Pδα

(

k

,

a

) =

0

.

33



m106

β

γ2

β

2 a

((

k

/

mφ

)

2

+

a2

)

λ

φ0

Mpc

/

h

2

2

Pm

(

k

,

a

).

(12)

3. Observationaldata

Currentlyavailableastrophysicalmeasurementsof

α

comefrom high-resolution spectroscopy of absorption clouds along the line

(3)

of sight of bright quasars. In addition to the 293 archival mea- surementsofWebbet al.[3]there are 20morerecentdedicated measurements discussedin[11],making a totalof 313measure- ments. From now on we refer to the formeras Webb and asAll to the combination of these with the latter. For each of them, apartfrom themeasurement of the relative variationof

α

itself, the sky coordinates and redshift of the absorber (spanning the range 0.2<z<4.2) are known with negligible uncertainty. We cancompress thisinformationinan angular powerspectrum C, tobecomparedwithstatisticalpredictionscomingfromtheoreti- calmodels.

Inordertodothis,weobtainthetwo-pointcorrelationfunction c(ϑ)fromtheδα(θ,φ)measurements[7]

c

(ϑ) =

1

¯

n2fsky

< δ

α

(θ, φ)δ

α

, φ

) >,

(13) where the brackets < .> correspond to the average taken over all possible orthodromic separations ϑ. Since the measurements of δα are sparse on the sky (effectively point sources), the dis- creteness of the data has been taken into account following the procedure of[12]: 4

π

fsky steradians is the assumed coverage of the sky ofthe dataset andn¯=N/(4

π

fsky) is the corresponding meannumberdensityover theobserved partofthe sky(withN asthe numberof sources).The data we considerhere are effec- tively sparse point sources spread over the whole sky, therefore wetake fsky=1.Thisassumptionprovidesaconservativeestimate ofthemeasurements densityn and¯ thereforeofthepower spec- trumestimation,despitealsoaffectingcosmicvariance,decreasing itsimpact ontheestimatornoise. Futuremorecompletedatasets willallowtodealproperlywiththeseaspects,exploitingalsotech- niquescommonlyusedforothercosmologicalobservables,suchas CMBorgalaxysurveys,andthereforetoobtainamoreprecisees- timateoftheerrorcontributions.

Inthisworkwearealsoneglectingtheredshiftinformationof the δα measurements; in practice we are assuming that δα has noredshift dependenceand all thedeviations fromthe standard value are brought by spatial variations. This approach is accept- able withthe current state of the data, butit will be crucial to includeredshiftinformationwhenthedatawillreachasensitivity allowingforatomographicreconstructionofδα .Moreover,includ- ing the possibility of δα(z) will be necessary to test theoretical modelswhichalsopredict atime evolutionforthe finestructure constant.

WecaninprincipleperformaLegendretransformoftheangu- larcorrelationin orderto obtainthe angularpowerspectrum C as[13]

C

=



c

(ϑ)

P

(

cos

ϑ)

d

,

(14)

whereP(cosϑ)istheLegendrepolynomialandthesolidangle.

Inpractice,wecomputethepowerspectrumestimatorCˆas C

ˆ



=

2

π 

ϑ

c

(ϑ)

P

(

cos

ϑ)

sin

ϑϑ

(15)

with beingthe differencebetween consecutivevaluesof the angularseparation ϑ. Theexpected errorof thepower spectrum estimatorcanbeobtainedfrom[12]



2

=

2

(

2l

+

1

)

fsky

 σ

f2

¯

n

+ ˆ

C



2

(16)

whichincludesbothcontributionsoftheshotnoiseS N andcos- micvarianceC V thatcanbeexpressedas



S N

=



2

(

2l

+

1

)

fsky

σ

2f

¯

n

, 

C V

=



2

(

2l

+

1

)

fskyC

ˆ



.

(17)

σ

f isobtainedfromthemeasurements’errors1

σ

jweightingeach measurementwithafactor w2i givenby

w2i

=

N

σ

i2



j

σ

j2 (18)

whichyieldstheaforementionedquantity

σ

f as

σ

2f

= 

N

j

σ

j2

.

