• No results found

Cover Page The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/81579

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/81579"

Copied!
30
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The following handle holds various files of this Leiden University dissertation:

http://hdl.handle.net/1887/81579

Author: Vendel, E.

Title: Prediction of spatial-temporal brain drug distribution with a novel mathematical

model

(2)

Bibliography

[1] Brodland GW. How computational models can help unlock biological systems. In: Seminars in Cell & Developmental Biology. vol. 47. Elsevier; 2015. p. 62–73.

[2] Reid AT. On stochastic processes in biology. Biometrics. 1953;9(3):275–289. [3] Tsimring LS. Noise in biology. Reports on Progress in Physics. 2014;77(2):026601. [4] de Lange ECM. The mastermind approach to CNS drug therapy: translational

pre-diction of human brain distribution, target site kinetics, and therapeutic effects. Fluids and Barriers of the CNS. 2013;10(1):12. doi:10.1186/2045-8118-10-12.

[5] Openstax college, anatomy & physiology, openstax cnx . Circulation and the Central Nervous System. OpenStax; 2016. Online: accessed 09 Octo-ber 2018. Available from: http://cnx.org/contents/FPtK1zmh@8.25:DcB5rjNc@3/ Circulation-and-the-Central-Nervous-System.

[6] Thrane AS, Thrane VR, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends in Neurosciences. 2014;37(11):620–628. doi:10. 1016/j.tins.2014.08.010.

[7] Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics. Lippin-cott Williams and Wilkins Philadelphia; 2005.

[8] Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends in Pharmacological Sciences. 2011;32(12):708–714. doi:10.1016/j.tips.2011.08.005.

[9] Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharma-cology. 2011;36(3):692. doi:10.1038/npp.2010.202.

[10] McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacology & Therapeutics,. 2017;doi:10.1016/j.pharmthera. 2017.10.008.

[11] Nicholson C. Diffusion and related transport mechanisms in brain tissue. Reports on Progress in Physics. 2001;64(7):815. doi:10.1088/0034-4885/64/7/202.

[12] Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. The Journal of Physiology. 1981;321:225. doi:10.1113/jphysiol.1981.sp013981.

[13] Nicholson C, Hrabětová S. Brain Extracellular Space: The Final Frontier of Neuro-science. Biophysical Journal. 2017;p. 1–10. doi:10.1016/j.bpj.2017.06.052. [14] Hamdi S, Schiesser WE, Griffiths GW. Method of lines. Scholarpedia.

2007;2(7):2859.

[15] Hammarlund-Udenaes M, Paalzow LK, de Lange ECM. Drug Equilibration Across the Blood-Brain Barrier-Pharmacokinetic Considerations Based on the Microdialysis Method. Pharmaceutical Research. 1997;14(2):128–134.

[16] Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiology of Disease. 2010;37(1):13–25. [17] Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends

in Neurosciences. 2005;28(4):202–208. doi:10.1016/j.tins.2005.02.001.

[18] Jucker M, Bättig K, Meier-Ruge W. Effects of aging and vincamine derivatives on pericapillary microenvironment: stereological characterization of the cerebral capil-lary network. Neurobiology of Aging. 1990;11(1):39–46. doi:10.1016/0197-4580(90) 90060-d.

(3)

and structure in experimental brain tumors: microvessel populations with distinc-tive structural and functional properties. Microvascular Research. 1999;58(3):312–328. doi:10.1006/mvre.1999.2188.

[20] Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx: the Journal of the American Society for Experimental NeuroTherapeutics. 2005;2(1):3–14. doi:10.1602/neurorx.2.1.3.

[21] Tata DA, Anderson BJ. A new method for the investigation of capillary structure. Journal of Neuroscience Methods. 2002;113(2):199–206. doi:10.1016/s0165-0270(01) 00494-0.

[22] Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EMC. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. Journal of the American Heart Association. 2014;3(3):e000787. doi:10.1161/jaha.114.000787. [23] National Library of Medicine (US) Genetics Home Reference

[Inter-net] Bethesda (MD): The Library. Alveolar capillary dysplasia with misalignment of pulmonary veins. -; 2018. Online; accessed 28 november 2018. Available from: https://ghr.nlm.nih.gov/condition/ alveolar-capillary-dysplasia-with-misalignment-of-pulmonary-veins. [24] Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and

disease. Pharmacological Reviews. 2005;57(2):173–185. doi:10.1124/pr.57.2.4. [25] Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the

blood–brain barrier. Nature Reviews Neuroscience. 2006;7(1):41. doi: 10.1016/j. neuint.2003.11.006.

[26] Fenstermacher JD, Kaye T. Drug “diffusion” within the brain. Annals of the New York Academy of Sciences. 1988;531(1):29–39. doi:10.1111/j.1749-6632.1988. tb31809.x.

[27] Kniesel U, Wolburg H. Tight junctions of the blood–brain barrier. Cellular and Molecular Neurobiology. 2000;20(1):57–76.

[28] Schachenmayr W, Friede RL. The origin of subdural neomembranes. I. Fine struc-ture of the dura-arachnoid interface in man. The American Journal of Pathology. 1978;92(1):53.

[29] Vandenabeele F, Creemers J, Lambrichts I. Ultrastructure of the human spinal arachnoid mater and dura mater. Journal of Anatomy. 1996;189(Pt 2):417.

[30] Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, et al. Drug trans-porters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metabolism and Disposition. 2013;41(4):923–931. doi:10.1124/dmd.112.050344. [31] Schmitt FO, Samson FE. Brain cell microenvironment. Neurosciences Research

Program Bulletin. 1969;7:277–417.

