• No results found

Modelling nutrient fluxes using global datasets nutrient fluxes using global datasets nutrient fluxes using global datasets nutrient fluxes using global datasets

N/A
N/A
Protected

Academic year: 2022

Share "Modelling nutrient fluxes using global datasets nutrient fluxes using global datasets nutrient fluxes using global datasets nutrient fluxes using global datasets "

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Major River Basins in various climate zones Major River Basins in various climate zones Major River Basins in various climate zones Major River Basins in various climate zones

Modelling Modelling Modelling

Modelling nutrient fluxes using global datasets nutrient fluxes using global datasets nutrient fluxes using global datasets nutrient fluxes using global datasets

– – –

–test on the Rhine Basin test on the Rhine Basin test on the Rhine Basin test on the Rhine Basin

S.

S.

S.

S. Loos Loos Loos Loos, H. , H. , H. Middelkoop , H. Middelkoop Middelkoop, L.P.H. van Middelkoop , L.P.H. van , L.P.H. van , L.P.H. van Beek Beek Beek Beek and and and M. van der Perk and M. van der Perk M. van der Perk M. van der Perk / / / / Dept. of Physical Geography, Utrecht University, The Netherlands Dept. of Physical Geography, Utrecht University, The Netherlands; e Dept. of Physical Geography, Utrecht University, The Netherlands Dept. of Physical Geography, Utrecht University, The Netherlands ; e ; e ; e- - - -mail: mail: mail: mail: s.loos@geo.uu.nl s.loos@geo.uu.nl s.loos@geo.uu.nl s.loos@geo.uu.nl

References

Bergström, S. (1995). The HBV Model. Computer models of watershed hydrology. V. P. Singh. Colorado, Water Resources Publications: 443-476.

De Wit, M.J.M. (2001). Nutrient fluxes at the river basin scale. I: the PolFlow model. Hydrological Processes 15(5): 743-759.

Data Source: IKSR - Internationale Kommission zum Schutz des Rheins, Bundesanstalt für Gewässerkunde, www.iksr.org.

Morgan, R.P.C. (2001). A simple approach to soil loss prediction: a revised Morgan-Morgan-Finney model, Catena 44: 305-322.

Water fluxes

RIVERINE NUTRIENT LOAD RIVERINE NUTRIENT LOAD RIVERINE NUTRIENT LOAD

RIVERINE NUTRIENT LOAD SOURCE APPORTIONMENT SOURCE APPORTIONMENT SOURCE APPORTIONMENT SOURCE APPORTIONMENT

Denitrification

Labile Pool (DIN) Stable Pool (orgN)

Erosion

Quick Runoff Residue

Leaching

Groundwater (NO3)

Delayed GW

Plants/crops (orgN)

/

• Fertilizer

• Manure

• Atm. Deposition

• Volatilisation

•Biological fixation

•Yield

GW

River

(2) Lake (3)

LS (1)

… ±15 cells

QBf Vegetation

Store 1

Store 2

PREC Epot

Eact

QDR

P T

QChannel

PREC Epot

QChannel QSn

QBf Vegetation

Store 1

Store 2

PREC Epot

Eact

QDR

P T

QChannel

PREC Epot

QChannel QSn

Courtesy Rens van Beek

ERA40 climate input

Monthly discharge - Rhine, Lobith

0 1000 2000 3000 4000 5000 6000

Jan'80 Jan'82 Jan'84 Jan'86 Jan'88 Jan'90 Jan'92 Jan'94 Jan'96 Jan'98 Jan'00

m3/s

Q (measured) Q (modelled)

Conclusions

Distributed modelling in large basins enables nutrient apportionment, and helps to allocate areas that attenuate or contribute to the delivery of emitted nutrients.

Nutrient dynamics are closely related to variation in soil water change and temperature variations. Therefore inclusion of seasonality may improve the prediction of future nutrient loads following Global Change (e.g.

climate, landuse).

The RiNUX model, designed for intermediate scale, is able to predict present nutrient dynamics for a temperate, human-dominated river under seasonally variable conditions using globally available datasets and may contribute to predict nutrient delivery to coastal seas.

The incorporation of seasonally variable nutrient fluxes may enhance the modelling of river basins located in other climate regions.

Aim

Develop a model for estimating seasonal nutrient fluxes (N & P) from large river basins to coastal seas using global datasets, that can provide a more accurate estimate of future nutrient loading in response to global change.

MODEL INPUT

Nutrient Emission

Abstract

Nutrient discharge to coastal waters from rivers draining populated areas is often the direct cause of large algal blooms. Changing conditions in the drainage basin, like land use or climate change, can alter current riverine N and P fluxes and further increase the pressure on coastal water quality. Several small and large scale models have been employed to quantify riverine nutrient fluxes on a yearly to decadal timescale. These models are either too detailed for global application or too coarse in temporal resolution for incorporation of seasonal dynamics. A new model, RiNUX, has been developed to adequately simulate present nutrient loads and capture the intra-annual variation at the basin scale using globally available distributed datasets. The model shows that groundwater and point sources are the largest suppliers of N measured at the river outlet. Preliminary results show a Nash- Sutcliffe efficiency of 0.67 for modelled monthly TN loads over the period 1990-2000.

