• No results found

University of Groningen Detecting Mind-Wandering with Machine Learning Jin, Christina

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Detecting Mind-Wandering with Machine Learning Jin, Christina"

Copied!
40
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Detecting Mind-Wandering with Machine Learning

Jin, Christina

DOI:

10.33612/diss.171835555

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Jin, C. (2021). Detecting Mind-Wandering with Machine Learning: Discovering the Neural Correlates of Mind-Wandering Through Generalizable Machine Learning Classifiers with EEG. University of Groningen. https://doi.org/10.33612/diss.171835555

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

DATA AND CODE AVAILABILITY STATEMENT

The data that support the findings of this thesis are openly available in

https://unishare.nl/index.php/s/T94LXPQqw5FEA4J. Analysis code is available in https://github.com/christina109.

(3)

BIBLIOGRAPHY

Allen, M., Smallwood, J., Christensen, J., Gramm, D., Rasmussen, B., Jensen, C. G., . . . Lutz, A. (2013). The balanced mind: the variability of task-unrelated thoughts predicts error-monitoring. Frontiers in Human Neuroscience, 7, 743. doi:10.3389/fnhum.2013.00743

Anderson, T., & Farb, N. A. (2020). Anderson, T., & Farb, N. A. (2020). The Metronome Counting Task for measuring meta-awareness. Behavior Research Methods, 52, 2646–2656. doi:10.3758/s13428-020-01418-z Ba, L. J., & Caruana, R. (2014, December). Do deep nets really need to be deep?

[Presentation]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada.

Baird, B., Smallwood, J., Lutz, A., & Schooler, J. W. (2014). The decoupled mind: Mind-wandering disrupts cortical phase-locking to perceptual events. Journal of Cognitive Neuroscience, 26(11), 2596-2607.

doi:10.1162/jocn_a_00656

Baldwin, C. L., Roberts, D. M., Barragan, D., Lee, J. D., Lerner, N., & Higgins, J. S. (2017). Detecting and Quantifying Mind Wandering during Simulated Driving. Frontiers in Human Neuroscience, 11, 406.

doi:10.3389/fnhum.2017.00406

Barron, E., Riby, L. M., Greer, J., & Smallwood, J. (2011). Absorbed in thought: the effect of mind wandering on the processing of relevant and irrelevant events. Psychological Science, 22(5), 596-601.

doi:10.1177/0956797611404083

Bastian, M., Lerique, S., Adam, V., Franklin, M. S., Schooler, J. W., & Sackur, J. (2017). Language facilitates introspection: Verbal mind-wandering has privileged access to consciousness. Consciousness and Cognition, 49, 86-97. doi:10.1016/j.concog.2017.01.002

Bastian, M., & Sackur, J. (2013). Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability. Frontiers in Psychology, 4, 573. doi:10.3389/fpsyg.2013.00573

Bernhardt, B. C., Smallwood, J., Tusche, A., Ruby, F. J. M., Engen, H. G., Steinbeis, N., & Singer, T. (2014). Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences in self-generated thought

(4)

and temporal discounting. NeuroImage, 90, 290-297. doi:10.1016/j.neuroimage2013.12.040

Bertossi, E., & Ciaramelli, E. (2016). Ventromedial prefrontal damage reduces mind-wandering and biases its temporal focus. Social Cognitive and Affective Neuroscience, 11(11), 1783-1791. doi:10.1093/scan/nsw099 Bertossi, E., Peccenini, L., Solmi, A., Avenanti, A., & Ciaramelli, E. (2017).

Transcranial direct current stimulation of the medial prefrontal cortex dampens mind-wandering in men. Scientific Reports, 7, 16962. doi:10.1038/s41598-017-17267-4

Bisenius, S., Trapp, S., Neumann, J., & Schroeter, M. L. (2015). Identifying neural correlates of visual consciousness with ALE meta-analyses. NeuroImage, 122, 177-187. doi:10.1016/j.neuroimage.2015.07.070

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41-56. doi:10.1109/msp.200790.900,9 Blondé, P., Makowski, D., Sperduti, M., & Piolino, P. (2020). In Medio Stat Virtus:

intermediate levels of mind wandering improve episodic memory encoding in a virtual environment. Psychological Research, 1-13.

doi:10.1007/s00426-020-01358-5

Bogler, C., Vowinkel, A., Zhutovsky, P., & Haynes, J. D. (2017). Default Network Activity Is Associated with Better Performance in a Vigilance Task. Frontiers in Human Neuroscience, 11, 623. doi:10.3389/fnhum.2017.00623 Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De

Boissezon, X., . . . Sharp, D. J. (2011). Default Mode Network Connectivity Predicts Sustained Attention Deficits after Traumatic Brain Injury. Journal of Neuroscience, 31(38), 13442-13451. doi:10.1523/jneurosci.1163-11.2011

Borst, J. P., Schneider, D. W., Walsh, M. M., & Anderson, J. R. (2013). Stages of processing in associative recognition: Evidence from behavior, EEG, and classification. Journal of Cognitive Neuroscience, 25(12), 2151-2166. doi:10.1162/jocn_a_00457

Bostanov, V. (2004). BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Transactions on Biomedical Engineering, 51(6), 1057-1061. doi:10.1109/TBME.2004.826702

(5)

Bostanov, V., & Kotchoubey, B. (2006). The t-CWT: a new ERP detection and quantification method based on the continuous wavelet transform and Student’s t-statistics. Clinical Neurophysiology, 117(12), 2627-2644. doi:10.1016/j.clinph.2006.08.012

Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: Neural markers of low alertness during mind wandering. NeuroImage, 54(4), 3040-3047. doi:10.1016/j.neuroimage.2010.10.008

Brandmeyer, T., & Delorme, A. (2016). Reduced mind wandering in experienced meditators and associated EEG correlates. Experimental Brain Research, 236(9), 2519-2528. doi:10.1007/s00221-016-4811-5

Broadway, J. M., Franklin, M. S., & Schooler, J. W. (2015). Early event-related brain potentials and hemispheric asymmetries reveal mind-wandering while reading and predict comprehension. Biological Psychology, 107, 31-43. doi:10.1016/j.biopsycho.2015.02.009

Burkhouse, K. L., Jacobs, R. H., Peters, A. T., Ajilore, O., Watkins, E. R., & Langenecker, S. A. (2017). Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls. Cognitive, Affective, & Behavioral Neuroscience, 17(2), 394-405.

doi:10.3758/s13415-016-0486-4

Buysse, D. J., Nofzinger, E. A., Germain, A., Meltzer, C. C., Wood, A., Ombao, H., . . . Moore, R. Y. (2004). Regional brain glucose metabolism during morning and evening wakefulness in humans: preliminary findings. Sleep, 27(7), 1245-1254. doi:10.1093/sleep/27.7.1245

Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and Resolution of an Error: EEG Phase Synchrony Reveals Cognitive Control Dynamics during Action Monitoring. Journal of Neuroscience, 29(1), 98-105. doi:10.1523/jneurosci.4137-08.2009

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421.

doi:10.1016/j.tics.2014.04.012

Cerami, C., Crespi, C., Della Rosa, P. A., Dodich, A., Marcone, A., Magnani, G., . . . Perani, D. (2015). Brain changes within the visuo-spatial attentional network in posterior cortical atrophy. Journal of Alzheimer's Disease,

(6)

Chawla, N. V. (2005). Data mining for imbalanced datasets: An overview. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (pp. 853-867). Boston, MA: Springer.