[32] Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends in Neurosciences. 1998;21(5):207–215. doi:10.1016/s0166-2236(98)01261-2. [33] Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The

blood-brain barrier: an engineering perspective. Frontiers in Neuroengineering. 2013;6:7. doi:10.3389/fneng.2013.00007.

[34] Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcircula-tion. Nature Neuroscience. 2003;6(1):43–50. doi:10.1038/nn980.

[35] Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Reviews Neuroscience. 2004;5(5):347. doi:10.1038/nrn1387.

(4)

control of cerebral blood flow. Nature Neuroscience. 2006;9(2):260. doi:10.1038/ nn1623.

[37] Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nature Neuroscience. 2007;10(11):1369. doi:10.1038/nn2003.

[38] Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids and Barriers of the CNS. 2014;11(1):1. doi:10.1186/2045-8118-11-26.

[39] Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circula-tion. Fluids and Barriers of the CNS. 2014;11(1):10. doi:10.1016/b978-141602908-3. 50015-7.

[40] Orešković D, Klarica M. A new look at cerebrospinal fluid movement. Fluids and Barriers of the CNS. 2014;11(1):16. doi:10.1186/2045-8118-11-16.

[41] Marchi N, Banjara M, Janigro D. Blood–brain barrier, bulk flow, and interstitial clearance in epilepsy. Journal of Neuroscience Methods. 2016;260:118–124. doi:10. 1016/j.jneumeth.2015.06.011.

[42] Cserr HF, Bundgaard M. Blood-brain interfaces in vertebrates: a comparative ap-proach. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1984;246(3):R277–R288. doi:10.1152/ajpregu.1984.246.3.r277. [43] Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for

physiology and pathology. Neurochemistry International. 2004;45(4):545–552. doi: 10.1016/j.neuint.2003.11.006.

[44] Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. CRC press Boca Raton; 1995.

[45] Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. Journal of Neuroscience. 2013;33(46):18190–18199. doi:10.1523/jneurosci. 1592-13.2013.

[46] Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Progress in Neurobiology. 2017;doi:10.1016/j.pneurobio.2015.12.007.

[47] Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Mul-tiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cere-brospinal Fluid Research. 2008;5(1):10. doi:10.1186/1743-8454-5-10.

[48] Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Research Reviews. 2011;65(2):99–112. doi:10.1016/j.brainresrev.2010. 08.002.

[49] Jin BJ, Smith AJ, Verkman AS. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. The Journal of General Physiology. 2016;148(6):489–501. doi:10.1085/jgp.201611684.

[50] Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathologica. 2018;p. 1–21.

[51] Nedergaard M. Garbage truck of the brain. Science. 2013;340(6140):1529–1530. doi:10.1126/science.1240514.

[52] Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi:10. 1126/science.1241224.

(5)

paravas-cular pathway facilitates CSF flow through the brain parenchyma and the clear-ance of interstitial solutes, including amyloid β. Science Translational Medicine. 2012;4(147):147ra111–147ra111. doi:10.1126/scitranslmed.3003748.

[54] Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, et al. Inter-stitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(37):9894–9899. doi:10.1073/pnas.1706942114.

[55] Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. 2017;6:e27679. doi:10.7554/elife.27679.

[56] McComb JG. Recent research into the nature of cerebrospinal fluid formationand absorption. Journal of Neurosurgery. 1983;59(3):369–383. doi:10.3171/jns.1983.59. 3.0369.

[57] Begley DJ, Regina A. The Role of Brain Extracellular Fluid Production and Efflux Mechanisms in Drug Transport to the Brain. In: The blood-brain barrier and drug delivery to the CNS. CRC Press; 2000. p.99–114.

[58] Iliff JJ, Goldman SA, Nedergaard M. Implications of the discovery of brain lymphatic pathways. The Lancet Neurology. 2015;14(10):977–979. doi:10.1016/s1474-4422(15) 00221-5.

[59] Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenera-tive, neurovascular and neuroinflammatory disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016;1862(3):422–451. doi:10.1016/j.bbadis. 2015.10.014.

[60] Guengerich FP. Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology. 2007;21(1):70–83. doi:10.1021/tx700079z.

[61] Seelig A. The Role of Size and Charge for Blood-Brain Barrier Permeation of Drugs and Fatty Acids. Journal of Molecular Neuroscience. 2007;33(1):32–41. doi:10.1007/ s12031-007-0055-y.

[62] Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurology. 2009;9(1):S3. doi:10.1186/1471-2377-9-s1-s3.

[63] Kortagere S, Krasowski MD, Ekins S. The importance of discerning shape in molecular pharmacology. Trends in Pharmacological Sciences. 2009;30(3):138–147. doi:10.1016/j.tips.2008.12.001.

[64] Hitchock SA, Pennington LD. Structure-brain exposure relationships. Journal of Medicinal Chemistry. 2006;49(26):7559–7583. doi:10.1002/chin.200713268.

[65] Hammarlund-Udenaes M. Active-site concentrations of chemicals-are they a better predictor of effect than plasma/organ/tissue concentrations? Basic & Clinical Pharma-cology & ToxiPharma-cology. 2010;106(3):215–220. doi:10.1111/j.1742-7843.2009.00517.x. [66] Kamiya A, Bukhari R, Togawa T. Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of Mathematical Biology. 1984;46(1):127–137. doi:10. 1016/s0092-8240(84)80038-5.

[67] Trapa PE, Belova E, Liras JL, Scott DO, Steyn SJ. Insights From an Integrated Physiologically Based Pharmacokinetic Model for Brain Penetration. Journal of Phar-maceutical Sciences. 2016;105(2):965–971. doi:10.1016/j.xphs.2015.12.005. [68] Korjamo T, Heikkinen AT, Mönkkönen J. Analysis of unstirred water layer in in vitro

permeability experiments. Journal of Pharmaceutical Sciences. 2009;98(12):4469–4479. doi:10.1002/jps.21762.