(19)

Often there are several measurements of δα at differentred- shiftsalongthesamelineofsightasthelightfromthequasarcan gothroughmorethanoneabsorptionclouduntilitreachesEarth.

Toavoid nullangularseparations inthe computation ofEq.(13), we chooseto usetheweighted meanmeasurement formeasure- mentsinthesamelineofsight.Ourfulldatasetincludesmeasure- mentsfrom156independentlinesofsight.Beforecomputingthe correlation function,thedatasetisanalyzedandreplacedby new valuesofweightedredshift,zw,weightedδα,w anditscorrespond- ingweightederror,

σ

w describedby

zw

=



iwi

×

zi



iwi

,  α

α

 

w

=



iwi

×

ααi



iwi

,

σ

w2

= 

1

iwi

(20)

where w istheweight givenby wi=1/

σ

i2 andtheindex i runs overthemeasurementsoneachlineofsight.

Fig. 2shows theangular power spectra Cˆ obtainedwith the procedure described above, considering the Webb dataset (left panel) andtheAll combination (right panel).We notice how the inclusion of the new data, although limited in the number of sources, leads to an improvement of the measured power spec- trum,thankstotheincreasedsensitivity.

Fig. 3showsinsteadtheglobalerroronthemeasurementsand the contributions coming from shot noise and cosmic variance, where we can notice how the former dominates over the latter evenatthelargescalesconsidered.

4. Theoreticalpredictionsanddataanalysis

Wecannowcomparetheobservationalpowerspectrawiththe predictionsmadebythesymmetronmodel.Thisentailsexpressing Eq.(10)intheformofanangularpowerspectrum.Genericallythis can bewritten as2D projection ofthe 3Ddensityfield which in thiscaseisthelinearpowerspectrum P(k,z).

InthispaperweexploittheLimberapproximation,whichsim- plifiesthecalculationsbyavoidingintegrationsofBesselfunctions.

Wewarn thereaderthatthisapproximationcan significantlyim- pact the calculation of the power spectra [13], especially atthe angular scales considered here; however, since the sensitivity of the currentlyavailable data is farfrom allowing precision recon- structionsof Pδα,theuseofmorerefinedmethods isoutsidethe aim of this paper, but this should be taken into account when more precise measurements willbe available.In this approxima- tion,wecancomputetheangularpowerspectrumas[13]

1 If bothsystematicandstatisticalerrorsareknown,weusethecombinederror obtainedbyaddingtheminquadrature.

(4)

Fig. 2. Angular power spectrum estimationCˆas a function of the multipolewith its expected errorfor the Webb dataset, and for the All combination.

Fig. 3. ContributionstotheerrorcomingfromshotnoiseS N(bluelines)andcosmicvarianceC V (redlines).TheleftpanelreferstotheWebb datasetwhiletheright oneshowsthecaseoftheAll combination.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 4. Leftpanel:Sourcedistributionfunctioninredshiftspaceforthearchivaldatasetof[3].Rightpanel:TheoreticalpowerspectrumCforthesymmetronmodelfor differentvaluesofthescalefactorforthesymmetrybreakingaS S B.

C



dzW2

(

z

)

H

(

z

)

d2A

(

z

)

Pδα

k

=

l

+

1

/

2 r

;

z

(21)

whereW(z)isthenormalizedsourcedistributionfunctioninred- shift space, H(z) is the Hubble parameter function, dA(z) is the angular diameter function and P(k,z) is the linear power spec- trumpreviouslyobtainedinEq.(10),withk=l+1r/2,andr isthe comoving distance. We reconstruct the source distribution func- tionwitha 20bins histogramfromeach datasetconsidered. The exampleofthearchivaldatasetsourcedistributioncanbefoundin Fig. 4.

In order to comparethese theoretical spectrawith theobser- vational data, we use the publicly available code COSMOMC [14], modified insuch awaytocompute fromasetofparameters the theoretical power spectrum of Eq. (21), where Pδα is given by Eq.(11).

