• No results found

Gravitational wave interferometer OPTICS

N/A
N/A
Protected

Academic year: 2021

Share "Gravitational wave interferometer OPTICS"

Copied!
40
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Gravitational wave interferometer OPTICS

François BONDU

CNRS UMR 6162 ARTEMIS,

Observatoire de la Côte d’Azur, Nice, France

EGO, Cascina, Italy

Fabry-Perot cavity in practice Rules for optical design

Optical performances

(2)

Contents

I. Fabry-Perot cavity in practice

Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront

Length / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical design

Optimum values for mirror transmissions

“dark fringe”: contrast defect

“Mode Cleaner”

III. Optical performances

Actual performances:

Mirror metrology

Optical simulation

(3)

Michelson configuration at dark fringe + servo loop to cancel laser frequency noise

VIRGO optical design

Slave laser

Master laser

Hz /

10 . 3

~

2

23

L

hL Fabry-Perot cavity to detect gravitational wave

Suspended mirrors to cancel seismic noise

L=3 km

Long arms to divide mirror and suspension thermal noise Recycling mirror to reduce shot noise

Input <<Mode Cleaner>> to filter out input beam jitter and select mode

L=144m

Output Mode Cleaner to filter output mode

(4)

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

1. Fabry-Perot cavity: A. parameters

REFLECTION TRANSMISSION

Can we understand these shapes?

(5)

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

Mirror 1 Mirror 2

Ein Esto Etrans

Eref

1. Fabry-Perot cavity: A. parameters

(6)

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

Ert = r1 P-1 r2 P Esto

with 2

) 1

(

1 2 1

2 1

2 1

1 1 1

1 1

L L T

L T

L P

P

L L T

T r

RT

RT sto

rt

 

 

Round trip “losses”

1. Fabry-Perot cavity: A. parameters

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity

(7)

1. Fabry-Perot cavity: A. parameters

c E L

e r r E t

E E

t E

c L i

P

i in sto

RT in

sto

 



with 4 1

: solution state

steady

) / 2

exp(

delay n

propagatio

2 1

1

1

 



 2

 L L

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

Ert = r1 P-1 r2 P Esto

Period

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity

(8)

1. Fabry-Perot cavity: A. parameters

2

2 1 1 2

1 1

] 1 2 [ 0

1

 

 

 



 

r r P t

P e E

r r E t

in sto

i in sto

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

Recycling gain

2 1

 

 

t

G

RESONANCE CONDITION

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity

(9)

 

 4 2

that so

) ,

(

0 0 0 0 0

k

c

LL

1

) (

4

0 0

0



 

 

c

L f

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

RESONANCE CONDITION

Suppose now

/ 1 if f E G

E

P in

sto

 

1. Fabry-Perot cavity: A. parameters

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity

(10)

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

f

P

Finesse FSR

 2 Finesse

1. Fabry-Perot cavity: A. parameters

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity

(11)

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

on resonance reflectivity

) ( 2

1

) ( 1

2 1

1

) 1

) (

(

i f

f i in

ref

e r r

e L r

r E

f E

r

 

 

 

2 1

1 2

1

1

) 1

) ( 0

( r r

L r

r r

)

2

0

(   R

1. Fabry-Perot cavity: A. parameters

Round Trip Losses Free Spectral Range Recycling gain

Cavity Pole Finesse

Cavity reflectivity

(12)

2nd order In T+P

1st order in T+P Finesse

On resonance reflection

transmission

1. Fabry-Perot cavity: A. parameters

p T 2  

) 1

2 (

1

Tp  

T

 

   

1 2

1 2

1

1 ( 1 ) r r p r

r

2 2 1

1 

 

 r t r t

2 1

2 1

1 r r r

r

T 4 T

1

T p

2

2

(13)

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

1. Fabry-Perot cavity: A. parameters

T1 = 12%

T2 = 5%

L = 0

(finesse = 35)

REFLECTION TRANSMISSION

(14)

SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

1 0

) 1

) ( 0 (

2 1

1 2

1

 

  

r r

L r

r r

 0

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer

 0

1. Fabry-Perot cavity: B. Matching

Optimal coupling

Over-coupling

Under-coupling

(15)

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer SCALAR MODEL:

“plane waves”

scalar transmissions, scalar losses of mirrors

Frequency/Length tuning

c L

0

0 0

4 

 

1. Fabry-Perot cavity: B. Matching

(16)

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL:

1. Fabry-Perot cavity: B. Matching

Mirror 1 Mirror 2

Ein Esto Etrans

Eref z axis

(17)

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL:

1. Fabry-Perot cavity: B. Matching

Esto(x,y) = k Ein(x,y)

(k complex number)

Esto Ein

Wavefront matching:

Superpose angles and lateral drifts

of incoming and resonating beam

(18)