(6)

un-stirred water layer. Die Pharmazie-An International Journal of Pharmaceutical Sci-ences. 2012;67(5):363–370.

[70] Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. Molecular Pharmaceutics. 2016;8(10):1162–1183. doi:10.15252/emmm.201606271.

[71] Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94(3):581–594. doi:10.1016/j.neuron. 2017.03.043.

[72] Gonatas NK, Stieber A, Hickey WF, Herbert SH, Gonatas JO. Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. The Journal of Cell Biology. 1984;99(4):1379–1390. doi:10.1083/jcb.99.4.1379.

[73] Hervé F, Ghinea N, Schermann JM. CNS delivery via adsorptive transcytosis. The AAPS journal. 2008;10(3):455–472. doi:10.1208/s12248-008-9055-2.

[74] Pardridge WM. Receptor-mediated peptide transport through the blood-brain bar-rier. Endocrine Reviews. 1986;3(7):314–330. doi:10.1007/978-94-010-9595-2_177. [75] Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active

drugs. European Journal of Clinical Pharmacology. 2009;65(11):1063. doi:10.1007/ s00228-009-0714-8.

[76] Dalvi S, On N, Nguyen H, Pogorzelec M, Miller DW, Hatch GM. The Blood Brain Barrier-Regulation of Fatty Acid and Drug Transport. In: Heinbockel T, editor. Neu-rochemistry. Rijeka: IntechOpen; 2014. doi:10.5772/57604.

[77] Pardridge WM. Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism. 2012;32(11):1959–1972. doi:10.1038/jcbfm.2012.126. [78] Ghersi-Egea JF, Leninger-Muller B, Suleman G, Siest G, Minn A. Localization of

Drug-Metabolizing Enzyme Activities to Blood-Brain Interfaces and Circumventricu-lar Organs. Journal of Neurochemistry. 1994;62:1089–1096. doi:j.1471-4159.1994. 62031089.x.

[79] Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug de-velopment. Pharmacological Reports. 2013;65(1):1–14. doi:10.1016/s1734-1140(13) 70959-9.

[80] Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids and Barriers of the CNS. 2011;8(1):7. doi:10.1186/2045-8118-8-7.

[81] Butler SL, Kohles SS, Thielke RJ, Chen C, Vanderby R. Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation. Medical & Biological Engineering & Computing. 1997;35(6):742–746. doi:10.1007/BF02510987.

[82] Syková E, Nicholson C. Diffusion in brain extracellular space. Physiological Reviews. 2008;88(4):1277–1340. doi:10.1152/physrev.00027.2007.

[83] Hrabětová S, Nicholson C. Dextran decreases extracellular tortuosity in thickslice is-chemia model. . Journal of Cerebral Blood Flow & Metabolism. 2000;20(9):1306–1310. doi:10.1097/00004647-200009000-00005.

[84] Hrabětová S, Hrabe J, Nicholson C. Dead-Space Microdomains Hinder Extra-cellular Diffusion in Rat Neocortex during Ischemia. The Journal of Neuroscience. 2003;23(23):8351–8359. doi:10.1523/jneurosci.23-23-08351.2003.

(7)

[86] Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Molecular Pharmaceutics. 2013;10(5):1492–1504. doi:10.1021/ mp300495e.

[87] Cserr HF, Ostrach LH. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Experimental Neurology. 1974;45(1):50–60.

[88] de Lange ECM, Danhof M. Considerations in the use of cerebrospinal fluid phar-macokinetics to predict brain target concentrations in the clinical setting. Clinical pharmacokinetics. 2002;41(10):691–703. doi:10.2165/00003088-200241100-00001. [89] Nicholson C, Tao L. Hindered Diffusion of High Molecular Weight Compounds

in Brain Extracellular Microenvironment Measured with Integrative Optical Imaging. Biophysical Journal. 1993;65(6):2277–2290. doi:10.1016/S0006-3495(93)81324-9. [90] Saltzman WM. Drug delivery: engineering principles for drug therapy. Oxford

University Press; 2001. doi:10.1039/c4nr00915k.

[91] Proescholdt MG, Hutto B, Brady LS, Herkenham M. Studies of Cerebrospinal Fluid Flow and Penetration into Brain Following Lateral Ventricle and Cisterna Magna Injections of the Tracer [14C]Inulin in Rat. Neuroscience. 2000;95(2):577–592. doi:10. 1016/s0306-4522(99)00417-0.

[92] Kalvass JC, Maurer TS. Influence of non-specific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharmaceutics & Drug Disposition. 2002;23(8):327–338. doi:10.1002/bdd.325.

[93] Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacological Reviews. 2001;53(4):569–596.

[94] Marroni M, Marchi N, Cuccolo L, Abbott NJ, Signorelli K, Janigro D. Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Current Drug Targets. 2003;4(4):297–304. doi:10.2174/1389450033491109.

[95] De Duve C, De Barsy T, Poole B, Trouet A, Paul T, Van Hoof F. Lysosomotropic agents. Biochemical Pharmacology. 1974;23(18):2495–2531.

[96] Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, et al. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortal-ized human hepatocytes (Fa2N-4 cells). Drug Metabolism and Disposition. 2013;p. 897–905. doi:10.1124/dmd.112.050054.

[97] Alvàn G, Paintaud G, Wakelkamp M. The efficiency concept in phar-macodynamics. Clinical Pharmacokinetics. 1999;36(5):375–389. doi:10.2165/ 00003088-199936050-00005.

[98] Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nature Reviews Drug discovery. 2006;5(9):730. doi:10.1038/nrd2082.

[99] Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nature Reviews Drug Discovery. 2004;3(9):801. doi:10.1038/nrd1500.