Cheyne, J. A., Carriere, J. S. A., & Smilek, D. (2006). Absent-mindedness: Lapses of conscious awareness and everyday cognitive failures. Consciousness and Cognition, 15(3), 578-592. doi:10.1016/j.concog.2005.11.009

Cheyne, J. A., Solman, G. J., Carriere, J. S., & Smilek, D. (2009). Anatomy of an error: A bidirectional state model of task engagement/disengagement and attention-related errors. Cognition, 111(1), 98-113. doi:

10.1016/j.cognition.2008.12.009

Choi, H., Geden, M., & Feng, J. (2017). More visual mind wandering occurrence during visual task performance: Modality of the concurrent task affects how the mind wanders. PLoS ONE, 12(12), e0189667.

doi:10.1371/journal.pone.0189667

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719-8724. doi:10.1073/pnas.0900234106

Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: a dynamic framework. Nature Reviews Neuroscience, 17(11), 718-731. doi:10.1038/nrn.2016.113 Christoff, K., Mills, C., Andrews-Hanna, J. R., Irving, Z. C., Thompson, E., Fox, K. C., & Kam, J. W. (2018). Mind-wandering as a scientific concept: cutting through the definitional haze. Trends in Cognitive Sciences, 22(11), 957-959. doi:10.1016/j.tics.2018.07.004

Christoff, K., Ream, J. M., & Gabrieli, J. D. E. (2004). Neural basis of spontaneous thought processes. Cortex, 40(4-5), 623-630.

doi:10.1016/s0010-9452(08)70158-8

Clemens, B., Zvyagintsev, M., Sack, A., Heinecke, A., Willmes, K., & Sturm, W. (2011). Revealing the functional neuroanatomy of intrinsic alertness using fMRI: methodological peculiarities. PLoS ONE, 6(9), e25453.

doi:10.1371/journal.pone.0025453

Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. Cambridge, MA: MIT Press.

(7)

Cole, S., & Kvavilashvili, L. (2019). Spontaneous future cognition: The past, present and future of an emerging topic. Psychological Research, 83, 631–650. doi:10.1007/s00426-019-01193-3

Combrisson, E., & Jerbi, K. (2015). Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Journal of Neuroscience Methods, 250, 126-136. doi:10.1016/j.jneumeth.2015.01.010

Compton, R. J., Gearinger, D., & Wild, H. (2019). The wandering mind oscillates: EEG alpha power is enhanced during moments of mind-wandering. Cognitive, Affective, & Behavioral Neuroscience, 19(5), 1184-1191. doi:10.3758/s13415-019-00745-9

Craig, A., Tran, Y., Wijesuriya, N., & Nguyen, H. (2012). Regional brain wave activity changes associated with fatigue. Psychophysiology, 49(4), 574-582. doi:10.1111/j.1469-8986.2011.01329.x

De Pascalis, V., Vecchio, A., & Cirillo, G. (2020). Resting anxiety increases EEG delta–beta correlation: Relationships with the Reinforcement Sensitivity Theory Personality traits. Personality and Individual Differences, 156, 109796. doi:10.1016/j.paid.2019.109796

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.

doi:10.1016/j.jneumeth.2003.10.009

Delorme, A., Makeig, S., Fabre-Thorpe, M., & Sejnowski, T. (2002). From single-trial EEG to brain area dynamics. Neurocomputing, 44, 1057-1064. doi:10.1016/S0925-2312(02)00415-0

Denkova, E., Nomi, J. S., Uddin, L. Q., & Jha, A. P. (2019). Dynamic brain network configurations during rest and an attention task with frequent occurrence of mind wandering. Human Brain Mapping, 40(15), 4564-4576.

doi:10.1002/hbm.24721

Di Russo, F., Martínez, A. g., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15(2), 95-111. doi:10.1002/hbm.10010

Diaz, B., Van Der Sluis, S., Benjamins, J., Stoffers, D., Hardstone, R., Mansvelder, H., . . . Linkenkaer-Hansen, K. (2014). The ARSQ 2.0 reveals age and personality effects on mind-wandering experiences. Frontiers in Psychology, 5, 271. doi:10.3389/fpsyg.2014.00271

(8)

Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., . . . Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073-11078. doi:10.1073/pnas.0704320104

Durantin, G., Dehais, F., & Delorme, A. (2015). Characterization of mind wandering using fNIRS. Frontiers in Systems Neuroscience, 9, 45.

doi:10.3389/fnsys.2015.00045

Ellamil, M., Fox, K. C., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E., & Christoff, K. (2016). Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. NeuroImage, 136, 186-196. doi:10.1016/j.neuroimage.2016.04.034 Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin,

Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376-383. doi:10.1016/j.cogbrainres.2004.03.009

Faber, M., Radvansky, G. A., & D'Mello, S. K. (2018). Driven to distraction: A lack of change gives rise to mind wandering. Cognition, 173, 133-137.

doi:10.1016/j.cognition.2018.01.007

Fernyhough, C., Alderson-Day, B., Hurlburt, R. T., & Kühn, S. (2018). Investigating multiple streams of consciousness: Using descriptive experience sampling to explore internally and externally directed streams of thought. Frontiers in Human Neuroscience, 12, 494. doi:10.3389/fnhum.2018.00494

Ferreira, D., Machado, A., Molina, Y., Nieto, A., Correia, R., Westman, E., & Barroso, J. (2017). Cognitive variability during middle-age: possible association with neurodegeneration and cognitive reserve. Frontiers in Aging Neuroscience, 9, 188. doi:10.3389/fnagi.2017.00188

Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1594), 1338-1349. doi:10.1098/rstb.2011.0417

Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611-621. doi:10.1016/j.neuroimage.2015.02.039

Friederici, A. D., Rueschemeyer, S.-A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence

(9)

comprehension: localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170-177. doi:10.1093/cercor/13.2.170

Gemein, L. A. W., Schirrmeister, R. T., Chrabąszcz, P., Wilson, D., Boedecker, J., Schulze-Bonhage, A., Hutter, F., & Ball, T. (2020). Machine-learning-based diagnostics of EEG pathology. NeuroImage, 220, 117021. doi:10.1016/j.neuroimage.2020.117021

Gil-Jardine, C., Nee, M., Lagarde, E., Schooler, J., Contrand, B., Orriols, L., & Galera, C. (2017). The distracted mind on the wheel: Overall propensity to mind wandering is associated with road crash responsibility. PLoS ONE, 12(8), e0181327. doi:10.1371/journal.pone.0181327

Godwin, C. A., Hunter, M. A., Bezdek, M. A., Lieberman, G., Elkin-Frankston, S., Romero, V. L., . . . Schumacher, E. H. (2017). Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering. Neuropsychologia, 103, 140-153.

doi:10.1016/j.neuropsychologia.2017.07.006

Gonçalves, Ó. F., Rêgo, G., Conde, T., Leite, J., Carvalho, S., Lapenta, O. M., & Boggio, P. S. (2018). Mind Wandering and Task-Focused Attention: ERP Correlates. Scientific Reports, 8, 7608. doi:10.1038/s41598-018-26028-w Grace, S. A., Rossell, S. L., Heinrichs, M., Kordsachia, C., & Labuschagne, I.

(2018). Oxytocin and brain activity in humans: a systematic review and coordinate-based meta-analysis of functional MRI studies.

Psychoneuroendocrinology, 96, 6-24. doi:10.1016/j.psyneuen.2018.05.031 Groot, J. M., Boayue, N. M., Csifcsák, G., Boekel, W., Huster, R., Forstmann, B. U.,

& Mittner, M. (2021). Probing the neural signature of mind wandering with simultaneous fMRI-EEG and pupillometry. NeuroImage, 224, 117412. doi: 10.1016/j.neuroimage.2020.117412

Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T. (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters, 375(1), 64-68.

doi:10.1016/j.neulet.2004.10.092

Harper, J., Malone, S. M., & Iacono, W. G. (2017). Theta- and delta-band EEG network dynamics during a novelty oddball task. Psychophysiology, 54(11), 1590-1605. doi:10.1111/psyp.12906

Haubert, A., Walsh, M., Boyd, R., Morris, M., Wiedbusch, M., Krusmark, M., & Gunzelmann, G. (2018). Relationship of Event-Related Potentials to the

(10)

Vigilance Decrement. Frontiers in Psychology, 9, 237. doi:10.3389/fpsyg.2018.00237

Helfer, B., Cooper, R. E., Bozhilova, N., Maltezos, S., Kuntsi, J., & Asherson, P. (2019). The effects of emotional lability, mind wandering and sleep quality on ADHD symptom severity in adults with ADHD. European Psychiatry, 55, 45-51. doi:10.1016/j.eurpsy.2018.09.006

Hidalgo-Muñoz, A. R., Jallais, C., Evennou, M., Ndiaye, D., Moreau, F., Ranchet, M., . . . Fort, A. (2019). Hemodynamic responses to visual cues during attentive listening in autonomous versus manual simulated driving: A pilot study. Brain and Cognition, 135, 103583.

doi:https://doi.org/10.1016/j.bandc.2019.103583

Ho, N. S. P., Wang, X., Vatansever, D., Margulies, D. S., Bernhardt, B., Jefferies, E., & Smallwood, J. (2019). Individual variation in patterns of task focused, and detailed, thought are uniquely associated within the architecture of the medial temporal lobe. NeuroImage, 202, 116045.

