• No results found

Conference Contributions

N/A
N/A
Protected

Academic year: 2021

Share "Conference Contributions"

Copied!
24
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Bibliography

[1] F. Ren, J. Zhang, T. He, C. Lin, and S. Ren, “EBRP: Energy-balanced routing pro- tocol for data gathering in wireless sensor networks,” Parallel and Distributed Sys- tems, IEEE Transactions on, vol. 22, no. 12, pp. 2108 –2125, Dec. 2011.

[2] A. Wheeler, “Commercial applications of wireless sensor networks using Zigbee,”

Communications Magazine, IEEE, vol. 45, no. 4, pp. 70 –77, Apr. 2007.

[3] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power sources for wireless sensor networks,” in Wireless Sensor Networks, ser. Lecture Notes in Computer Science, H. Karl, A. Wolisz, and A. Willig, Eds., vol. 2920. Springer Berlin Heidelberg, 2004, pp. 1–17. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-24606-0 1

[4] J. Li and G. Al-Regib, “Distributed estimation in energy-constrained wireless sensor networks.” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp.

3746–3758, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/tsp/

tsp57.html#LiA09a

[5] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy Conservation in Wireless Sensor Networks: A Survey,” Ad Hoc Netw., vol. 7, no. 3, pp. 537–568, May 2009. [Online]. Available: http://dx.doi.org/10.1016/j.adhoc.2008.06.003

[6] A. Manjeshwar and D. P. Agrawal, “TEEN: A routing protocol for enhanced efficiency in wireless sensor networks,” in Proceedings of the 15th International Parallel & Distributed Processing Symposium, ser. IPDPS ’01. Washington,

91

(2)

DC, USA: IEEE Computer Society, 2001, pp. 189–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645609.663269

[7] D. Pediaditakis, S. H. Mohajerani, and T. Boulis, “Poster abstract: Castalia: the dif- ference of accurate simulation in WSN,” The 4th European conference on Wireless Sensor Networks, (EWSN 2007), Delft/The Netherlands, Jan. 2007.

[8] H. N. Pham, D. Pediaditakis, and A. Boulis, “From simulation to real deployments in WSN and back,” in World of Wireless, Mobile and Multimedia Networks, 2007.

WoWMoM 2007. IEEE International Symposium on a, 2007, pp. 1–6.

[9] P. Hurni and T. Braun, “Calibrating wireless sensor network simulation models with real-world experiments.” in Networking, ser. Lecture Notes in Computer Science, L. Fratta, H. Schulzrinne, Y. Takahashi, and O. Spaniol, Eds., vol. 5550. Springer, 2009, pp. 1–13. [Online]. Available: http:

//dblp.uni-trier.de/db/conf/networking/networking2009.html#HurniB09

[10] C. Newport, D. Kotz, Y. Yuan, R. S. Gray, J. Liu, and C. Elliott, “Experimental evaluation of wireless simulation assumptions.” ACM Press, 2004, pp. 78–82.

[11] M. Ferreira, “Testbed implementation of QoS routing enhancements for wireless ad hoc networks,” Master’s thesis, North-West University, 2009.

[12] J. A. Stankovic, “Wireless sensor networks,” Computer, vol. 41, pp. 92–95, 2008.

[13] A. Boukerche, M. Ahmad, B. Turgut, and D. Turgut, “A taxonomy of Routing Pro- tocols in Sensor Networks,” in Algorithms and Protocols for Wireless Sensor Networks, A. Boukerche, Ed. Wiley, 2008, ch. 6, pp. 129–160.

[14] T. Watteyne, A. Molinaro, M. Richichi, and M. Dohler, “From MANET to IETF ROLL standardization: A paradigm shift in WSN routing protocols,” Communica- tions Surveys Tutorials, IEEE, vol. 13, no. 4, pp. 688–707, 2011.

[15] H. Zimmermann, “OSI reference model–the ISO model of architecture for open systems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4, pp.

425 – 432, Apr 1980.

(3)

[16] B. A. Forouzan, Data Communications and Networking, 3rd ed. New York, NY, USA: McGraw-Hill, Inc., 2003.