[100] Pan AC, Borhani DW, Dror RO, Shaw DE. Molecular determinants of drug-receptor binding kinetics. Drug Discovery Today. 2013;18(13-14):667–673. doi:0.1016/ j.drudis.2013.02.007.

[101] de Witte WEA, Danhof M, van der Graaf PH, de Lange ECM. In vivo Target Res-idence Time and Kinetic Selectivity: The Association Rate Constant as Determinant. Trends in Pharmacological Sciences. 2016;37(10):831–842. doi:10.1016/j.tips.2016. 06.008.

(8)

metaboliz-ing enzymes in the brain and cerebral microvessels. Brain Research Reviews. 1991;16(1):65–82. doi:10.1016/0165-0173(91)90020-9.

[103] Ghersi-Egea JF, Perrin R, Leninger-Muller B, Grassiot MC, Jeandel C, Floquet J, et al. Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. . Biochemical Pharmacology. 1993;45(3):647–658.

[104] Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, et al. Tran-scriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. . Molecular Pharmaceutics. 2011;8(4):1332–1341. doi:10.1021/mp200129p.

[105] Klein B, Kuschinsky H, Schrock H, Vetterlein F. Interdependency of local capillary density, blood flow, and metabolism in rat brains. American Journal of Physiology-Heart and Circulatory Physiology. 1986;251(6):H1333–H1340. doi:10.1152/ajpheart. 1986.251.6.h1333.

[106] Borowsky IW, Collins RC. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. Journal of Comparative Neurology. 1989;288(3):401–413. doi:10.1002/cne.902880304.

[107] Cipolla MJ. The cerebral circulation. Integrated Systems physiology: From Molecule to Function. 2009;1(1):1–59. doi:10.4199/c00005ed1v01y200912isp002. [108] Longden TA, Dabertrand F, Koide M, Gonzalez AL, Tykocki NR, Brayden JE,

et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nature Neuroscience. 2017;20(5):717. doi:10.1038/nn.4533. [109] Jang SH, Wientjes MG, Lu D, Au JLS. Drug delivery and transport to solid tumors.

Pharmaceutical Research. 2003;20(9):1337–1350.

[110] Shipley RJ, Chapman SJ. Multiscale modelling of fluid and drug transport in vascular tumours. Bulletin of Mathematical Biology. 2010;72(6):1464–1491. doi:10. 1007/s11538-010-9504-9.

[111] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257. doi:10.1038/35025220.

[112] Boero JA, Ascher J, Arregui A, Rovainen C, Woolsey TA. Increased brain cap-illaries in chronic hypoxia. Journal of Applied Physiology. 1999;86(4). doi:10.1152/ jappl.1999.86.4.1211.

[113] Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in Human Cerebral Blood Flow and Cerebral Blood Volume During Hypercapnia and Hypocapnia Measured by Positron Emission Tomography. Journal of Cerebral Blood FLow & Metabolism. 2003;23:665–670. doi:10.1097/01.WCB.0000067721.64998.F5.

[114] Hauck EF, Apostel S, Hoffmann JF, Heimann A, Kempski O. Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. Journal of Cerebral Blood Flow & Metabolism. 2004;24(4):383–391. doi:10.1097/00004647-200404000-00003.

[115] Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM. Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvascular Research. 1985;30(1):1–9. doi:10.1016/ 0026-2862(85)90032-9.

(9)

doi:10.1080/10255842.2013.853754.

[117] Tan WHK, Lee T, Wang CH. Simulation of intratumoral release of Etanida-zole: Effects of the size of surgical opening. Journal of Pharmaceutical Sciences. 2003;92(4):773–789. doi:10.1002/jps.10351.

[118] Shimono M. Non-uniformity of cell density and networks in the monkey brain. Scientific Reports. 2013;3(2541). doi:10.1038/srep02541.

[119] Shah AK, Kreibich CD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLOS ONE. 2018;13(6):e0198322. doi:10.1371/journal.pone.0198322.

[120] Krogh A. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. The Journal of Physiology. 1919;52(6):391–408. doi:10. 1113/jphysiol.1919.sp001838.

[121] Langhoff W, Riggs A, Hinow P. Scaling behavior of drug transport and absorption in in silico cerebral capillary networks. PLOS ONE. 2018;13(7):e0200266. doi:10. 1371/journal.pone.0200266.

[122] Calvetti D, Cheng Y, Somersalo E. A spatially distributed computational model of brain cellular metabolism. Journal of Theoretical Biology. 2015;376:48–65. doi:10. 1016/j.jtbi.2015.03.037.

[123] Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. American Journal of Physiology-Legacy Content. 1959;197(6):1205–1210. doi:10.1152/ajplegacy.1959.197.6.1205.

[124] Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiologica. 1963;58(4):292–305. doi:10.1111/ j.1748-1716.1963.tb02652.x.

[125] Lorthois S, Duru P, Billanou I, Quintard M, Celsis P. Kinetic modeling in the context of cerebral blood flow quantification by H215O positron emission tomography: The meaning of the permeability coefficient in Renkin-Crone’s model revisited at cap-illary scale. Journal of Theoretical Biology. 2014;353:157–169. doi:10.1016/j.jtbi. 2014.03.004.

[126] Fang Q, Sakadzic S, Ruvinskaya L, Devor A, Dale AM, Boas DA. Oxygen advection and diffusion in a three- dimensional vascular anatomical network. Optics Express. 2008;16(22):17530–17541.

[127] Boujelben A, Watson M, McDougall S, Yen YF, Gerstner ER, Catana C, et al. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas. Interace Focus. 2016;6(5):20160039.

[128] Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. Journal of Cerebral Blood Flow and Metabolism. 2017;37(1):52–68.