NON-SCALAR MODEL:

1. Fabry-Perot cavity: B. Matching

Esto(x,y) = k Ein(x,y)

(k complex number)

Esto Ein

Wavefront matching:

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability

The Fabry-Perot interferometer

(19)

NON-SCALAR MODEL:

2 2

1 1

2 2 1 2

1

, ,

) , ,

(    

 

 

C

Definition of beam coupling:

Round trip coupling losses:

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer

) ,

(

1

rt sto

rt

C E E

L  

1. Fabry-Perot cavity: B. Matching

(20)

NON-SCALAR MODEL:

2 1

1

1

T L L

T

L

rt

   

Definition of stability:

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer

Definition of stability in case of perfect surface figures:

1 ) 1

)(

1 ( 0

2 1

R

L R

L

1. Fabry-Perot cavity: B. Matching

(21)

1. Fabry-Perot cavity: B. Matching

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer Charles Fabry (1867-1945)

Alfred Perot (1863-1925)

Amédée Jobin (mirror manufacturer) (1861-1945) Gustave Yvon (>1911)

Marseille – beginning of 20th century

“Les franges des lames minces argentées”,

Annales de Chimie et de Physique, 7e série, t12, 12 décembre 1897

(22)

Impedance matching

Frequency/length tuning (“lock”) Wavefront matching

alignment

beam size / position

surface defects - stability The Fabry-Perot interferometer

1. Fabry-Perot cavity: B. Matching

(23)

Phase modulated laser:

m phase modulation index fm modulation frequency

SB- C SB+

 

 

  

i C i m i m

in

m e

m e

e

2 f 2 f 2 f

0

1 2

2

 

 

    

i t C C m i t C m i t

ref

m e

R m e

R R

e

2 fC 2 fm 2 fm

0

( f f ) 2

) 2 f f

( )

f

(

1. Fabry-Perot cavity: C. measurement

(24)

 

2

p p 0

0

f f 1

f f ) 1 ( )

f ( Im



 



c c c

P Pm R Pm

s

f

m

f 

( f ) ( f f ) ( f ) ( f f )

2 Im

*

*

0 c c m c c m

P

m R R R R

P

s    

error signal:

Does not provide information about frequency behavior once locked

1. Fabry-Perot cavity: C. measurement

(25)

Modulated laser + measurement line:

n phase modulation index fn modulation frequency

p 0

) noise frequency

(

f f 1

) 1

( i m TF P

  

SB- C SB+

f << FSR, f ≠ fm

This pole

1. Fabry-Perot cavity: C. measurement

(26)

Contents

I. Fabry-Perot cavity in practice

Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront

Length / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical design

Optimum values for mirror transmissions

“dark fringe”: contrast defect

“Mode Cleaner”

III. Optical performances

Actual performances:

Mirror metrology

Optical simulation

(27)

2. Optical design: A. mirror transmissions

cavity RT

FP L G

R  1  

Fabry-Perot cavity with Rmax transmissions as end mirrors

Virgo mirrors: L

RT

~500 ppm, G

cavity

~ 32  reflectivity defect 1.5%

Was estimated 1-5 % at design

Have as much as possible power on beamsplitter

Match “losses” of cavities with recycling mirror

(28)

• Michelson simple :

BS

laser Pin

Pout

min max

min

max

P

P P CP  

P

max

, P

min

= P

out

On black and white fringes

2. Optical design: B. dark fringe

(29)

Slave laser

Master laser

L=3 km

Input <<Mode Cleaner>> to filter out input beam jitter and select mode

L=144m

2. Optical design: C. Mode Cleaners

(30)

Detection

Output Mode-Cleaner

Output Mode Cleaner on Suspended Bench

Photodiodes on Detection Bench

Beam

(31)

Contents

I. Fabry-Perot cavity in practice

Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront

Length / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical design

Optimum values for mirror transmissions

“dark fringe”: contrast defect

“Mode Cleaner”

III. Optical performances

Actual performances:

Mirror metrology

(32)

Measured optical parameters

16.7 W 7.1 W

F = 49±0.5 F = 51 ±1

Gcarrier = 30-35 (exp. 50) GSB ~ 20 (exp. 36)

1 – C < 10-4

1 – C = 3.10-3 (mean) Slave laser

Master laser

1 W T=10%

Losses in input Mode Cleaner?

Recycling gain?

Arm finesses?