SOIL NUTRIENT TRANSFER:

Surface runoff, groundwater buffer or soil storage

RETENTION IN CHANNEL:

f (Temp,Floodplain,Discharge)

G ro u n d W at er -- -- -- -- -- -- -- -- -- -- S u rf a ce W a te r

test basin: Rhine test basin: Rhine test basin: Rhine test basin: Rhine

Agricultural emission ↑ Point source emission →

Fertilizer application

Nutrients enter the river basin via application of fertilizers and manure, through atmospheric deposition, biological fixation, weathering or sewage and are transfered to the river outlet by water and sediments.

Suspended Sediment Export at Lobith

Sediment fluxes

The transfer of dissolved (in the labile pool) and particulate (in the stable pool) nutrients from the soil to either the surface water or groundwater is dependent on the nutrient content, moisture, temperature and other properties (e.g. texture) of the soil.

MODEL SCHEME

Main tributaries contributing

sediment and associated nutrients.

monthly SS-load, Rees/Lobith

0 300 600 900 1200

Jan'84 Jun'85 Oct'86 Feb'88 Jul'89 Nov'90

measured load (1000t) modelled load (1000t)

Groundwater ‘Buffer’

0.E+00 5.E+05 1.E+06 2.E+06 2.E+06 3.E+06 3.E+06 4.E+06 4.E+06 5.E+06 5.E+06

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000

GW Recharge GW Outflow GW Outflow after denitrification

Retention

k g /k m 2 /y r

Nutrients leaching to the groundwater store are retained based on the residence time before entering surface water. Part is denitrified during transport.

agriculture atmospheric deposition sewage

21%

< 1%

78%

Lobith TN ( load )

0 5 10 15 20 25 30

Oct'89 Oct'90 Oct'91 Oct'92 Oct'93 Oct'94 Oct'95 Oct'96 Oct'97 Oct'98 Oct'99 Oct'00

k g /s .

month - avg (meas) modelled

Nash & Sutcliffe efficiency: E=0.67

Agricultural land:

2·10

3

kg N/km

2

/yr reaches the river in dissolved form; while only 6 kg N/km

2

/yr as particulate N.

Retention:

The summed retention in the groundwater and in the channel amounts to 73% of the nutrients that are mobilized in the soil.

MODEL OUTPUT

Particulate nutrient flux Dissolved nutrient flux Nutrient removal

Climate zones (Holdridge)

Cool Desert, Hot Desert Forest Tundra, Boreal Forest Oceans

Steppe, Chapparal

Temperate Forest, Warm Temperate Forest Tropical Seasonal Forest, Tropical Rain Forest Tropical Semi-Arid, Tropical Dry Forest Tundra / Polar, Cold Parklands

kg N/km2

5.78e5

0

Adapted from RMMF model (MORGAN, 2001)

margin Sub-basin

TC- limited

F

dir

F

ind

H

Ill

Aare Neckar

Main Lahn

Mosel

F= splash erosion H= runoff erosion TC= transport cap.

Elevation [m]

4108

-1

Referenties

GERELATEERDE DOCUMENTEN

Aantallen bromfietsersongevallen met letsel (en gemiddeld aantal per jaar) naar al dan niet op het fietspad rijden van de bromfiets ten tijde van het ongeval in voor-

All point sources were removed for background runs and land use was defined as grass land in order to visualise the contribution of alterations in land use and point

In dit hoofdstuk ga je leren hoe je dit soort vragen met behulp van verzamelde data kunt beantwoorden. In paragraaf 2.1 tot en met 2.3 werk je vooral aan technieken voor

Overall, the implementation of the proposed framework consists of four steps: iden- tification of groups of moving objects per time interval, construction of a transactional version

Similarly this study is concerned with quantification and partitioning of subsurface fluxes of La Mata catchment in Spain for the period of 1 to 30 September 2009

Maak twee staafdiagrammen van de lengtes: één voor jongens en één voor meisjes van de relatieve frequenties1. Waarom kan het nuttig zijn om frequenties om te zetten naar

Maak twee staafdiagrammen van de lengtes: één voor jongens en één voor meisjes van de relatieve frequentiesf. Waarom kan het nuttig zijn om frequenties om te zetten naar

Staafdiagram (histogram) Beide Je weet wel in welk staaf Esmee’s sprinttijd staat, maar je kunt niet apart haar eigen meting zien.. Frequentiepolygoon Beide Je weet wel bij welke