doi:10.1016/j.neuroimage.2019.116045

Hopf, J.-M., Vogel, E., Woodman, G., Heinze, H.-J., & Luck, S. J. (2002). Localizing visual discrimination processes in time and space. Journal of Neurophysiology, 88(4), 2088-2095. doi:10.1152/jn.2002.88.4.2088 Huijser, S., van Vugt, M. K., & Taatgen, N. A. (2018). The wandering self: Tracking

distracting self-generated thought in a cognitively demanding context. Consciousness and Cognition, 58, 170-185.

doi:10.1016/j.concog.2017.12.004

Hurlburt, R. T., & Heavey, C. L. (2002). Interobserver reliability of descriptive experience sampling. Cognitive Therapy and Research, 26(1), 135-142. doi: 10.1023/A:1013802006827

Jach, H. K., Feuerriegel, D., & Smillie, L. D. (2020). Decoding personality trait measures from resting EEG: An exploratory report. Cortex, 130, 158-171. doi:10.1016/j.cortex.2020.05.013

Jin, C. Y., Borst, J. P., & van Vugt, M. K. (2019). Predicting task-general mind-wandering with EEG. Cognitive, Affective, & Behavioral Neuroscience, 19(4), 1059-1073. doi:10.3758/s13415-019-00707-1

Jin, C. Y., Borst, J. P., van Vugt, M. K. (2020). Distinguishing Vigilance Decrement and Low Task Demands from Mind-wandering: A Machine Learning Analysis of EEG. European Journal of Neuroscience, 52(9), 4147–4164. doi: 10.1111/ejn.14863

(11)

Jones, B. E. (2011). Neurobiology of waking and sleeping. Handbook of Clinical Neurology, 98, 131-149. doi:10.1016/B978-0-444-52006-7.00009-5 Jonkman, L. M., Markus, C. R., Franklin, M. S., & van Dalfsen, J. H. (2017). Mind

wandering during attention performance: Effects of ADHD-inattention symptomatology, negative mood, ruminative response style and working memory capacity. PLoS ONE, 12(7), e0181213.

doi:10.1371/journal.pone.0181213

Jordano, M. L., & Touron, D. R. (2017). Priming performance-related concerns induces task-related mind-wandering. Consciousness and Cognition, 55, 126-135. doi:10.1016/j.concog.2017.08.002

Kam, J. W. Y., Dao, E., Blinn, P., Krigolson, O. E., Boyd, L. A., & Handy, T. C. (2012). Mind wandering and motor control: off-task thinking disrupts the online adjustment of behaviour. Frontiers in Human Neuroscience, 6, 329. doi:10.3389/fnhum.2012.00329

Kam, J. W. Y., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J. W., & Handy, T. C. (2011). Slow fluctuations in attentional control of sensory cortex. Journal of Cognitive Neuroscience, 23(2), 460-470.

doi:10.1162/jocn.2010.21443

Kam, J. W. Y., & Handy, T. C. (2013). The neurocognitive consequences of the wandering mind: a mechanistic account of sensory-motor decoupling. Frontiers in Psychology, 4, 725. doi:10.3389/fpsyg.2013.00725

Kanske, P., Sharifi, M., Smallwood, J., Dziobek, I., & Singer, T. (2017). Where the narcissistic mind wanders: increased self-related thoughts are more positive and future oriented. Journal of Personality Disorders, 31(4), 553-566. doi: 10.1521/pedi_2016_30_263

Karapanagiotidis, T., Bernhardt, B. C., Jefferies, E., & Smallwood, J. (2017). Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering. NeuroImage, 147, 272-281.

doi:10.1016/j.neuroimage.2016.12.031

Kawashima, I., & Kumano, H. (2017). Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling. Frontiers in Human Neuroscience, 11, 365. doi:10.3389/fnhum.2017.00365

Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of

(12)

Killingsworth, M. A., & Gilbert, D. T. (2010). A Wandering Mind Is an Unhappy Mind. Science, 330(6006), 932-932. doi:10.1126/science.1192439 Kirschner, A., Kam, J. W. Y., Handy, T. C., & Ward, L. M. (2012). Differential

synchronization in default and task-networks of the human brain. Frontiers in Human Neuroscience, 6, 139. doi:10.3389/fnhum.2012.00139

Klinger, E. C. (1999). Thought flow: Properties and mechanisms underlying shifts in content. In J. A. Singer & P. Salovey (Eds.), At play in the fields of consciousness: Essays in the honour of Jerome L. Singer (pp. 29–50). Mahwah, NJ: Erlbaum.

Koelsch, S., Bashevkin, T., Kristensen, J., Tvedt, J., & Jentschke, S. (2019). Heroic music stimulates empowering thoughts during mind-wandering. Scientific Reports, 9, 10317. doi:10.1038/s41598-019-46266-w

Krasich, K., McManus, R., Hutt, S., Faber, M., D'Mello, S. K., & Brockmole, J. R. (2018). Gaze-based signatures of mind wandering during real-world scene processing. Journal of Experimental Psychology: General, 147(8), 1111-1124. doi:10.1037/xge0000411

Krimsky, M., Forster, D. E., Llabre, M. M., & Jha, A. P. (2017). The influence of time on task on mind wandering and visual working memory. Cognition, 169, 84-90. doi:10.1016/j.cognition.2017.08.006

Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage, 100, 471-480.

doi:10.1016/j.neuroimage.2014.06.044

Lebar, N., Bernier, P.-M., Guillaume, A., Mouchnino, L., & Blouin, J. (2015). Neural correlates for task-relevant facilitation of visual inputs during visually-guided hand movements. NeuroImage, 121, 39-50.

doi:10.1016/j.neuroimage.2015.07.033

Liu, S., Poh, J.-H., Koh, H. L., Ng, K. K., Loke, Y. M., Lim, J. K. W., . . . Zhou, J. (2018). Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity. NeuroImage, 176, 1-10. doi:10.1016/j.neuroimage.2018.04.014

Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1. doi:10.1088/1741-2560/4/r01 Macdonald, J. S. P., Mathan, S., & Yeung, N. (2011). Trial-by-trial variations in

subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Frontiers in Psychology, 2, 82. doi:10.3389/fpsyg.2011.00082

(13)

Mallow, J., Bernarding, J., Luchtmann, M., Bethmann, A., & Brechmann, A. (2015). Superior memorizers employ different neural networks for encoding and recall. Frontiers in Systems Neuroscience, 9, 128.

doi:10.3389/fnsys.2015.00128

Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent mind: further investigations of sustained attention to response. Neuropsychologia, 37(6), 661-670. doi: 10.1016/S0028-3932(98)00127-4

Marcusson-Clavertz, D., Gusic, S., Bengtsson, H., Jacobsen, H., & Cardena, E. (2017). The relation of dissociation and mind wandering to

unresolved/disorganized attachment: an experience sampling study. Attachment & Human Development, 19(2), 170-190.

doi:10.1080/14616734.2016.1261914

Marcusson-Clavertz, D., Kjell, O. N., Kim, J., Persson, S. D., & Cardeña, E. (2020). Sad mood and poor sleep are related to task-unrelated thoughts and experience of diminished cognitive control. Scientific Reports, 10, 8940. doi:10.1038/s41598-020-65739-x

Marcusson-Clavertz, D., West, M., Kjell, O. N. E., & Somer, E. (2019). A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations. PLoS ONE, 14(11), e0225529. doi:10.1371/journal.pone.0225529 Martinon, L. M., Riby, L. M., Poerio, G., Wang, H.-T., Jefferies, E., & Smallwood,

J. (2019). Patterns of on-task thought in older age are associated with changes in functional connectivity between temporal and prefrontal regions. Brain and Cognition, 132, 118-128. doi:10.1016/j.bandc.2019.04.002 Massar, S. A., Lim, J., Sasmita, K., & Chee, M. W. (2019). Sleep deprivation

increases the costs of attentional effort: performance, preference and pupil size. Neuropsychologia, 123, 169-177.

doi:10.1016/j.neuropsychologia.2018.03.032

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314-324. doi:10.3758/s13428-011-0168-7

McCormick, C., Rosenthal, C. R., Miller, T. D., & Maguire, E. A. (2018). Mind-Wandering in People with Hippocampal Damage. Journal of Neuroscience, 38(11), 2745-2754. doi:10.1523/jneurosci.1812-17.2018

McVay, J., & Kane, M. (2009). Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task.