[17] “IEEE standard for information technology - telecommunications and informa- tion exchange between systems - local and metropolitan area networks specific requirements part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),”

IEEE Std 802.15.4-2003, pp. 1–670, 2003.

[18] Y. Yang, “Microchip Wireless Media Access Controller (MiMAC) - Application Note,” Microchip Technology Inc.

[19] Z. Alliance, ZigBee specification, Std., Jun. 2005.

[20] D. Goyal and M. Tripathy, “Routing protocols in wireless sensor networks: A survey,” in Advanced Computing Communication Technologies (ACCT), 2012 Second International Conference on, Jan. 2012, pp. 474 –480.

[21] J. Moy, “OSPF version 2,” RFC 2328, 1998. [Online]. Available: www.ietf.org/rfc/

rfc2328.txt

[22] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” RFC 3626 (Experimental), Internet Engineering Task Force, October 2003. [Online].

Available: http://www.ietf.org/rfc/rfc3626.txt

[23] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS, 1999, pp. 90–100.

[24] A. Bhatia and P. Kaushik, “A cluster based minimum battery cost AODV rout- ing using multipath route for zigbee,” in Networks, 2008. ICON 2008. 16th IEEE International Conference on, Dec. 2008, pp. 1 –7.

[25] M. Haneef and Z. Deng, “Comparative analysis of classical routing protocol (LEACH) and its updated variants that improved network life time by addressing

93

(4)

shortcomings in wireless sensor network,” in Mobile Ad-hoc and Sensor Networks (MSN), 2011 Seventh International Conference on, Dec. 2011, pp. 361 –363.

[26] M. Tekaya, N. Tabbane, and S. Tabbane, “Comparison of MTPR, AODVM and DRE-AOMDV routing protocols with energy constraint,” in Mobile IT Convergence (ICMIC), 2011 International Conference on, Sept. 2011, pp. 5 –8.

[27] C.-K. Toh, H. Cobb, and D. Scott, “Performance evaluation of battery-life-aware routing schemes for wireless ad hoc networks,” in Communications, 2001. ICC 2001.

IEEE International Conference on, vol. 9, 2001, pp. 2824 –2829 vol.9.

[28] H.-C. Wang and Y.-H. Wang, “Energy-efficient routing algorithms for wireless ad- hoc networks,” in Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, Sept. 2007, pp. 1 –5.

[29] J. Zhu and X. Wang, “Model and protocol for energy-efficient routing over mobile ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1546–

1557, 2011.

[30] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput Path Metric for Multi-Hop Wireless Routing,” 2003.

[31] H. Hellbrck, M. Pagel, A. Krller, D. Bimschas, D. Pfisterer, and S. Fischer, “Using and operating wireless sensor network testbeds with WISEBED.” in Med-Hoc-Net.

IEEE, 2011, pp. 171–178.

[32] TWIST: a scalable and reconfigurable testbed for wireless indoor experiments with sensor networks, ser. REALMAN ’06. New York, NY, USA: ACM, 2006. [Online].

Available: http://doi.acm.org/10.1145/1132983.1132995

[33] L. P. Steyn and G. Hancke, “A survey of wireless sensor network testbeds,” in AFRICON, 2011, 2011, pp. 1–6.

[34] C. des Roziers, G. Chelius, T. Ducrocq, E. Fleury, A. Fraboulet, A. Gallais, N. Mit- ton, T. Noel, E. Valentin, and J. Vandaele, “Two demos using SensLAB: Very large

(5)

scale open WSN testbed,” in Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011 International Conference on, 2011, pp. 1–2.

[35] P. Ballal, V. Giordano, P. Dang, S. Gorthi, J. Mireles, and F. Lewis, “A LabVIEW based test-bed with off-the-shelf components for research in mobile sensor net- works,” in Computer Aided Control System Design, 2006 IEEE International Confer- ence on Control Applications, 2006 IEEE International Symposium on Intelligent Con- trol, 2006 IEEE, 2006, pp. 112–118.

[36] A. Achtzehn, E. Meshkova, J. Ansari, and P. Mahonen, “MoteMaster: A Scalable Sensor Network Testbed for Rapid Protocol Performance Evaluation,” in Sensor, Mesh and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops

’09. 6th Annual IEEE Communications Society Conference on, 2009, pp. 1–3.