[129] Sweeney PW, Walker-Samuel S, Shipley RJ. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Scientific Reports. 2018;8(1):1373.

[130] Di Giovanna AP, Tibo A, Silvestri L, Müllenbroich MC, Constantini I, Mascaro ALA, et al. Whole-Brain Vasculature Reconstruction at the Single Capillary Level. Scientific Reports. 2018;8(12573):1–11.

[131] Su SW, Catherall M, Payne S. The Influence of Network Structure on the Transport of Blood in the Human Cerebral Microvasculature. Microcirculation. 2012;19(2):175–187.

(10)

Cere-bral microcirculation and oxygen tension in the human secondary cortex. Annals of Biomedical Engineering. 2013;41(11):2264–2284. doi:10.1007/s10439-013-0828-0. [133] Park CS, Payne SJ. Modelling the effects of cerebral microvasculature morphology

on oxygen transport. Medical Engineering and Physics. 2016;38:41–47. doi:10.1016/ j.medengphy.2015.09.004.

[134] Merrem A, Bartzsch S, Laissue J, Oelfke U. Computational modelling of the cere-bral cortical microvasculature: effect of x-ray microbeams versus broad beam irradia-tion. Physics in Medicine & Biology. 2017;62(10):3902–3922. doi:10.1088/1361-6560/ aa68d5.

[135] Smith AF, Doyeux V, Berg M, Peyrounette M, Haft-Javaherian M, Larue AE, et al. Brain Capillary Networks Across Species: A few Simple Organizational Requirements Are Sufficient to Reproduce Both Structure and Function. Frontiers in Physiology. 2019;10:233. doi:10.3389/fphys.2019.00233.

[136] Nhan T, Burgess A, Lilge L, Hynynen K. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability. Physics in Medicine & Biology. 2014;59:5987–6004. doi:10.1088/0031-9155/59/20/ 5987.

[137] Nicholson C. Interaction Between Diffusion and Michaelis-Menten Uptake of Dopamine After lontophoresis in Striatum. Biophysical Journal. 1995;68(5):1699–1715. doi:10.1016/S0006-3495(95)80348-6.

[138] de Lange ECM, Bouw MR, Mandema JW, Danhof M, de Boer AG, Breimer DD. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. British Journal of Pharmacology. 1995;116(5):2538–2544. doi: 10.1111/j.1476-5381.1995.tb15107.x.

[139] Linninger AA, Somayaji MR, Xenos M, Kondapalli S. Drug Delivery Into the Hu-man Brain. Proceedings: Foundations of Systems Biology and Engineering (FOSBE). 2005;p. 163–168.

[140] Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. Computational meth-ods for predicting drug transport in anisotropic and heterogeneous brain tissue. Journal of Biomechanics. 2008;41:2176–2187. doi:10.1016/j.jbiomech.2008.04.025.

[141] Zhan W, Arifin DY, Lee TKY, Wang CH. Mathematical Modelling of Convection Enhanced Delivery of Carmustine and Paclitaxel for Brain Tumour Therapy. Pharm Res. 2017;34:860–873. doi:10.1007/s11095-017-2114-6.

[142] Patlak CS, Fenstermacher JD. Measurements of dog blood-brain transfer con-stants by ventriculocisternal perfusion. The American Journal of Physiology. 1975;229(4):877–84. doi:10.1152/ajplegacy.1975.229.4.877.

[143] Robinson PJ, Rapoport SI. Model for drug uptake by brain tumors: effects of osmotic treatment and of diffusion in brain. Journal of Cerebral Blood Flow & Metabolism. 1990;10(2):153–161. doi:10.1038/jcbfm.1990.30.

[144] Dykstra KH, Hsiao JK, Morrison PF, Bungay PM, Mefford IN, Scully MM, et al. Quantitative Examination of Tissue Concentration Profiles Associated with Microdial-ysis. Journal of Neurochemistry. 1992;58(3):931–940. doi=:10.1111/j.1471-4159. 1992.tb09346.x.

[145] Stevens J, Ploeger BA, van der Graaf PH, Danhof M, de Lange ECM. Sys-temic and direct nose-to-brain transport pharmacokinetic model for remoxipride af-ter intravenous and intranasal administration. Drug Metabolism and Disposition. 2011;39(12):2275–2282. doi:10.1124/dmd.111.040782.

(11)

Based Pharmacokinetic Modeling to Investigate Regional Brain Distribution Kinetics in Rats. The AAPS Journal. 2012;14(3):543–553. doi:10.1208/s12248-012-9366-1. [147] Westerhout J, Smeets J, Danhof M, de Lange ECM. The impact of P-gp

functionality on non-steady state relationships between CSF and brain extracellu-lar fluid. Journal of Pharmacokinetics and Pharmacodynamics. 2013;40(3):327–342. doi:10.1007/s10928-013-9314-4.

[148] Westerhout J, van den Berg DJ, Hartman R, Danhof M, de Lange ECM. Prediction of methotrexate CNS distribution in different species - Influence of disease conditions. European Journal of Pharmaceutical Sciences. 2014;57(1):11–24. doi:10.1016/j.ejps. 2013.12.020.

[149] Kielbasa W, Kalvass JC, Stratford R. Microdialysis Evaluation of Atomoxetine Brain Penetration and Central Nervous System Pharmacokinetics in Rats. Drug Metabolism and Disposition. 2009;37(1):137–142. doi:10.1124/dmd.108.023119.was. [150] Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, et al. Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically-Based Pharmacokinetic Model. CPT: Phar-macometrics & Systems Pharmacology. 2017;6(11):765–777. doi:10.1002/psp4.12250. [151] Ball K, Bouzom F, Scherrmann JM, Walther B, Declèves X. A Physiologically Based Modeling Strategy during Preclinical CNS Drug Development. Molecular Phar-maceutics. 2014;11:836–848. doi:10.1021/mp400533q.