(14)

Journal of Experimental Psychology-Learning Memory and Cognition, 35(1), 196-204. doi:10.1037/a0014104

McVay, J., & Kane, M. (2013). Dispatching the wandering mind? Toward a laboratory method for cuing “spontaneous” off-task thought. Frontiers in Psychology, 4, 570. doi:10.3389/fpsyg.2013.00570

McVay, J. C., Meier, M. E., Touron, D. R., & Kane, M. J. (2013). Aging ebbs the flow of thought: Adult age differences in mind wandering, executive control, and self-evaluation. Acta Psychologica, 142(1), 136-147. doi:10.1016/j.actpsy.2012.11.006

Micoulaud-Franchi, J.-A., Quiles, C., Fond, G., Cermolacce, M., & Vion-Dury, J. (2014). The covariation of independent and dependant variables in neurofeedback: A proposal framework to identify cognitive processes and brain activity variables. Consciousness and Cognition, 26, 162-168. doi:10.1016/j.concog.2014.03.007

Miller, K. J., Honey, C. J., Hermes, D., Rao, R. P., & Ojemann, J. G. (2014). Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage, 85, 711-720. doi:10.1016/j.neuroimage.2013.08.070

Mittner, M., Boekel, W., Tucker, A. M., Turner, B. M., Heathcote, A., & Forstmann, B. U. (2014). When the brain takes a break: a model-based analysis of mind wandering. Journal of Neuroscience, 34(49), 16286-16295.

doi:10.1523/jneurosci.2062-14.2014

Mittner, M., Hawkins, G. E., Boekel, W., & Forstmann, B. U. (2016). A neural model of mind wandering. Trends in Cognitive Sciences, 20(8), 570-578. doi:10.1016/j.tics.2016.06.004

Molina, E., Sanabria, D., Jung, T.-P., & Correa, A. (2017). Electroencephalographic and peripheral temperature dynamics during a prolonged psychomotor vigilance task. Accident Analysis & Prevention, 126, 198-208. doi:10.1016/j.aap.2017.10.014

Mottaghy, F. M., Willmes, K., Horwitz, B., Müller, H.-W., Krause, B. J., & Sturm, W. (2006). Systems level modeling of a neuronal network subserving intrinsic alertness. NeuroImage, 29(1), 225-233.

doi:10.1016/j.neuroimage.2005.07.034

Mrazek, M. D., Franklin, M. S., Phillips, D. T., Baird, B., & Schooler, J. W. (2013). Mindfulness training improves working memory capacity and GRE

(15)

performance while reducing mind wandering. Psychological Science, 24(5), 776-781. doi:10.1177/0956797612459659

Neigel, A. R., Claypoole, V. L., Fraulini, N. W., Waldfogle, G. E., & Szalma, J. L. (2019). Where is my mind? Examining mind-wandering and vigilance performance. Experimental Brain Research, 237(2), 557-571.

doi:10.1007/s00221-018-5438-5

O'Brien, J. W., Norman, A. L., Fryer, S. L., Tapert, S. F., Paulus, M. P., Jones, K. L., . . . Mattson, S. N. (2013). Effect of predictive cuing on response inhibition in children with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 37(4), 644-654.

doi:10.1111/acer.12017

Oken, B. S., Salinsky, M. C., & Elsas, S. (2006). Vigilance, alertness, or sustained attention: physiological basis and measurement. Clinical Neurophysiology, 117(9), 1885-1901. doi:10.1016/j.clinph.2006.01.017

Pattyn, N., Neyt, X., Henderickx, D., & Soetens, E. (2008). Psychophysiological investigation of vigilance decrement: boredom or cognitive fatigue? Physiology & Behavior, 93(1-2), 369-378.

doi:10.1016/j.physbeh.2007.09.016

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., . . . Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195-203. doi:10.3758/s13428-018-01193-y

Pelagatti, C., Binda, P., & Vannucci, M. (2018). Tracking the Dynamics of Mind Wandering: Insights from Pupillometry. Journal of Cognition, 1(1), 38-38. doi:10.5334/joc.41

Petitmengin, C. (2017). Exploring the hidden side of lived experience through Micro-phenomenology. Paper presented at the xTalks: Digital Discourses, Massachussets Instutute Of Technology, Boston, United States.

https://hal.archives-ouvertes.fr/hal-01663598

Philippi, C. L., Bruss, J., Boes, A. D., Albazron, F. M., Deifelt Streese, C., Ciaramelli, E., ... & Tranel, D. (2021). Lesion network mapping demonstrates that mind‐wandering is associated with the default mode network. Journal of Neuroscience Research, 99(1), 361-373. doi: 10.1002/jnr.24648

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. doi:10.1016/j.clinph.2007.04.019

(16)

Qin, P., Grimm, S., Duncan, N. W., Fan, Y., Huang, Z., Lane, T., . . . Northoff, G. (2016). Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli. Social Cognitive and Affective Neuroscience, 11(4), 693-702. doi:10.1093/scan/nsw008

Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38, 433-447. doi:10.1146/annurev-neuro-071013-014030 Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., &

Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676-682. doi:10.1073/pnas.98.2.676

Randall, J. G., Beier, M. E., & Villado, A. J. (2019). Multiple routes to mind wandering: Predicting mind wandering with resource theories.

Consciousness and Cognition, 67, 26-43. doi:10.1016/j.concog.2018.11.006 Robinson, A. P., & Froese, R. E. (2004). Model validation using equivalence tests.

Ecological Modelling, 176(3-4), 349-358. doi:10.1016/j.ecolmodel.2004.01.013

Robison, M. K., & Unsworth, N. (2015). Working memory capacity offers resistance to mind‐wandering and external distraction in a context‐specific manner. Applied Cognitive Psychology, 29(5), 680-690. doi:10.1002/acp.3150 Robison, M. K., Gath, K. I., & Unsworth, N. (2017). The neurotic wandering mind:

An individual differences investigation of neuroticism, mind-wandering, and executive control. Quarterly Journal of Experimental Psychology, 70(4), 649-663. doi:10.1080/17470218.2016.1145706

Robison, M. K., & Unsworth, N. (2018). Cognitive and contextual correlates of spontaneous and deliberate mind-wandering. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(1), 85.

doi:10.1037/xlm0000444

Ros, T., Theberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., & Lanius, R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324-335. doi:10.1016/j.neuroimage.2012.09.046

Ross, H. A., Russell, P. N., & Helton, W. S. (2014). Effects of breaks and goal switches on the vigilance decrement. Experimental Brain Research, 232(6), 1729-1737. doi:10.1007/s00221-014-3865-5

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., & Faubert, J. (2019). Deep learning-based electroencephalography analysis: a systematic

(17)

review. Journal of Neural Engineering, 16(5), 051001. doi:10.1088/1741-2552/ab260c

Rummel, J., & Nied, L. (2017). Do drives drive the train of thought?-Effects of hunger and sexual arousal on mind-wandering behavior. Consciousness and Cognition, 55, 179-187. doi:10.1016/j.concog.2017.08.013

Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive Affective & Behavioral Neuroscience, 16(4), 601-615. doi:10.3758/s13415-016-0417-4

Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C., Reichle, E. D., & Sayette, M. A. (2011). Meta-awareness, perceptual decoupling and the wandering mind. Trends in Cognitive Sciences, 15(7), 319-326. doi:10.1016/j.tics.2011.05.006

Seli, P., Cheyne, J. A., & Smilek, D. (2013). Wandering minds and wavering rhythms: Linking mind wandering and behavioral variability. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 1. doi:10.1037/a0030954

Seli, P., Kane, M. J., Metzinger, T., Smallwood, J., Schacter, D. L., Maillet, D., . . . Smilek, D. (2018). The family-resemblances framework for

mind-wandering remains well clad. Trends in Cognitive Sciences, 22(11), 959-961. doi:10.1016/j.tics.2018.07.007

Seli, P., Ralph, B. C., Konishi, M., Smilek, D., & Schacter, D. L. (2017). What did you have in mind? Examining the content of intentional and unintentional types of mind wandering. Consciousness and Cognition, 51, 149-156. doi:10.1016/j.concog.2017.03.007

Seli, P., Risko, E. F., Purdon, C., & Smilek, D. (2017). Intrusive thoughts: linking spontaneous mind wandering and OCD symptomatology. Psychological Research-Psychologische Forschung, 81(2), 392-398. doi:10.1007/s00426-016-0756-3

Seli, P., Risko, E. F., & Smilek, D. (2016). On the necessity of distinguishing between unintentional and intentional mind wandering. Psychological Science, 27(5), 685-691. doi:10.1177/0956797616634068

Seli, P., Smilek, D., Ralph, B. C. W., & Schacter, D. L. (2018). The Awakening of the Attention: Evidence for a Link Between the Monitoring of Mind Wandering and Prospective Goals. Journal of Experimental Psychology-General, 147(3), 431-443. doi:10.1037/xge0000385

(18)

Sherkatghanad, Z., Akhondzadeh, M., Salari, S., Zomorodi-Moghadam, M., Abdar, M., Acharya, U. R., Khosrowabadi, R., & Salari, V. (2020). Automated detection of autism spectrum disorder using a convolutional neural network. Frontiers in Neuroscience, 13, 1325.

doi:10.3389/fnins.2019.01325

Simonyan, K., & Zisserman, A. (2015, May 7-9). Very deep convolutional networks for large-scale image recognition [Presentation]. 3rd International

Conference on Learning Representations, San Diego, CA, USA.