[37] W. Huangfu, L. Sun, and J. Liu, “A high-accuracy nonintrusive networking testbed for wireless sensor networks,” EURASIP J. Wirel. Commun. Netw., vol.

2010, pp. 2:1–2:15, Feb. 2010. [Online]. Available: http://dx.doi.org/10.1155/

2010/642531

[38] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for energy monitoring of wireless sensor networks at scale,” in Proceedings of the 6th International Conference on Information Processing in Sensor Networks, ser. IPSN

’07. New York, NY, USA: ACM, 2007, pp. 186–195. [Online]. Available:

http://doi.acm.org/10.1145/1236360.1236386

[39] J.-P. Sheu, C.-C. Chang, and W.-S. Yang, “A distributed wireless sensor network testbed with energy consumption estimation.” IJAHUC, vol. 6, no. 2, pp. 63–74, 2010. [Online]. Available: http://dblp.uni-trier.de/db/journals/ijahuc/ijahuc6.

html#SheuCY10

[40] Tinynode 584 fact sheet v.1.1 25.01.2011 PCA. Shockfish. [Online]. Available:

www.tinynode.com

[41] BTnode datasheet. ETH Zurich. [Online]. Available: www.btnode.ethz.ch

95

(6)

[42] M. Baar, H. Will, B. Blywis, T. Hillebrandt, A. Liers, G. Wittenburg, and J. Schiller, “The ScatterWeb MSB-A2 Platform for Wireless Sensor Networks,” no.

TR-B-08-15, 09 2008. [Online]. Available: ftp://ftp.inf.fu-berlin.de/pub/reports/

tr-b-08-15.pdf

[43] TelosB datasheet. Crossbow Technology.Inc . [Online]. Available: www.willow.

co.uk

[44] LOTUS datasheet. Mesmic. [Online]. Available: www.memsic.com

[45] Tmote Sky datasheet. [Online]. Available: www.moteiv.com

[46] MICAz datasheet. Crossbow Technology, Inc. [Online]. Available: www.bullseye.

xbow.com

[47] G-Node G301 whitepaper. SOWNet Technologies. [Online]. Available: www.

sownet.nl/download/G301Web.pdf

[48] SUN Spot technical datasheet. Oracle. [Online]. Available: http://www.

sunspotworld.com/docs/Yellow/eSPOT8ds.pdf

[49] iSense core module 3 datasheet. Coalesenses. [Online]. Available: www.

coalesenses.com

[50] M. Leopold, “Sensor network motes: Portability & performance,” Ph.D. disser- tation, Department of Computer Science Faculty of Science University of Copen- hagen, 2007.

[51] TinyOS homepage. [Online]. Available: www.tinyos.net

[52] FreeRTOS Homepage. Real Time Engineers Ltd. [Online]. Available: www.

freertos.org

[53] Microchip, “MCP37833 datasheet,” 2009.

[54] Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM

(7)

band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive, European Telecommunications Standards Institute (ETSI) Std. [Online]. Available: http://www.etsi.org/deliver/

etsi en/300300 300399/300328/01.07.01 60/en 300328v010701p.pdf

[55] C. Balanis, Antenna Theory: Analysis and Design, ser. Harper & Row series in electrical engineering. Wiley, 1982. [Online]. Available: http:

//books.google.co.za/books?id=wARTAAAAMAAJ

[56] H. Huo, Y. Xu, C. Bilen, and H. Zhang, “Coexistence issues of 2.4ghz sensor net- works with other RF devices at home,” in Sensor Technologies and Applications, 2009. SENSORCOMM ’09. Third International Conference on, 2009, pp. 200–205.

[57] N. Tas, C. Sastry, and Z. Song, “IEEE 802.15.4 throughput analysis under IEEE 802.11 interference,” in International Symposium on Innovations and Real Time Appli- cations of Distributed Sensor Networks, 2007.

[58] W. S. Wang, R. OKeeffe, N. Wang, M. Hayes, B. OFlynn, and C. OMathuna,

“Practical wireless sensor networks power consumption metrics for building energy management applications,” University College Cork, Cork, Ireland, 2011.