[152] Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the key to physiologically based model prediction of human CNS target site concentrations. The AAPS journal. 2017;19(4):891–909.

[153] Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2009;1788(4):842–857. doi:10.1016/j.bbamem.2008.10.022.

[154] Gaohua L, Neuhoff S, Johnson TN, Rostami-Hodjegan A, Jamei M. Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge : Estimating time varying CSF drug concentrations and their variability using in vitro data. Drug Metabolism and Pharmacokinetics. 2016;31(3):224–233. doi:10.1016/j.dmpk.2016.03.005.

[155] Bickel U. How to measure drug transport across the blood-brain bar-rier. NeuroRx: the journal of the American Society for Experimental Neu-roTherapeutics. 2005;2(1):15–26. doi:10.1602/neurorx.2.1.15. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=539317{&}tool= pmcentrez{&}rendertype=abstract.

[156] Syvänen S, Xie R, Sahin S, Hammarlund-Udenaes M. Pharmacokinetic conse-quences of active drug efflux at the blood-brain barrier. Pharmaceutical Research. 2006;23(4):705–717. doi:10.1007/s11095-006-9780-0.

[157] Einstein A. Investigations on the Theory of the Brownian Movement. Dover Pub-lications. 1956;.

[158] Nicholson C, Phillips JM, Gardner-Medwin AR. Diffusion, from an iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Research. 1979;169:580–584. doi:10.1016/0006-8993(79)90408-6.

[159] Hrabe J, Hrabětová S, Segeth K. A Model of Effective Diffusion and Tortuosity in the Extracellular Space of the Brain. Biophysical Journal. 2004;87(3):1606–1617. doi:10.1529/biophysj.103.039495.

(12)

dual-probe microdialysis: Mathematical model and analysis. Journal of Neurochemistry. 2002;81(1):94–107. doi:10.1046/j.1471-4159.2002.00792.x.

[161] Saltzman WM, Radomsky ML. Drugs released from polymers: diffusion and elimination in brain tissue. Chemical Engineering Science. 1991;46(10):2429–2444. doi:10.1016/0009-2509(91)80036-X.

[162] Levin VA, Patlak CS, Laudahl HD. Heuristic Modeling of Drug Delivery to Ma-lignant Brain Tumors. Journal of Pharmaceutical and Biopharmaceutics. 1980;8(3). doi:10.1007/bf01059646.

[163] Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharmaceutical Research. 2008;25(8):1737–1750. doi:10. 1007/s11095-007-9502-2.

[164] Xiao F, Hrabe J, Hrabětová S. Anomalous extracellular diffusion in rat cerebellum. Biophysical Journal. 2015;108(9):2384–2395. doi:10.1016/j.bpj.2015.02.034. [165] Kinney JP, Spacek J, Bartol TM, Bajaj CL, Harris KM, J ST. Extracellular

sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. Journal of Comparative Neurology. 2013;521(2):448–464. doi:10.1002/cne.23181.

[166] Somayaji MR, Xenos M, Zhang L, Mekarski M, Linninger AA. Systematic design of drug delivery therapies. Computers and Chemical Engineering. 2008;32:89–98. doi:10. 1016/j.compchemeng.2007.06.014.

[167] Tao L, Nicholson C. Maximum geometrical hindrance to diffusion in brain extracel-lular space surrounding uniformly spaced convex cells. Journal of Theoretical Biology. 2004;229(1):59–68. doi:10.1016/j.jtbi.2004.03.003.

[168] Tao A, Tao L, Nicholson C. Cell cavities increase tortuosity in brain extracellular space. Journal of Theoretical Biology. 2005;234(4):525–536. doi:10.1016/j.jtbi. 2004.12.009.

[169] El-Kareh AW, Braunstein SL, Secomb TW. Effect of cell arrangement and intersti-tial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophysical Journal. 1993;64:1638–1646. doi:10.1016/s0006-3495(93)81532-7.

[170] Rusakov DA, Kullmann DM. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(July):8975–8980. doi:10.1073/pnas.95.15. 8975.

[171] Chen KC, Nicholson C. Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(15). doi:10.1073/pnas.150338197.

[172] García JJ, Smith JH. A biphasic hyperelastic model for the analysis of fluid and mass transport in brain tissue. Annals of Biomedical Engineering. 2009;37(2):375–386. doi:10.1007/s10439-008-9610-0.

[173] Hossain SS, Hossainy SFA, Bazilevs Y, Calo VM, Hughes TJR. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Computational Mechanics. 2012;49(2):213–242. doi:10. 1007/s00466-011-0633-2.

(13)

system. Neuro-Oncology. 2018;20(9):1197–1206. doi:10.1093/neuonc/noy051. [176] Nicholson C, Kamali-Zare P, Tao L. Brain Extracellular Space as a Diffusion

Barrier. Computing and Visualization in Science. 2011;14(7):309–325. doi:10.1038/ nature13314.A.

[177] Tao L. Effects of osmotic stress on dextran diffusion in rat neocortex studied with integrative optical imaging. Journal of Neurophysiology. 1999;81(5):2501–2507. doi:10.1152/jn.1999.81.5.25010.

[178] Hrabětová S. Extracellular Diffusion Is Fast and Isotropic in the Stratum Radia-tum of Hippocampal CA1 Region in Rat Brain Slices. Hippocampus. 2005;450(Febru-ary):441–450. doi:10.1002/hipo.20068.

[179] Thorne RG, Hrabětová S, Nicholson C. Diffusion of Epidermal Growth Factor in Rat Brain Extracellular Space Measured by Integrative Optical Imaging. Journal of Neurophysiology. 2004;92(6):3471–3481. doi:10.1152/jn.00352.2004.