Smallwood, J., Beach, E., Schooler, J. W., & Handy, T. C. (2008). Going AWOL in the brain: Mind wandering reduces cortical analysis of external events. Journal of Cognitive Neuroscience, 20(3), 458-469.

doi:10.1162/jocn.2008.20.3.458

Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S., Mrazek, M. D., . . . Schooler, J. W. (2011). Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE, 6(3), e18298. doi:10.1371/journal.pone.0018298

Smallwood, J., Karapanagiotidis, T., Ruby, F., Medea, B., de Caso, I., Konishi, M., . . . Jefferies, E. (2016). Representing representation: Integration between the temporal lobe and the posterior cingulate influences the content and form of spontaneous thought. PLoS ONE, 11(4), e0152272. doi:10.1371/journal.pone.0152272

Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132(6), 946-958. doi:10.1037/0033-2909.132.6.946

Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487-518. doi:10.1146/annurev-psych-010814-015331 Sormaz, M., Murphy, C., Wang, H.-T., Hymers, M., Karapanagiotidis, T., Poerio,

G., . . . Smallwood, J. (2018). Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences of the United States of America, 115(37), 9318-9323. doi:10.1073/pnas.1721259115

Soemer, A., & Schiefele, U. (2020). Working memory capacity and (in) voluntary mind wandering. Psychonomic Bulletin & Review, 27, 758-767.

doi:10.3758/s13423-020-01737-4

Sonuga-Barke, E. J. S., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A

(19)

neurobiological hypothesis. Neuroscience & Biobehavioral Reviews, 31(7), 977-986. doi:10.1016/j.neubiorev.2007.02.005

Staresina, B. P., Michelmann, S., Bonnefond, M., Jensen, O., Axmacher, N., & Fell, J. (2016). Hippocampal pattern completion is linked to gamma power increases and alpha power decreases during recollection. eLife, 5, e17397. doi:10.7554/eLife.17397

Staub, B., Doignon-Camus, N., Bacon, E., & Bonnefond, A. (2014). Investigating sustained attention ability in the elderly by using two different approaches: Inhibiting ongoing behavior versus responding on rare occasions. Acta Psychologica, 146, 51-57. doi:10.1016/j.actpsy.2013.12.003

Stawarczyk, D., & D'Argembeau, A. (2016). Conjoint Influence of Mind-Wandering and Sleepiness on Task Performance. Journal of Experimental Psychology-Human Perception and Performance, 42(10), 1587-1600.

doi:10.1037/xhp0000254

Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D'Argembeau, A. (2011). Mind-wandering: phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica, 136(3), 370-381. doi: 10.1016/j.actpsy.2011.01.002

Tan, L.-F., Dienes, Z., Jansari, A., & Goh, S.-Y. (2014). Effect of mindfulness meditation on brain–computer interface performance. Consciousness and Cognition, 23, 12-21. doi:10.1016/j.concog.2013.10.010

Terhune, D. B., Croucher, M., Marcusson-Clavertz, D., & Macdonald, J. S. P. (2017). Time Contracts and Temporal Precision Declines When the Mind Wanders. Journal of Experimental Psychology-Human Perception and Performance, 43(11), 1864-1871. doi:10.1037/xhp0000461

Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494-9502. doi:10.1523/jneurosci.0875-06.2006

Tian, F., Tu, S., Qiu, J., Lv, J., Wei, D., Su, Y., & Zhang, Q. (2011). Neural correlates of mental preparation for successful insight problem solving. Behavioural Brain Research, 216(2), 626-630.

doi:10.1016/j.bbr.2010.09.005

Tuladhar, A. M., Huurne, N. T., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto‐occipital sources account for the increase in

(20)

alpha activity with working memory load. Human Brain Mapping, 28(8), 785-792. doi:10.1002/hbm.20306

Turnbull, A., Wang, H.-T., Schooler, J. W., Jefferies, E., Margulies, D. S., & Smallwood, J. (2019). The ebb and flow of attention: Between-subject variation in intrinsic connectivity and cognition associated with the dynamics of ongoing experience. NeuroImage, 185, 286-299. doi:10.1016/j.neuroimage.2018.09.069

Tusche, A., Smallwood, J., Bernhardt, B. C., & Singer, T. (2014). Classifying the wandering mind: Revealing the affective content of thoughts during task-free rest periods. NeuroImage, 97, 107-116.

doi:10.1016/j.neuroimage.2014.03.076

Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601-615. doi:10.3758/s13415-016-0417-4

van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O. (2008). Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability. Journal of Neuroscience, 28(8), 1816-1823.

doi:10.1523/jneurosci.1853-07.2008

van Vugt, M. K., Taatgen, N. A., Sackur, J., & Bastian, M. (2015, April). Modeling mind-wandering: a tool to better understand distraction. In N. Taatgen, M. van Vugt, J. Borst, & K. Mehlhorn (Eds.), Proceedings of the 13th

International Conference on Cognitive Modeling. (pp. 252-257). Groningen: University of Groningen.

van Vugt, M. K., & Broers, N. (2016). Self-reported stickiness of mind-wandering affects task performance. Frontiers in Psychology, 7, 732.

doi:10.3389/fpsyg.2016.00732

van Vugt, M. K., van der Velde, M., & ESM‐MERGE Investigators. (2018). How Does Rumination Impact Cognition? A First Mechanistic Model. Topics in Cognitive Science, 10(1), 175-191. doi:10.1111/tops.12318

Vannucci, M., Pelagatti, C., Hanczakowski, M., & Chiorri, C. (2019). Visual attentional load affects the frequency of involuntary autobiographical memories and their level of meta-awareness. Memory & Cognition, 47(1), 117-129. doi:10.3758/s13421-018-0854-0

Varao-Sousa, T. L., Solman, G. J. F., & Kingstone, A. (2017). Re-Reading After Mind Wandering. Canadian Journal of Experimental Psychology, 71(3), 203-211. doi:10.1037/cep0000123

(21)

Wamsley, E. J. (2013). Dreaming, waking conscious experience, and the resting brain: report of subjective experience as a tool in the cognitive

neurosciences. Frontiers in Psychology, 4, 637. doi:10.3389/fpsyg.2013.00637

Wang, H. T., Poerio, G., Murphy, C., Bzdok, D., Jefferies, E., & Smallwood, J. (2018). Dimensions of Experience: Exploring the Heterogeneity of the Wandering Mind. Psychological Science, 29(1), 56-71.

doi:10.1177/0956797617728727

Ward, A., & Wegner, D. (2013). Mind-blanking: when the mind goes away. Frontiers in Psychology, 4, 650. doi:10.3389/fpsyg.2013.00650

Weinstein, Y. (2018). Mind-wandering, how do I measure thee with probes? Let me count the ways. Behavior Research Methods, 50(2), 642-661.

doi:10.3758/s13428-017-0891-9

Weinstein, Y., De Lima, H. J., & van der Zee, T. (2018). Are you mind-wandering, or is your mind on task? The effect of probe framing on mind-wandering reports. Psychonomic Bulletin & Review, 25(2), 754-760.

doi:10.3758/s13423-017-1322-8

Welz, A., Reinhard, I., Alpers, G. W., & Kuehner, C. (2018). Happy Thoughts: Mind Wandering Affects Mood in Daily Life. Mindfulness, 9(1), 332-343. doi:10.1007/s12671-017-0778-y

Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49-76. doi:10.1146/annurev-clinpsy-032511-143049

Xu, J., Friedman, D., & Metcalfe, J. (2018). Attenuation of deep semantic processing during mind wandering: an event-related potential study. NeuroReport, 29(5), 380-384. doi:10.1097/wnr.0000000000000978 Xu, L., Xu, M., Ke, Y., An, X., Liu, S., & Ming, D. (2020). Cross-dataset variability

problem in EEG decoding with deep learning. Frontiers in Human Neuroscience, 14, 103. doi:10.3389/fnhum.2020.00103

Zanesco, A. P., Denkova, E., Witkin, J. E., & Jha, A. P. (2020). Experience sampling of the degree of mind wandering distinguishes hidden attentional states. Cognition, 205, 104380. doi: 10.1016/j.cognition.2020.104380 Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of

the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14(5), 656-661.