We consider here as free parameters the scale factor when thesymmetrybreaks (aS S B)andtheproductofthecouplingβγβ (from now on simply named β forsimplicity), while we fix the range of the fifth force when the symmetry is broken to λφ0= 1 Mpc/h: thischoicesaturates thelocalgravityconstraintof[10]

and was also used in the N-body simulations of [8]. In princi-

(5)

Fig. 5. Toppanel: 1 and2σ confidenceregionsintheaS S Blogβ2planeobtainedusingtheWebb (bluecontours)andtheAll (redcontours)datasets.Bottompanels:

posteriordistributionsforaS S B (leftpanel)andlogβ2(rightpanel),wherebluesolidlinesrefertotheresultsobtainedusingtheWebb datasetandreddashedones referto theAll combination.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

ple,alsothestandardcosmologicalparametersshouldbeincluded inthe analysis as they affect the calculation of the power spec- tra through Eqs. (10), (21). However, current

α

datasets would not be able to simultaneously constrain the standard and sym- metronparameters, thereforeadditionalobservablessuch asCMB orsupernovaeshouldbeincluded,providedtheimpactofaspatial variationof

α

isincludedalsointheanalysisofthese. Wedecide toleavetheseconsiderationsforafuture,moredetailed,paperon thetopic andrather take for the standard cosmologicalparame- tersthe marginalizedvalue from Planck2015[15],focusing only onconstraintsofthesymmetronparameters.

5. Results

Inthis section we highlight theresults obtainedapplying the analysisdescribedabove.Inourfirstanalysis,weallowbothaS S B andlogβ2 to varyassuming flatprior distributions,2 while fixing λφ0=1 Mpc/h.Fig. 5showstheposteriordistributionforeachof thetwofreeparameterusingdifferentdatasets.

Overallwe findthat theWebb datasetis notable toconstrain thetwoparameterssimultaneouslyandnodeviationsfromavan-

2 We samplelogβ2 insteadofβ2 inordertobettersamplethelowcoupling limit.

ishing

α

variation are found. As the recent dedicated measure- ments areconsistentwithanon-varying

α

,whencombinedwith the largerarchival dataset,they leadagainto an agreementwith a vanishing β2,but they are still not able to putbounds on the parameters.

Wealsoperformouranalysiswithonlyonefreeparameter,fix- inglogβ2=1 andλφ0=1 Mpc/h,againonthegroundsthatthey wereusedintheN-bodysimulationsof[8],wefindthattheWebb datasetisnotabletoconstrainaS S B,whilefortheAll combination we finda 2−

σ

lower limitaS S B>0.43, asdisplayed inthetop panelofFig. 6.

Onthe otherhand,considering logβ2 astheonly freeparam- eterwhilefixingλφ0=1 Mpc/h anddifferentvaluesoftheepoch ofsymmetrybreaking(specifically aS S B=0.33,0.5 and0.66), the resultsshowninFig. 6andTable 1show that,asexpected, ifthe symmetrybreaksmorerecentlyalargercouplingvalueisallowed.

Again therecentmeasurementsimprovethe constraintsfromthe archivalmeasurements and,alsointhiscase,we findthat there- sultsareconsistentwithavanishingβ.

6. Conclusionsandoutlook

Inthiswork wehaveintroduced anewmethodology toaccu- ratelytestmodelswithspatialand/orenvironmental(localdensity

(6)

Fig. 6. Toppanel: posteriordistributionfortheaS S B parameter,usingtheWebb dataset(bluesolidlines)andtheAll combination(reddashedlines).Herewehavefixed log2)=1 andλφ0=1.Bottompanels: posteriordistributionforthelogβ2parameterwithdifferentvaluesofaS S B.OntheleftpanelweusetheWebb dataset,andonthe rightpaneltheAll combination.Inallbothcaseswekeepλφ0=1 fixed.

Table 1

Two-σ constraints on the symmetron parameter logβ2 givenbytheWebb datasetandtheAll combination,fordif- ferentfixedvaluesofaS S B;λφ0=1 Mpc/hwasalsoused throughout.

aS S B=0.33 aS S B=0.50 aS S B=0.66 Webb <0.5 <0.2 <1.2 All <0.9 <0.2 <0.7

dependent)variations of thefine-structure constant

α

. Theseare basedon thecalculation oftheangular powerspectrum ofthese measurements,whicharestandardinothercosmologicalcontexts.