[180] Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(14):0–5. doi:10.1073/pnas. 0509425103.

[181] Prokopovà-Kubinovà Š, Vargová L, Tao L, Ulbrich K, Šubr V, Syková E, et al. Poly[N-(2-hydroxypropyl)methacrylamide] Polymers Diffuse in Brain Extracellular Space with Same Tortuosity as Small Molecules. Biophysical Journal. 2001;80(Jan-uary):542–548. doi:10.1016/S0006-3495(01)76036-5.

[182] Wolak DJ, Pizzo ME, Thorne RG. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fl uorescence imaging. Journal of Controlled Release. 2015;197:78–86. doi:10.1016/j.jconrel.2014.10.034. [183] Han H, Shee C, Fu Y, Zuo L, Lee K, He Q, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE Journal of Biomedical and Health Informatics. 2014;18(3):978–983. doi:10.1109/jbhi.2014. 2308279.

[184] Le Bihan D. Looking Into the Functional Architecture of the Brain with Diffusion MRI. Nature Reviews, Neuroscience. 2003;4(June):469–480. doi:10.1038/nrn1119. [185] Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular

sieving through peripheral capillary membranes. American Journal of Physiology. 1951;167(1):13–46. doi:10.1152/ajplegacy.1951.167.1.13.

[186] Deen WM. Hindered transport of large molecules in liquid-filled pores. Ameri-can Institute of Chemical Engineers Journal. 1987;33(9):1409–1425. doi:10.1002/aic. 690330902.

[187] Morrison PF, Dedrick RL. Transport of Cisplatin in rat brain following mi-croinfusion: an analysis. Journal of Pharmaceutical Sciences. 1986;75(2):120–128. doi:10.1002/jps.2600750204.

[188] Bungay PM, Morrison PF, Dedrick RL. Steady-State Theory for Quantitative Mi-crodialysis of Solutes and Water In Vivo and In Vitro. Life Sciences. 1990;46:105–119. doi:10.1016/0024-3205(90)90043-q.

[189] Zhan W, Jiang L, Loew MH, Yang Y. Mapping spatiotemporal diffusion inside the human brain using a numerical solution of the diffusion equation. Magnetic Resonance Imaging. 2008;26(5):694–702. doi:10.1007/s11095-006-9780-0.

(14)

[191] Benveniste H, Hansen AJ, Ottosen NS. Determination of Brain Interstitial Concentrations by Microdialysis. Journal of Neurochemistry. 1989;52(6):1741–1750. doi:10.1111/j.1471-4159.1989.tb07252.x.

[192] Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL. High-flow microinfu-sion: tissue penetration and pharmacodynamics. The American Journal of Physiology. 1994;266(1 Pt 2):R292–R305. doi:10.1152/ajpregu.1994.266.1.r292.

[193] Hoistad M, Chen KC, Nicholson C, Fuxe K, Kehr J. Quantitative dual-probe microdialysis: evaluation of [3H] mannitol diffusion in agar and rat striatum. Journal of Neurochemistry. 2002;81(1):80–93. doi:10.1046/j.1471-4159.2002.00791.x. [194] Tong S, Yuan F. An equivalent length model of microdialysis sampling.

Jour-nal of Pharmaceutical and Biomedical AJour-nalysis. 2002;28:269–278. doi:10.1016/ s0731-7085(01)00565-9.

[195] Bungay PM, Sumbria RK, Bickel U. Unifying the mathematical modeling of in vivo and in vitro microdialysis. Biophysical Chemistry. 2011;257(5):2432–2437. doi:10. 1016/j.immuni.2010.12.017.Two-stage.

[196] Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic Drugs Released from Polymers: Distribution of 1,3-bis(2-chloroethyl)-l-nitrosourea in the Rat Brain. Pharmaceutical Research. 1996;13(5):671–682.

[197] Sarntinoranont M, Chen X, Zhao J, Mareci TH. Computational Model of Intersti-tial Transport in the Spinal Cord using Diffusion Tensor Imaging. Annals of Biomedical Engineering. 2006;34(8):1304–1321. doi:10.1007/s10439-006-9135-3.

[198] Kim JH, Mareci TH, Sarntinoranont M. A voxelized model of direct infusion into the corpus callosum and hippocampus of the rat brain : model development and parameter analysis. Medical Biological Engineering & Computing. 2010;48:203–214. doi:10.1007/s11517-009-0564-7.

[199] Raghavan R, Brady M. Predictive models for pressure-driven fluid infusions into brain parenchyma. Physics in Medicine and Biology. 2011;56(19):6179–204. doi:10. 1088/0031-9155/56/19/003.

[200] Sampson JH, Raghavan R, Brady ML, Provenzale JM, Herndon JE, Croteau D, et al. Clinical utiltiy of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-Oncology. 2007;p. 343–353. doi:10.1215/15228517.

[201] Tangen KM, Hsu Y, Zhu DC, Linninger AA. CNS wide simulation of flow re-sistance and drug transport due to spinal microanatomy. Journal of Biomechanics. 2015;48:2144–2154. doi:10.1016/j.jbiomech.2015.02.018.

[202] Lawrence JJ, Coenen W, Sánchez AL, Pawlak G, Martí­nez-Bazán C, Haughton V, et al. On the dispersion of a drug delivered intrathecally in the spinal canal. Journal of Fluid Mechanics. 2019;861:679–720. doi:10.1017/jfm.2018.937.

[203] Tangen KM, Leval R, Mehta AI, Linninger AA. Computational and In Vitro Exper-imental Investigation of Intrathecal Drug Distribution: Parametric Study of the Effect of Injection Volume, Cerebrospinal Fluid Pulsatility, and Drug Uptake. Anesthesia and Analgesia. 2017;124(5):1686–1696. doi:10.1213/ANE.0000000000002011.