(22)

Zhang, M., Savill, N., Margulies, D. S., Smallwood, J., & Jefferies, E. (2019). Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading. Scientific Reports, 9, 16220. doi:10.1038/s41598-019-52674-9

(23)
(24)

NEDERLANDSE SAMENVATTING

Heeft u zich ooit afgevraagd waarom u tijdens de uitvoering van uw werk ineens aan iets anders denkt, bijvoorbeeld vakantieplannen, het boek dat u aan het lezen bent of aan iets anders dat een sterke indruk heeft gemaakt? Deze ontkoppeling van onze mentale activiteit van de externe omgeving wordt vaak ‘mind wandering’ genoemd. In dit proefschrift onderzoeken we de onderliggende oorzaak en gerelateerde hersenstructuren van mind wandering.

De inleiding begint met onze definitie van mind wandering, en het wordt gecontrasteerd met verwante verschijnselen zoals afleiding. Vervolgens bespreken we hoe het afdwalen van gedachten afhangt van fundamentele cognitieve functies zoals aandacht. Een aanzienlijke hoeveelheid fysiologisch en neuraal bewijs suggereert dat mind wandering wordt ondersteund door een complex netwerk van hersengebieden, waaronder het ‘default mode network’ (DMN) en de visuele gebieden. Twee belangrijke cognitieve processen kunnen worden geïdentificeerd uit de studies die tot nu toe zijn gedaan – mind wandering omvat zowel sensorische ontkoppeling als geheugenprocessen (aangezien we tijdens het . Ten slotte hebben we meerdere factoren besproken die van invloed kunnen zijn op het optreden van mind wandering, zoals werkgeheugen, taakbelasting, metabewustzijn, persoonlijke zorgen, enz.

Om beter te begrijpen hoe en waarom onze gedachten afdwalen, zou het nuttig zijn om van moment tot moment te weten of dit het geval is. Het algemene doel van dit proefschrift is daarom het ontwikkelen van methoden om mind wandering te volgen met behulp van elektro-encefalografie (EEG) data en machine learning classifiers. Belangrijk is dat deze classificatiealgoritmes uiteindelijk in staat moeten zijn om te generaliseren over taken (binnen dezelfde studie), deelnemers en studies (experimenten). Behalve dat ze ons een moment-tot-moment beoordeling geven van de mind-wandering toestand van een individu, geven succesvolle classifiatiealgoritmes ons ook aanwijzingen over de hersengebieden die cruciaal zijn voor het optreden van mind wandering. Bovendien zou een efficiënte neurale indicator van mind wandering mogelijk kunnen worden gecombineerd met neurofeedback voor therapeutische doeleinden, zoals het

(25)

detecteren van de extreem piekergedrag bij depressie of het ondersteunen van aandachtstraining voor Attentional Deficit Hyperactivity Disorder (ADHD). Het onderzoek dat in dit proefschrift wordt gepresenteerd, bestaat uit drie experimenten met één gemeenschappelijk doel: het trainen van effectieve mind wandering classificatiesystemen met EEG met behulp van machine learning-modellen. EEG is geselecteerd als onze belangrijkste bron vanwege de hoge temporele resolutie - het werkt op een milliseconde schaal. Omdat onze mentale toestanden constant wisselen tussen mind wandering en taakgericht werken, stelt de temporele resolutie van EEG ons in staat om dergelijke dynamiek nauwkeuriger vast te leggen dan andere metingen van neurale activiteit, zoals neuroimaging. Een uitdaging bij het gebruik van externe EEG is dat het niet goed is in het lokaliseren van de relevante hersenregio's, vooral wanneer de neurale activiteit afkomstig is van diepere corticale structuren zoals het DMN of het limbisch systeem – gebieden waarvan we weten dat ze cruciaal zijn voor mind wandering. In Experiment 2 hebben we dit probleem aangepakt met bronlokalisatietechnieken waarmee we het signaal terug konden traceren naar de meest waarschijnlijke corticale generator.

De ontwikkeling van neurale indicatoren van mind wandering begint in hoofdstuk 2 met een eerste poging om mind wandering te voorspellen met EEG. We hebben dit gedaan op basis van verschillende kandidaat-EEG-indicatoren die zijn afgeleid van eerdere studies, waaronder ERPs, vermogen in specifieke frequentiebanden en functionele connectiviteit tussen kanalen. Deze functies werden gebruikt om een SVM-classificator (Support Vector Machine) te trainen om mind wandering te voorspellen binnen proefpersonen (intra-subjectieve modellering). Hierbij hebben we ons niet op één taak geconcentreerd zoals gebruikelijk is, maar in plaats daarvan twee cognitieve taken gebruikt. Het classificatiealgoritme werd getraind om op basis van data van de ene taak, mind wandering tijdens de andere taak te voorspellen. Het bleek inderdaad mogelijk om de algoritmes zo te trainen dat ze in staat waren om over de taken te generaliseren met een gemiddelde nauwkeurigheid van 60%. Van alle EEG-indicatoren was de alfa frequentieband het meest voorspellend voor mind wandering.

In Hoofdstuk 3 hebben we de ontwikkeling van de indicatoren geintegreerd in het bestuderen van drie samenhangende verschijnselen: mind wandering, onoplettendheid en lage taakvereisten. De gemeenschappelijke noemer onder deze drie verschijnselen is een soortgelijk proces van afname van aandacht, wat geïllustreerd wordt met verminderde gedragsprestaties en verhoogde alfa golven.

(26)

Dat is niet verwonderlijk want onoplettendheid gaat gepaard met meer mind wandering en het uitvoeren van taken met lage eisen veroorzaakt een grotere kans op mind wandering. Onze studie bewees echter dat een SVM-classificator onderscheid kan maken tussen mind wandering, onoplettendheid en lage taakvereisten. Daarnaast stelde bronlokalisatie ons in staat om met veel meer precisie te identificeren waar de relevante hersensignalen vandaan kwamen dan de analyse in hoofdstuk 2. Onze aanname is dat als onoplettendheid of lage taakvereisten echt lijken op mind wandering, we in staat zouden moeten zijn om mind wandering te voorspellen met een classificatiealgoritme dat is getraind op onoplettendheid of taakvereisten. We ontdekten echter dat er geen generalisatie was tussen deze processen. Een verdere vooruitgang die deze studie maakte, was dat we een vergelijkbare nauwkeurigheid (59%) van het voorspellen van mind wandering bereikten tussen proefpersonen, als de individuele-proefpersonen classificatoren in hoofdstuk 2. Daarnaast hebben we unieke alpha-activiteit waargenomen in de linker superieure gyrus, wat waarschijnlijk wijst op generalisatieprocessen van gedachten.

In Hoofdstuk 4 hebben we onderzocht of we mind-wandering voorspellingen verder konden verbeteren door gebruik te maken van diepe neurale netwerken. In het bijzonder hebben we een convolutioneel neuraal netwerk (CNN) gebruikt, een krachtig soort neuraal netwerk dat grotere gegevensgroottes aankan zonder dat er aannames over de inputdata gedaan moeten worden. Als input hebben we ruwe EEG data gebruikt, evenals de indicatoren die we in vorige hoofdstukken hadden gebruikt. Om de generaliseerbaarheid van het classificatiealgoritme verder te verifiëren, hebben we het netwerk getraind op de gegevens van experiment 1 en getest op de gegevens van experiment 2 - onafhankelijke experimenten met verschillende deelnemers en verschillende taken. We bereikten een nauwkeurigheid van 68% voor deze voorspelling.

