• No results found

Membrane heterogeneity : from lipid domains to curvature effects Semrau, S.

N/A
N/A
Protected

Academic year: 2021

Share "Membrane heterogeneity : from lipid domains to curvature effects Semrau, S."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Membrane heterogeneity : from lipid domains to curvature effects

Semrau, S.

Citation

Semrau, S. (2009, October 29). Membrane heterogeneity : from lipid domains to curvature effects. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/14266

Version: Not Applicable (or Unknown)

License: Leiden University Non-exclusive license Downloaded from: https://hdl.handle.net/1887/14266

Note: To cite this publication please use the final published version (if applicable).

(2)

Membrane heterogeneity

From lipid domains to curvature effects

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op donderdag 29 oktober 2009 klokke 13.45 uur

door

Stefan Semrau

geboren te Solingen, Duitsland in 1979

(3)

Promotiecommissie

Promotor: Prof. dr. T. Schmidt

Copromotor: Dr. C. Storm (TU Eindhoven)

Referent: Prof. dr. O.G. Mouritsen (University of Southern Denmark, Odense) Overige leden: Prof. dr. F. MacKintosh (Vrije Universiteit Amsterdam)

Prof. dr. J. van Ruitenbeek Prof. dr. M. Orrit

Prof. dr. T.J. Aartsma Dr. J. van Noort Dr. M. Overhand

Casimir PhD Series, Delft-Leiden, 2009-11 ISBN 978-90-8593-058-7

An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

Het onderzoek beschreven in dit proefschrift is onderdeel van het weten- schappelijke programma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die financieel wordt gesteund door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

(4)

“There is never any end. There are always new sounds to imagine; new feelings to get at. And always, there is the need to keep purifying these feelings and sounds so that we can really see what we’ve discovered in its pure state. So that we can see more and more clearly what we are. In that way, we can give to those who listen the essence, the best of what we are.

But to do that at each stage, we have to keep on cleaning the mirror.”

John Coltrane (1926-1967), Jazz saxophonist

F¨ur meine Familie

(5)
(6)

Contents

1 Introduction 1

1.1 Membrane heterogeneity . . . 3

1.2 Artificial membranes . . . 6

1.2.1 Formation and observation . . . 7

1.2.2 Selected results . . . 8

1.3 Living cells . . . 15

1.3.1 Single molecule tracking . . . 16

1.3.2 Selected results . . . 23

1.4 Future directions . . . 28

2 Elastic parameters of multi-component membranes 31 2.1 Introduction . . . 32

2.2 Model . . . 33

2.3 Experiment . . . 35

2.4 Results . . . 42

2.5 Discussion . . . 44

3 Membrane mediated interactions 47 3.1 Introduction . . . 48

3.2 Materials and Methods . . . 49

3.2.1 GUV formation . . . 49

3.2.2 Image analysis . . . 50

3.3 Evidence for interactions . . . 52

3.3.1 Radial distribution function . . . 52

3.3.2 Size distribution . . . 53

3.4 Domain budding . . . 58

3.5 Measuring the interactions . . . 63

3.5.1 Domain position tracking . . . 63

(7)