[Online]. Available: http://hdl.handle.net/10468/557

[59] J. Zhu, C. Qiao, and X. W. 0001, “A comprehensive minimum energy routing scheme for wireless ad hoc networks.” in INFOCOM, 2004. [Online]. Available:

http://dblp.uni-trier.de/db/conf/infocom/infocom2004.html#ZhuQW04

[60] D. Kim, J. J. G. luna aceves, K. Obraczka, J. carlos Cano, and P. Manzoni, “Power- aware routing based on the energy drain rate for mobile ad hoc networks,” 2002.

[61] H.-R. Gil, J. Yoo, and J.-W. Lee, “An On-Demand Energy-Efficient Routing Algorithm for Wireless Ad Hoc Networks.” in Human.Society@Internet 2003, ser.

Lecture Notes in Computer Science, C.-W. Chung, C. kwon Kim, W. Kim, T. W.

Ling, and K. H. Song, Eds., vol. 2713. Springer, 2003, pp. 302–311. [Online].

Available: http://dblp.uni-trier.de/db/conf/human/human2003.html#GilYL03

97

(8)

[62] A. Misra and S. Banerjee, “MRPC: Maximizing network lifetime for reliable rout- ing in wireless environments,” 2002.

(9)

Appendix A

Conference Contributions

• J. G. J. Krige, M. J. Grobler and H. Marais “A Test-bed Implementation of Energy Efficient Wireless Sensor Network Routing Protocols, Southern African Telecommu- nications and Networks Access Conference (SATNAC), George, South Africa, Sept.

2012.

• J. G. J. Krige, M. J. Grobler and H. Marais “A Novel Energy Consumption As- certaining Wireless Sensor Network Routing Protocol Test-bed, Southern African Telecommunications and Networks Access Conference (SATNAC), Stellenbosch, South Africa, Sept. 2013.

• J. G. J. Krige, M. J. Grobler and H. Marais “A Novel Wireless Sensor Network Test-bed Sensor Node, IEEE Africon, Port Louis, Mauritius, Sept. 2013.

99

(10)

Appendix B

Sensor Node Design Schematics

(11)

1 1

2 2

3 3

4 4

DD CC BB AA

Title

NumberRevisionSize

A4

Date:12/11/2013Sheet ofFile:C:\Users\..\Charger_&_Power_Supply.SchDocDrawn By: D2LED0

PG7 VBAT 9VDD 1

VSS5 THERM8STAT13

STAT2 4PROG 6 VBAT 10

VDD 2 U1

MCP73833-AMI/UN GND1 VOUT 2VIN 3 U2MCP1700 - 3.0 V1100mAhBattery470 R1R1

1 2 3 4 5 6 7 8 9

11 10

J1D Connector 9 VIN

4.7K R5Rprog D3

LED1D4

LED2 470 R2R2

470 R3R3 GND 4.7uF C1Cap

GND 4.7uF C2Cap1uF C3Cap

1uF C4Cap VDD 3.0 V 10K R4Res3

GND

GND

10 K R7Rt2

Rprog = 1K

Charge current = 1A 470 R6Rt1

10 K R8NTC 2 31 S1

SW-SPDT VBAT+

Charger & Power Supply

J.G.J. Krige Rprog = 4.7K

Charge current = 212.77mA The temperature control circuit is available on the PCB, however it is not implemented.

R6 is shorted and the NTC is not connected. S1b

S1b S1c

S1l

(12)

1 1

2 2

3 3

4 4

D C B A

Title

NumberRevisionSize

A4

Date:07/10/2013Sheet ofFile:C:\Users\..\Analog_Front_End.SchDocDrawn By: 5.1 K 1% R13

Res2

1 K 1% R14Res25.1:1 ratio for voltage divider

Voltage channel 540mV - MAX 68nF C7Cap

33nF C10Cap 33nF C9Cap

1 2

Y14 MHZ 35pF C5Cap

35pF C6

Cap RESET#1

DVDD2 AVDD3 CH0+ 4

CH0-5

CH1-6 CH1+7 AGND8

REFin+/out9 REFin-10 DGND 11

MDAT112

MDAT013 DR# 14

OSC1/CLKI15

OSC216 CS# 17SCK18 SDO19

SDI20 U?