In hoofdstuk 5 bespreek ik de belangrijkste conclusies van de drie onderzoeken. Dit hoofdstuk laat zien hoe onze bevindingen consistent zijn met één belangrijke theorie van over mind wandering: de perceptuele-ontkoppelings theorie. Deze conclusie wordt getrokken uit de resultaten in Hoofdstuk 2 dat pariëtale-occipitale alfa frequenties het meest voorspellend zijn voor mind wandering, evenals de bevindingen van Hoofdstuk 3 dat de alfabandactiviteit afkomstig was van de linker precuneus - een neurale correlaat voor visuele verwerking. Ik heb ook mogelijke richtingen aangedragen om te verkennen in toekomstig onderzoek, in het bijzonder het rekruteren van deelnemers met een goed inzicht in hun eigen

(27)

mentale staat om nauwkeurige zelfrapporten te verkrijgen, het gebruik van zogenoemde resting-state EEG als voorspeller, en het onderzoeken van de connectiviteit tussen de corticale bronnen.

Concluderend bevestigt het huidige proefschrift de mogelijkheid van het trainen van classificatiealgoritmes voor mind-wandering gebaseerd op EEG. Ten eerste hebben onze EEG-bevindingen het begrip van mind wandering vergroot, door grotendeels de perceptuele-ontkoppelings en de gedachtengeneratie-accounts van mind wandering te ondersteunen. Ten tweede hebben we classificatiealgoritmes ontwikkeld die kunnen generaliseren over taken, deelnemers en onderzoeken, wat bewijst dat vooraf getrainde algoritmes kunnen worden gebruikt om te voorspellen of nieuwe individuen een andere taak uitvoeren dan de getrainde taak. Dit biedt mogelijkheden voor mind wandering detectoren op basis van neurofysiologische gegevens in een dagelijks leven of in een klinisch scenario.

(28)

APPENDIX

S1 Word list used in the sustained-attention-to-response task (SART)

pleasant number backward breath address lawyer agreed all

America American fear poor band bank bar thanks

shall aim business bone burial pretty both important

belt prepared message judgment bed discuss existence pay

mean better respect clouded turn like command move

property worried special shortly blue book bunch message

boat break write break desk believed roof close

thick love continue run running continue courage eternal

English single huge enormous behind experience party fact

guest guest hole soon area left building fuss

eat help lied sound commonly pleasure called caught

talk history written closed crazy stop prison feelings

conscience injured normal sit family search glass evening

throw joke half lord hero real angle high

hundred hope hotel marriage ice impression suddenly card

knowledge kitchen sale short cost newspaper kiss pillow

smile burden live age leather read army leading

class alive lying lies lift list left lot

lazy listening succeed size most girls middle minute

mist beautiful wall think thought nine neck above

call morning explore incredible immediately breakfast discovered receive

view uncle get hurry ears old seem survival

dad partner adjust suit place position beautiful hit

weird right accounting account relationship running drive risk

red call grey smoke quarrel appears shoes clean

bolt write second simple sleep battle keys hit

lock understand some special jump stuff insert steal

chair stop slice briefcase restraint drawing right back

much happy time consent coincidence total stairs pull

faith twelve twenty hours holiday often morning security

many change responsibility verb disappear forgive declaration solid

loss difference fresh chill departure left celebrate enemy

right meat airplane flight foot feet follow complete

adult peace boyfriend where to when which income

weekend desire under residential see sea looking sun

(29)

S2 Modelling performance based on three preceding trials from each probe

Figure S2 Modelling performance for both within-task leave-one-out cross-validation (LOOCV) and across-task prediction based on 3 preceding trials of each probe. The mean accuracy for the LOOCV was 0.62 (𝑆𝑆𝑆𝑆 = 0.09) in the SART and 0.69 (𝑆𝑆𝑆𝑆 = 0.10) in the visual search task (VS). For the across-task predictions, the mean accuracy was 0.58 (𝑆𝑆𝑆𝑆 = 0.11) for testing the SART model on the data of the visual search task (SART-VS) and 0.59 (𝑆𝑆𝑆𝑆 = 0.11) for testing the visual search task model on data of the SART (VS-SART). A t test conducted between the obtained accuracy and 0.5 confirmed this difference in the LOOCV: 𝑡𝑡(17)= 5.73, 𝑝𝑝 < 0.001, 𝑑𝑑 = 1.35 in the

SART and 𝑡𝑡(17)= 7.50, 𝑝𝑝 < 0.001, 𝑑𝑑 = 1.77 in the visual search task, as well as

in the across-task prediction: 𝑡𝑡(17)= 3.21, 𝑝𝑝 = 0.005, 𝑑𝑑 = 0.76 in SART-VS and

(30)

S3 Mind-wandering classification based on considering evaluation of task performance part of mind-wandering

Figure S3.1 Modelling performance based on the categorization that the on-task state referred to answer 1 and the mind-wandering state referred to answer 2, 3, and 5. Note based on this categorization, 19 participants were included. The mean accuracy for the LOOCV was 0.63 (𝑆𝑆𝑆𝑆 = 0.07) in the SART and 0.66 (𝑆𝑆𝑆𝑆 = 0.09) in the visual search task (VS). For the across-task predictions, the mean accuracy was 0.59 (𝑆𝑆𝑆𝑆 = 0.09) for testing the SART model on the visual search task data (SART-VS) and 0.59 (𝑆𝑆𝑆𝑆 = 0.07) for testing the visual search task model on data of the SART (VS-SART). A t test conducted comparing the obtained accuracy to the chance level of 0.5 confirmed a significant difference in both within-task LOOCV: 𝑡𝑡(18)=

7.81 , 𝑝𝑝 < 0.001, 𝑑𝑑 = 1.79 in the SART and 𝑡𝑡(18)= 7.70 , 𝑝𝑝 < 0.001, 𝑑𝑑 =

1.77 in the visual search task, as well as in the across-task prediction: 𝑡𝑡(18)= 4.19,

𝑝𝑝 < 0.001, 𝑑𝑑 = 0.96 in SART-VS and 𝑡𝑡(18)= 4.74, 𝑝𝑝 < 0.001, 𝑑𝑑 = 1.09 in

(31)

Figure S3.2 Marker testing results based on the categorization that the on-task state referred to answer 1 and the mind-wandering state referred to answer 2, 3, and 5. Paired t tests showed all the marker alone could predict above the chance level (𝑡𝑡𝑠𝑠 > 4.68, 𝑝𝑝𝑠𝑠 < 0.001). None of the markers outperformed the whole model (𝑡𝑡𝑠𝑠 < −2.96, 𝑝𝑝𝑠𝑠 < 0.008). Error bars indicate 95 percent confidence interval.

(32)

S4 Performance of logistic regression classifiers

Figure S4.1 Modelling performance of logistic regression classifiers. The mean accuracy for within-task LOOCV was 0.56 (𝑆𝑆𝑆𝑆 = 0.06) in the SART and 0.57 (𝑆𝑆𝑆𝑆 = 0.08) in the visual search task (VS). For the across-task predictions, the mean accuracy was 0.56 (𝑆𝑆𝑆𝑆 = 0.05) for testing the SART model on the visual search task data (SART-VS) and 0.55 (𝑆𝑆𝑆𝑆 = 0.05) for testing the visual search task model on data of the SART (VS-SART). A t test comparing the obtained accuracy to the chance level of 0.5 confirmed this difference in the LOOCV: 𝑡𝑡(17)= 3.89, 𝑝𝑝 = 0.001,

𝑑𝑑 = 0.92 in the SART and 𝑡𝑡(17)= 3.78, 𝑝𝑝 = 0.002, 𝑑𝑑 = 0.89 in the visual

search task, as well as in the across-task prediction: 𝑡𝑡(17)= 4.70, 𝑝𝑝 < 0.001, 𝑑𝑑 =

1.11 in SART-VS and 𝑡𝑡(17)= 4.20, 𝑝𝑝 < 0.001, 𝑑𝑑 = 0.99 in VS-SART. Paired t

test results showed the accuracy of logistic regression models was lower than the SVM models in the cross-validation process (𝑡𝑡𝑠𝑠 > 6.70, 𝑝𝑝𝑠𝑠 < 0.001), but no statistically significant difference was found in the across-task predictions.