(33)

Mirror metrology

reproducibility 0.4 nm; step 0.35 mm resolution 30 ppb/cm // 20 ppb

resolution of a few ppm transmission map

Before and/or after the coating process, maps are measured:

- Mirror surface map (modified profilometer)

- bulk and coating absorption map (“mirage” bench) - scatter map (commercial instrument)

- transmission map (commercial instrument) - local defects measurements

Scatterometer CASI 400x400mm

Micromap 400x400 mm (local defects)

Absorption

Photothermal Deflection System

Phase shift interferometer

(34)

Diam Diam 35 cm 35 cm Rms Rms 2.3 nm 2.3 nm

Surface maps

Ex: a large flat mirror

-Good quality silica - Good polishing

- Control of coating deposition (DIBS) with no pollutants

- Surface correction

(35)

TWO optical programs:

- One that propagates wavefront with FFT

- One that decomposes beams on TEM HG(m,n) base

- Check out cavity visibility (total losses)

- Check out expected recycling gain, for varying radii of curvature

- Check out expected contrast defect - Check out modulation frequency - Improve interferometer

parameters…

Optical simulation

(36)

Scalar defects Maps Maps+thermal

Opt mod index 0.068 0.172±0.001 0.215 ±0.001

Opt demod phase 0 2 ±0 17 ±1

Finesse N 49.26 49.1 ±0.2 49.3 ±0.2

Finesse W 49.79 49.6 ±0.2 49.7 ±0.2

dF/F [%] 0.27 0.23 ±0.12 0.24 ±0.12

Asymmetry [%] 1.05 1.00 ±0.3 2.78 ±0.5

Stored power N [kW] 15.38 10.82 ±0 11.15 ±0

Lost power N [W] 0.23 4.11 ±1 3.70 ±1

Surtension N 31.37 31.18 ±0.02 31.15 ±0.02

Stored power W [kW] 15.55 10.91 ±0 11.27 ±0.3

Lost power W [W] 0.19 6.05 ±0.02 5.85 ±0.04

Surtension W 31.70 31.42 ±0.01 31.48 ±0.1

Carrier power on BS [W] 978.5 684.5 ±0.5 725.1 ±2

Sideband power on BS [W] 1.70 8.56 ±0.1 10.9 ±0.2

Reflected carrier [W] 17.84 8.42 ±0.01 9.82 ±0.08

Reflected sb [W] 0.027 0.24 ±0 0.26 ±0.01

CITF surtension Carrier 49.04 34.74 ±0.03 37.10 ±0.08

CITF surtension SB 36.49 29.01 ±0.02 24.0 ±0.1

Optical program: typical results (Modal simulation)

(37)

Example:

Virgo simulation with surface maps and with an incoming field of 20W

Contrast defect= 0.94%

North arm amplification = 31.65 West arm amplification = 32.06 Recycling gain = 34.56

(38)

Details at F

FSR

Fabry-Perot cavity transfer function measurements

Fit values with 95% confidence interval:

fp = 479 +/- 3.3 Hz fz = -177 +/- 2.2 Hz

FSR = 1044039 +/- 2.2 Hz L = 143.573326 +/- 30 m

Error bars: from measurement errors, Not for constant biases.

(fit both real and imaginary parts simultaneously)

(39)

Input Mode Cleaner Losses

T=2427 ppm T=2457 ppm

T = 5.7 ppm

Roud-trip losses:

Computed from mirror maps: 115 ppm From measurements: 846 +/- 5 ppm

Mirror transmission measurements

+ transfer function details measurements

=> Mode mismatching 17%

=> Cavity transmissitivity for TEM00 83%

(september 2005)

(40)

Contents

I. Fabry-Perot cavity in practice

Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront

Length / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical design

Optimum values for mirror transmissions

“dark fringe”: contrast defect

“Mode Cleaner”

III. Optical performances

Actual performances:

Mirror metrology

Optical simulation

Referenties

GERELATEERDE DOCUMENTEN

Een teler gaf als reden voor zijn keuze nadrukkelijk op dat hij ervaring met de teelt wilde opdoen (door aardappel als vanggewas te telen in plaats van graan), enkele andere telers

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Dit geheel van faktoren wordt door de operator geevalueerd, en op grond van die 'evaluatie beleeft hij een meer of minder grote afstand tussen wensen en

Species in two genera, Ophiostoma and Knoxdaviesia (Wing eld et al. 1999), occur in the ower heads (infructescences) of serotinous Protea species in southern Africa (Fig.. They

CARDC-staff prepared the basic experimental set up. CWO prepared two angle transducers. for measurement of the yaw angle between head and tower and the angle

Het JCL record voor segment KALMAN wordt gegenereerd door aanroep van JCLXEQ (zie progr.. 2.2.4 Segment NLCHCK - Pad:

8 uur voor het onderzoek stoppen Merknaam Stofnaam ventolin (salbutamol) atrovent (ipratropiumbromide) ipraxa (ipratropiumbromide) combivent

Door met de patiënt op zoek te gaan naar wat voor hem belangrijk is, is het mogelijk om met de patiënt te bespreken welke ondersteuning vanuit de zorg hem hierbij helpt..