MCP3911 1K R9Res2

1K R11

Res2

68nF C8Cap

GND GND

300mA - 50ohm L1FERRITE BEAD

GND GND GNDGND 100nF C12Cap

100nF C13Cap GND

GND VDD 3.3 VPIC - SDI PIC - SDO PIC I/O

PIC - SCLK

PIC I/O reset

100nF C11Cap

GND GND

VDD 3.3 V 300 m 1% R10Res2 VDD 3.3 VSYSTEM LOAD

CH 1 - RANGE +-0.6V @ 0 GAIN 300mA - 150ohm L2FERRITE BEAD 1 K 1% R12Res2 @ 0.25 A CH 0 input = 0.075V

CH 0 - RANGE +-0.075V @ 8 GAIN @ 0.175 A CH 0 input = 0.075V for 430 mOhm

for 300 mOhm

GND PIC - DR

AVDD

AVDDVDD 3.3 V 10uF C14Cap

Analog Front End

J.G.J. Krige SN AFE

(13)

1 1

2 2

3 3

4 4

DD CC BB AA

Title

NumberRevisionSize

A4

Date:07/10/2013Sheet ofFile:C:\Users\..\SN_Main.SchDocDrawn By: PMD5/RE5 1 PMD6/RE62

PMD7/RE7 3PMA5/SCK2/CN8/RG6 4 PMA4/SDI2/CN9/RG7 5

PMA3/SDO2/CN10/RG8 6 MCLR7

PMA2/SS2/CN11/RG9 8 VSS 9VDD 10

C1IN+/AN5/CN7/RB511

C1IN-/AN4/CN6/RB4 12 C2IN+/AN3/CN5/RB313

C2IN-/AN2/SS1/CN4/RB214 PGC1/EMUC1/VREF-/AN1/CN3/RB1 15PGD1/EMUD1/PMA6/VREF+/AN0/CN2/RB0 16 PGC2/EMUC2/AN6/OCFA/RB617

PGD2/EMUD2/AN7/RB718 AVDD19AVSS20 U2CTS/C1OUT/AN8/RB8 21

PMA7/C2OUT/AN9/RB922

TMS/PMA13/CVREF/AN10/RB1023 TDO/PMA12/AN11/RB1124 VSS 25VDD 26

TCK/PMA11/AN12/RB1227 TDI/PMA10/AN13/RB1328 PMA1/U2RTS/BCLK2/AN14/RB1429 PMA0/AN15/OCFB/CN12/RB1530 PMA9/U2RX/SDA2/CN17/RF431 PMA8/U2TX/SCL2/CN18/RF532 U1TX/SDO1/RF3 33

U1RX/SDI1/RF234INT0/RF635 SDA1/RG336

SCL1/RG2 37 VDD38

OSC1/CLKI/RC12 39

OSC2/CLKO/RC1540 VSS41

IC1/RTCC/INT1/RD842

IC2/U1CTS/INT2/RD943 IC3/PMCS2/INT3/RD1044 IC4/PMCS1/INT4/RD1145 OC1/RD0 46

SOSCI/CN1/RC1347 SOSCO/T1CK/CN0/RC1448

OC2/RD149 OC3/RD2 50PMBE/OC4/RD351 PMWR/OC5/IC5/CN13/RD4 52

PMRD/CN14/RD5 53 CN15/RD6 54

CN16/RD755 VCAP/VDDCORE56

ENVREG57

RF058

RF159 PMD0/RE060 PMD1/RE161 PMD2/RE262

PMD3/RE363

PMD4/RE4 64 U?

PIC24FJ128GA006-I/PT A01

SDA5A23 A12 WP7

VSS4 SCL 6

VCC8 U2

24LC1025-I/P

GND GND VDD 3.3 V

100nF C20

Cap

GND 1

INT4 WAKE3

SCK 6

SDI 5 RESET2

SDO7 CS8

NC9 VIN10

GND11 GND12 U?

MRF24J40MCGND 2 SCLK4 ALERT3

VDD 1 SDA5 U?