(33)

Figure S4.2 Marker testing results using logistic regression as classifiers. Paired t tests showed only 11 markers out of 30 performed above chance level as marked in the graph (∗ 𝑝𝑝 < 0.05,∗∗ 𝑝𝑝 < 0.01,∗∗∗ 𝑝𝑝 < 0.001). Paired t tests showed the performance of single-marker models built using logistic regression were generally worse that built using SVM (𝑡𝑡𝑠𝑠 > 3.37, 𝑝𝑝𝑠𝑠 < 0.004). Error bars indicate 95 percent confidence interval.

(34)

S5 Performance with classifiers trained on three trials before each probe

Figure S5 Performance with classifiers trained on three trials before each probe. This graph is the result of a supplementary analysis as to the main results showed in Figure 5. All the classifiers performed above the chance level (0.5214) during the 10-fold CV and LOPOCV (𝑡𝑡s > 2.08, 𝑝𝑝s < 0.046). When predicting the self-reported mental states in both tasks, the task demands or the vigilance classifier did not surpass the chance level (𝑡𝑡s < .37, 𝑝𝑝s > 0.164). The error bar reflects one between-subject standard error (SE). Asterisks indicate the difference between the accuracy and chancel level is significant using one-sample t tests (*** p <0.001, ** p<0.01).

(35)

S6 Trial count in each condition for each participant during the behavioral analysis

Table S6 Compensatory data to Chapter 3.3.1. Shaded areas indicate that a participant was removed from the behavioral analysis in the corresponding task due to the small amount of data in one of the two classes. Note that this procedure was only performed during the behavioral analysis. Because in the machine learning analysis we trained classifiers on 29 participants and tested them on the remaining left-out participant (LOPOCV), this “missing one class” dilemma is not a problem since the training data sample is guaranteed to have data from two classes and the test sample was allowed to be of data from a single class.

Visual Search Task SART

Participant On-task Mind-wandering On-task Mind-wandering

1 21 30 36 0 2 15 45 33 3 3 54 3 27 9 4 60 0 36 0 5 15 45 9 27 6 57 0 36 0 7 24 15 33 0 8 51 9 36 0 9 60 0 36 0 10 15 42 6 27 11 24 33 9 12 12 36 24 36 0 13 51 0 36 0 14 57 3 36 0 15 30 30 21 6 16 42 15 30 0 17 39 15 9 24 18 12 24 15 15 19 39 21 30 3 20 54 3 36 0 21 15 33 6 30 22 51 6 36 0 23 18 39 24 6 24 3 57 0 36 25 39 15 24 6 26 54 0 36 0 27 42 9 36 0 28 33 12 27 3 29 24 24 9 12 30 30 6 18 0

(36)

S7 Sensitivity and specificity compensatory to Figure 3.5.

Figure S7 Sensitivity and specificity as indications of biased detection of each classifier compensatory to the achieved accuracy in Figure 5. Sensitivity is the true positive rate, which is the ratio of the correctly classified positive cases among all the positive cases. Specificity is the true negative rate, which is the ratio of the correctly classified negative cases among all the negative cases. In the current study, positive cases are as “low demands”, “low vigilance” or “mind-wandering”, and negative cases are defined as “high demands”, “high vigilance” or “on-task”.

(37)

S8 Alpha power without baseline correction

Figure S8 Same features in Figure 3.9 plotted without baseline correction. This figure shows that in general, alpha power suppressed after stimulus-onset.

(38)

LIST OF PUBLICATIONS

J O U R N A L A R T I C L E S

Jin, C. Y., Borst, J. P., & van Vugt, M. K. (2020). Distinguishing Vigilance Decrement and Low Task Demands from Mind-wandering: A Machine Learning Analysis of EEG. European Journal of Neuroscience, 52(9), 4147–4164. doi: 10.1111/ejn.14863

Jin, C. Y., Borst, J. P., & van Vugt, M. K. (2019). Predicting task-general mind-wandering with EEG. Cognitive, Affective, & Behavioral Neuroscience, 19, 1059–1073. doi:10.3758/s13415-019-00707-1

P R E P R I N T

Jin, C. Y., Borst, J. P., & van Vugt, M. K. (2020). Decoding Study-Independent Mind-Wandering from EEG using Convolutional Neural Networks. bioRxiv preprint bioRxiv: 2020.12.08.416040. doi:10.1101/2020.12.08.416040

P O S T E R S

Jin, C. Y., van Vugt, M., & Borst, J. (2019). Distinguishing Vigilance Decrement and Low Task Demands from the Occurrence of Self-generated Thought: A Machine Learning Analysis of EEG Data. Poster presentation at the 2019 De Nederlandse Vereniging voor Psychonomie (NVP) Symposia Winter Conference, Egmond aan Zee, Netherlands.

(39)

Jin, C. Y., van Vugt, M., & Borst, J. (2018). EEG classifier can predict mind-wandering across different tasks. Poster presentation at the 16th Annual Meeting of the International Conference on Cognitive Modelling, Madison, WI, USA. Jin, C. Y., van Vugt, M., & Borst, J. (2017). Developing EEG biomarkers of mind-wandering. Poster presentation at the 2017 De Nederlandse Vereniging voor Psychonomie (NVP) Symposia Winter Conference, Egmond aan Zee, Netherlands.

(40)

ACKNOWLEDGEMENTS

This thesis is proof of my four-year PhD research. Travelling from a country 5,500 miles away to the Netherlands, being confused about my future and having many doubts about science and academia, I began my PhD life. It was a journey of learning, discovering, and even healing. In the end, I found joy and pride in being a researcher.

I would never have gone so far without the help of Dr. Marieke van Vugt, who not only supervises my PhD project but also helps me through many difficult moments in my life. Marieke’s knowledge, open-mindedness, enthusiasm, discipline, and patience greatly inspired and supported me. While Marieke provided me a safe environment to explore my research interest, Dr. Jelmer Borst, my daily supervisor, granted me access to many resources. He is a sharp reviewer who always pointed out angles that I missed and his solution-oriented mindset guided me. I am very grateful that I would have such an opportunity to learn from and work with both of you.

I am also grateful that my colleagues are always kind and supportive. Niels, Fokie, Marco, and Jacoline, I gained many insightful opinions from you. Oscar, Pallavi, and Stefan, it is nice to talk about our joint research interest. Mahya, Corné, Abby, Lionel, Hermine, Hang, Mark, Mega, Katja Mehlhorn, Katja Paul, Marlijn, Thomas, Vishal, Aniket, Ben, Yuri, Trudy, Harmen, Hagit, Pry, Emmanuel, and Sheng; I like having those interesting talks with you in a multi-cultural atmosphere. Your company makes me not feel lonely living in a foreign country. I also thank the secretaries and supporting staff for their assistance during my stay here. Elina, I appreciate your help and patience during my applications. Remco, you were always helpful whenever I encountered a computer problem.

And lastly, I thank my friends for still being part of my life even we are thousands-of-mile away with a six-hour time gap. I especially thank John, who not only helps me in my daily life as a responsible husband, but also respects my choice and always gives good advice on my research as a capable partner. PhD life is supposed to be stressful and difficult, but the relationship with you gives me the courage to face the challenge.

Referenties

GERELATEERDE DOCUMENTEN

Probe-caught mind-wandering is mind-wandering that is identified by inserting regular self-report prompts in the task, while self-caught mind-wandering is identified when

The obtained sensitivity (the percentage of mind- wandering trials that are correctly classified as the mind-wandering state) and specificity (the percentage of on-task trials that

7 Because we trained the task demands and vigilance classifiers over all trials while the self-report classifier was built upon three trials before each probe, to rule out the

The general goal of the thesis was to determine the neural correlates of mind- wandering by training machine learning classifiers with EEG.. Ideally, such a classifier should

Convolutional neural networks perform better with raw EEG signals while support vector machines learn better with pre- computed EEG markers. Given propositions 5 and 6, the

As such, individual trait differences in mind wandering thoughts as captured by the Mind Wandering Inventory along with the first two emergent factors (which capture variance in

The Parallel Interfacing Narrative-Semantics (PINS) Model (Cohn, Under review) meanwhile emphasizes neurocognition, with visual narratives involving the interface of two

More specifically, based on the evidence showing that positive mood broadens attentional scope and promotes a more global perceptual focus, whereas negative mood narrows