Forconcreteness we have alsoapplied thesetools to thecase of

α

variations in symmetron models. We findthat currently avail- abledataarenotabletoconstrainthesymmetronparametersaS S B andlogβ2 whenthey are both considered as free parameters. If instead the only free parameter is the strength of the coupling to gravity β2, we find that thedata do not show anydeviations fromthestandardbehaviorandratherprovideanupperlimit for thiscoupling,whichislogβ2<0.9 inthemostconstrainingcase consideredhere.

Ourresultshighlightthefactthatarelativelysmallnumberof stringentmeasurements—therecentdedicated measurementsdis-

cussed in [11]—lead to stronger constraints when they are com- bined with the larger dataset of earlier measurements. The cur- rentbestconstraintsontheparameterβ comefrompulsartiming constraints on Brans–Dicke type scalar tensor theories (of which symmetronsareanexample),whichcorrespondtoβ102 [10].

While our constraint is weaker, it comes from

α

measurements alone. Combining this withother cosmological datasets will lead to morestringentconstraints;we leavethisextendedanalysisfor subsequentwork.

Ourresultsshould beseenasaproof ofconcept,inthesense that theyarelimitedbytheuncertaintiesoftheavailable

α

mea- surements. Future high-resolution ultra-stable spectrographs, in particularESPRESSO[16](dueforcommissioningatthecombined CoundéfocusoftheVLTin2017)andELT-HIRES[17](fortheEu- ropeanExtremelyLargeTelescope,whosefirstlightisforeseenfor 2024), both ofwhich have thesemeasurements asa key science and design driver, will lead to significantly more sensitive mea- surements,both interms ofstatisticaluncertainties andinterms of control over possible systematics.As discussed above, the use ofmoresensitivedataandcompletesurveyswillrequireafurther step in the analysis, revisingthe assumptions made herefor the calculation ofboth thetheoretical andobservational powerspec- tra. On the other hand,these will enable more detailed studies,

(7)

including a tomographic analysis (dividing the data into several differentredshiftbins)and,shouldvariationsbeconfirmed,model selectionstudiescomparingvariouspossibletheoreticalparadigms.

Adiscussionofthesepossibilitiesisleftforsubsequentwork.

Acknowledgements

We are grateful to Luca Amendola, Micol Bolzonella and Adi Nusserfor several discussions anduseful suggestions during the variousstagesofthiswork.

ThisworkwasdoneinthecontextofprojectPTDC/FIS/111725/

2009 (FCT, Portugal). CJM is also supported by an FCT Re- searchProfessorship, contractreferenceIF/00064/2012,funded by FCT/MCTES (Portugal) and POPH/FSE. MM is supported by the Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research/Ministry of Sci- enceandEducation (NWO/OCW). MM andCJM acknowledge ad- ditionalsupportfromtheCOSTAction CA1511(CANTATA),funded byCOST(EuropeanCooperationinScienceandTechnology).

References

[1]J.-P.Uzan,Varyingconstants,gravitationandcosmology,LivingRev.Relativ.14 (2011)2.

[2]C.J.A.P.Martins,FundamentalcosmologyintheE-ELTera:thestatusandfuture roleoftestsoffundamentalcouplingstability,Gen.Relativ.Gravit.47(2015) 1843.

[3]J.K.Webb,J.A.King, M.T. Murphy,V.V.Flambaum,R.F.Carswell, M.B.Bain- bridge,Indicationsofaspatialvariationofthefinestructureconstant,Phys.

Rev.Lett.107(2011)191101.

[4]J.B.Whitmore,M.T.Murphy,Impactofinstrumentalsystematicerrorsonfine- structureconstantmeasurementswithquasarspectra,Mon.Not.R.Astron.Soc.

447(2015)446–462.

[5]A.M.M.Pinho,C.J.A.P.Martins,Updatedconstraintsonspatialvariationsofthe fine-structureconstant,Phys.Lett.B756(2016)121–125.

[6]K.A. Olive,M.Pospelov,Environmental dependenceofmassesand coupling constants,Phys.Rev.D77(2008)043524.

[7]M.T.Murphy,J.K.Webb,V.V.Flambaum,Furtherevidenceforavariablefine- structureconstantfromKeck/HIRESQSOabsorptionspectra,Mon.Not.R.As- tron.Soc.345(2003)609.