vi CONTENTS

3.5.2 Domain distance statistics . . . 67

3.6 Conclusion . . . 71

4 Membrane mediated sorting 73 4.1 Introduction . . . 74

4.2 Materials and Methods . . . 75

4.3 Analytical model . . . 76

4.4 Simulations . . . 80

4.5 Experimental verification . . . 82

4.6 Conclusion . . . 82

5 Particle image correlation spectroscopy (PICS) 83 5.1 Introduction . . . 84

5.2 Theory . . . 85

5.2.1 Algorithm . . . 85

5.2.2 Relation to diffusion dynamics . . . 87

5.2.3 Figure of merit and achievable accuracy . . . 88

5.2.4 Diffusion modes . . . 90

5.3 Materials and Methods . . . 91

5.3.1 Monte Carlo simulations . . . 91

5.3.2 Single-molecule microscopy . . . 92

5.4 Results . . . 93

5.4.1 Monte Carlo simulations . . . 93

5.4.2 Diffusional behavior of H-Ras mutants . . . 94

5.5 Discussion . . . 98

5.A Beyond the ideal situation . . . 99

5.B Correction for positional correlations due to diffraction . . . 100

6 Adenosine A1 receptor signaling unraveled by PICS 103 6.1 Introduction . . . 104

6.2 Materials and Methods . . . 106

6.2.1 Single-molecule microscopy . . . 106

6.2.2 Particle Image Correlation Spectroscopy (PICS) . . 107

6.2.3 Analysis of MSDs (Mean square displacements) . . . 108

6.2.4 Cell culture . . . 108

6.2.5 Agonist stimulation assay . . . 109

6.2.6 Decoupling of G-protein with Pertussis toxin . . . . 109

6.3 Results . . . 110 6.3.1 The activated receptor translocates to microdomains 111

(8)

CONTENTS vii

6.3.2 The observed microdomains are related to the cy-

toskeleton . . . 112

6.3.3 The receptor is partially precoupled to its G-protein 113 6.4 Discussion . . . 113

7 Counting autofluorescent proteins in vivo 117 7.1 Introduction . . . 118

7.2 Materials and Methods . . . 120

7.2.1 DNA constructs . . . 120

7.2.2 Cell culture . . . 120

7.2.3 Single-molecule microscopy . . . 120

7.2.4 Image analysis . . . 121

7.3 Results and Discussion . . . 122

7.3.1 Blinking and bleaching of fluorescent proteins . . . 122

7.3.2 Robust intensity distributions . . . 124

7.3.3 Detection probability . . . 125

7.3.4 Experimental validation . . . 128

7.3.5 Clustering due to membrane heterogeneity . . . 130

7.3.6 Limitations and errors . . . 131

7.4 Conclusion . . . 134

7.5 Acknowledgement . . . 134

7.A Image processing and analysis . . . 135

7.A.1 Definitions . . . 135

7.A.2 Autofluorescent background subtraction . . . 135

7.B Detection probability . . . 138

7.C Intensity distribution . . . 141

7.C.1 Mandel theory . . . 141

7.C.2 2-state model . . . 143

7.C.3 3-state model . . . 144

7.C.4 Robust intensity distributions . . . 146

7.C.5 Complete intensity distribution . . . 148

7.D Overlapping single-molecule signals . . . 149

Bibliography 150

Samenvatting 173

Publications 177

Curriculum Vitae 180

(9)

viii CONTENTS

Referenties

GERELATEERDE DOCUMENTEN

Het onderzoek beschreven in dit proefschrift is onderdeel van het wetenschap- pelijke programma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM) (tegenwoordig NWO-I),

By Monte-Carlo simulations the principle was proven and it was shown that the method can deal with short traces, high molecule densities and high diffusion constants provided

The difference in diffusion speed be- tween the fast and the slow fraction is too big to be explained by a change in conformation of the receptor or the size difference between the

Fig. 7.1 shows the number of photons emitted by a single fluorophore during illumination time T calculated from the 3-state model. 7.1A the influence of blinking is illustrated. Since

Role of membrane heterogeneity and precoupling in adenosine A 1 recep- tor signaling unraveled by particle image correlation spectroscopy (pics).. Shepp,

Omdat we in onze experimenten zagen dat de domeinen niet homogeen op een vesikel verdeeld zijn, maar dat grote en kleine domeinen spontaan van elkaar gescheiden worden, hebben we

After obtaining his diploma Semrau joined the Physics of Life Processes group at Leiden University, The Netherlands as a PhD student.. Under the guid- ance

The line tension between liquid ordered and liquid disordered lipid membrane domains can be determined with high accuracy by anal- ysis of shape and fluctuations of