MCP9800A0T-M/OT

100nF C21

Cap 4.7 K R16Res34.7 K R17Res3

4.7 K R18Res34.7 K R19Res3 VDD 3.3 V

GND VDD 3.3 V

100nF C26Cap 100nF C17

Cap

VDD 3.3 V

1 2

32MHzXTAL

1 2

32.768 kHzXTAL

GND 22pF C24

Cap 22pF C22

Cap

22pF C23

Cap 100nF C16

Cap 100nF C15

Cap

10uF C19

Cap

22pF C25

Cap 100nF C18

Cap

GND

123456 P1

Header 6 VDD 3.3 V

MCP3911 SDOMCP3911 SDIMCP3911 SCK SM SDOSM SDISM SCK RXTX 221 R22

Res3

221 R23

Res3 MCP3911 CS

MCP3911 RST U2- TX U2 - RX REMAPPED UART 2 PROGRAMMER 300mA - 50ohm L3FERRITE BEAD

1 2 3 4 5 6 7 8 9

11 10

J1D Connector 9

U2 - RX U2 - TX

LED6 221 R20

Res3

LED7 221 R21

Res3 STATUS1 STATUS2

STATUS1

STATUS2 TX/RX LEDS 6.8K R24

Res310K R25

Res3

GND VBAT+

MCP3911 DR MCP3911 SDIMCP3911 SDOMCP3911 SCK VBAT MEASUREMENT

GND

GND GND

1 K R26Res3

SM UART RXSM UART TX SM I/O SM I/O MCLR PGDPDC

SN Microcontroller Connection

J.G.J. Krige Microcontroller Connection GND

(14)

Appendix C

Sensor Node Connection Diagram

(15)

Figure C.1: Sensor Node Connection Diagram

105

(16)

Appendix D

Shortest Hop Path and MTTP

Experiment Data

(17)

Figure D.1: A 3D Contour Plot of the Node Energy Consumption (J) of the Shortest Hop Path Routing Scheme (Experiment 1) Versus the Node Deployment (x,y)

107

(18)

Figure D.2: A 3D Contour Plot of the Node Energy Consumption (J) of the Shortest Hop Path Routing Scheme (Experiment 2) Versus the Node Deployment (x,y)

(19)

Figure D.3: A 3D Contour Plot of the Node Energy Consumption (J) of the Shortest Hop Path Routing Scheme (Experiment 3) Versus the Node Deployment (x,y)

109

(20)

Figure D.4: A 3D Contour Plot of the Node Energy Consumption (J) of the MTTPR Scheme (Experiment 1) Versus the Node Deployment (x,y)

(21)

Figure D.5: A 3D Contour Plot of the Node Energy Consumption (J) of the MTTPR Scheme (Experiment 2) Versus the Node Deployment (x,y)

111

(22)

Figure D.6: A 3D Contour Plot of the Node Energy Consumption (J) of the MTTPR Scheme (Experiment 3) Versus the Node Deployment (x,y)

(23)

Appendix E

Statistical Consultation Service Letter

113

(24)

Referenties

GERELATEERDE DOCUMENTEN

The table below provides information based on female educators' responses on their career development needs.. Table 6.13) that principals are involved in communicating

This testbed was used to compare the energy consumption of a Minimum Total Trans- mission Power Routing (MTTPR) scheme to a shortest hop path routing scheme.. The results show that

The users’ behavior and spontaneous reactions to multi- media data can provide useful information for multimedia in- dexing with the following scenarios: (i) direct assessment of

much has been written about online engagement on social network sites, how social media platforms are integrated in users’ daily lives, even so far as mourning on social network

Although depressed individuals synchronized with their partners’ pupils, they trusted partners with dilating pupils just as much as partners with constricting pupils, which

k = [0, 1,. Typical hardware architectures have multiple memory types available each having a dierent energy consumption for storage and access. The least consuming memory is

decided nollo align itself with either white party, thereby alienating the Coloured African Peoples ' Organisation and the Cape Native Voters' Association both of

However, if a node can send to any other nodes in a different access phase, which is called non-coherent traffic, then nodes might wake up at different phases if they