[8]M.F.Silva,H.A.Winther,D.F.Mota,C.J.A.P.Martins,Spatialvariations ofthe fine-structureconstantinsymmetronmodels,Phys.Rev.D89(2014)024025.

[9]K. Hinterbichler, J. Khoury, Symmetron fields: screening long-range forces throughlocalsymmetryrestoration,Phys.Rev.Lett.104(2010)231301.

[10]K.Hinterbichler,J.Khoury,A.Levy,A.Matas,Symmetroncosmology,Phys.Rev.

D84(2011)103521.

[11]C.J.A.P. Martins, A.M.M. Pinho, Stability of fundamental couplings:a global analysis,Phys.Rev.D95(2017)023008.

[12]A.Nusser,E.Branchini,M.Feix,Adirectprobeofcosmologicalpowerspectra ofthepeculiarvelocityfieldandthegravitationallensingmagnificationfrom photometricredshiftsurveys,J.Cosmol.Astropart.Phys.2013(2013)018.

[13]M. LoVerde, N. Afshordi, Extended limber approximation, Phys. Rev. D 78 (2008)123506.

[14]A.Lewis,S.Bridle,CosmologicalparametersfromCMBandotherdata:a Monte Carloapproach,Phys.Rev.D66(2002)103511.

[15]P.A.R.Ade,etal.,PlanckCollaboration,Planck2015results.XIII.Cosmological parameters,Astron.Astrophys.594(2016)A13.

[16]F.Pepe,S.Cristiani,R.Rebolo,N.C.Santos,H.Dekker,D.Mégevand,F.M.Zerbi, A.Cabral,P.Molaro,P.DiMarcantonio,M.Abreu,M.Affolter,M.Aliverti,C.

Allende Prieto,M.Amate,G.Avila,V.Baldini,P.Bristow,C.Broeg,R.Cirami, J.Coelho,P.Conconi,I.Coretti,G.Cupani,V.D’Odorico,V.DeCaprio,B.De- labre, R.Dorn, P.Figueira, A.Fragoso,S. Galeotta,L. Genolet,R. Gomes,J.I.

GonzálezHernández,I.Hughes,O.Iwert,F.Kerber,M.Landoni,J.-L.Lizon,C.

Lovis,C.Maire,M.Mannetta,C.Martins,M.A.Monteiro,A.Oliveira,E.Poretti, J.L.Rasilla,M.Riva,S.SantanaTschudi,P.Santos,D.Sosnowska, S.Sousa,P.

Spanò,F.Tenegi,G.Toso,E.Vanzella,M.Viel,M.R.ZapateroOsorio,ESPRESSO:

anEchelleSPectrographforRockyExoplanetsSearchandStableSpectroscopic Observations,Messenger153(2013)6–16.

[17]J.Liske,etal.,TopLevelRequirementsforELT-HIRES,TechnicalReport,Docu- mentESO204697Version1,2014.

Referenties

GERELATEERDE DOCUMENTEN

Dankzij hoge prijzen voor nuchtere kalveren en slachtkoeien bleef het saldo van de melkveebedrijven in het tweede kwartaal van dit jaar boven dat van de vergelijkbare periode

Artikel 16 1 Wanneer er geen andere bevredigende oplossing bestaat en op voorwaarde dat de afwijking geen afbreuk doet aan het streven de populaties van de betrokken soort in

However, by using a more general type of logit model to parameterize the conditional probabilities, it is possible to specify non-hierarchical log-linear models, and to use

Pressure exerted by a symmetron fifth force on each plate for an experiment with two parallel plates, computed approximately for small and large separations, as well as through

The performance statistics (Tables 2 and 3) showed that although Common Factor models with small groups of countries, the Poisson Lee-Carter and the Age-Period-Cohort models

At all three locations, modelled transects are quite different from observed sand wave transects, even after model calibration (Fig. 1), indicating that 2DV models might not

The polar graph is restricted to a series parallel graph. In that case the rectangle dissection is a slicing structure. Using slicing structures has several advantages due to

We present a hashing protocol for distilling multipartite CSS states by means of local Clifford operations, Pauli measurements and classical communication.. It is shown that