[204] Sánchez AL, Martí­nez-Bazán C, Gutiérrez-Montes C, Criado-Hidalgo E, Pawlak G, Bradley W, et al. On the bulk motion of the cerebrospinal fluid in the spinal canal. Journal of Fluid Mechanics. 2018;841:203–227. doi:10.1017/jfm.2018.67.

(15)

[206] Sweetman B, Xenos M, Zitella L, Linninger AA. Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Computers in Biology and Medicine. 2011;41(2):67–75.

[207] Sass LR, Khani M, Natividad GC, Tubbs RS, Baledent O, Martin BA. A 3D subject-specific model of the spinal subarachnoid space with anatomically realis-tic ventral and dorsal spinal cord nerve rootlets. Fluids and Barriers of the CNS. 2017;14(1):36.

[208] Bloch R, Talalla A. A mathematical model of cerebrospinal fluid dynamics. Journal of the Neurological Sciences. 1976;27(4):485–498.

[209] Kuttler A, Dimke T, Kern S, Helmlinger G, Stanski D, Finelli LA. Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimu-lation of drug distribution within the CSF space for intrathecal drugs. Journal of Pharmacokinetics and Pharmacodynamics. 2010;37(6):629–644.

[210] Nicholson C, Chen KC, Hrabětová S, Tao L. Diffusion of molecules in brain extra-cellular space: theory and experiment. Progress in Brain Research. 2000;125:129–154. doi:10.1016/s0079-6123(00)25007-3.

[211] Zhan W, Xu XY. A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. Journal of Drug Delivery. 2013;2013. doi:10.1016/j. mri.2008.01.025.

[212] Yamamoto Y, Välitalo PA, Wong YC, Huntjes DR, Proost JH, Vermeulen A, et al. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. European Journal of Pharmaceutical Sciences. 2018;112:168–179.

[213] Horn AS. Characteristics of dopamine uptake. The Neurobiology of Dopamine. 1979;p. 217–235.

[214] Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate deter-mines drug deposition and receptor-mediated effects. Journal of Controlled Release. 2012;161(3):918–926. doi:10.1016/j.jconrel.2012.05.039.

[215] McGinty S, Pontrelli G. A general model of coupled drug release and tissue ab-sorption for drug delivery devices. Journal of Controlled Release. 2015;217:327–336. doi:10.1016/j.jconrel.2015.09.025.

[216] McGinty S, Pontrelli G. On the role of specific drug binding in modelling arterial eluting stents. Journal of Mathematical Chemistry. 2016;54(4):967–976. doi:10.1007/ s10910-016-0618-7.

[217] Rowland M, Peck C, Tucker G. Physiologically-Based Pharmacokinetics in Drug Development and Regulatory Science. Annual Review of Pharmacology and Toxicol-ogy. 2011;51:45–73. doi:10.1146/annurev-pharmtox-010510-100540.

[218] Jung A, Faltermeier R, Rothoerl R, Brawanski A. A mathematical model of cerebral circulation and oxygen supply. Journal of Mathematical Biology. 2005;51:491–507. doi:10.1007/s00285-005-0343-5.

[219] Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn R. A mathematical model of blood, cerebrospinal fluid and brain dynamics. Journal of Mathematical Biology. 2009;218:729–759. doi:10.1007/s00285-009-0250-2.

[220] Collins JM, Dedrick RL. Distributed model for drug delivery to CSF and brain tissue. American Journal of Physiology-Regulatory, Integrative and Comparative Phys-iology. 1983;245(3):R303–R310. doi:10.1152/ajpregu.1983.245.3.r303.

(16)

[222] Meier-Ruge W, Hunziker O, Schulz U, Tobler HJ, Schweizer A. Stereological changes in the capillary network and nerve cells of the aging human brain. Mech-anisms of Ageing and Development. 1980;14(1-2):233–243.

[223] Farkas E, Luiten PGM. Cerebral microvascular pathology in aging and Alzheimer’s disease. Progress in Neurobiology. 2001;64(6):575–611.

[224] Metzger H, Heuber-Metzger S, Steinacker A, Strüber J. Staining PO2 measure-ment sites in the rat brain cortex and quantitative morphometry of the surrounding capillaries. Pflugers Arch. 1980;388(1):21–7.

[225] Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Foundation Differences in Function and Structure of the Capillary Endothelium in Gray Matter , White Matter and a Circumventricular Organ of Rat Brain. Journal of Vascular Research. 1986;23(6). doi:10.1159/000158652.

[226] Duvernoy HM, Delon S, Vannson JL. The Vascularization of The Human Cere-bellar Cortex. Brain Research Bulletin. 1983;11:419–480. doi:10.1016/0361-9230(83) 90116-8.

[227] Holliger C, Lemley KV, Schmitt SL, Thomas FC, Robertson CR, Jamison RL. Direct Determination of Vasa Recta Blood Flow in the Rat Renal Papilla. Circulation Research. 1981;53(3):401–413.

[228] Cserr HF, Cooper DN, Suri PK, Patlak CS. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. American Journal of Physiology-Renal Physiology. 1981;240(4):F319–F328.

[229] Ivanov KP, Kalinina MK, Levkovich YI. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvascular Research. 1981;22(2):143–155. doi:10.1016/0026-2862(81)90084-4.

[230] Villringer A, Them A, Lindauer U, Einhäupl K, Dirnagl U. Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circulation Research. 1994;75(1):55–62. doi:10.1161/01.res.75.1.55.

[231] Hudetz AG, Biswal BB, Fehér G, Kampine JP. Effects of hypoxia and hyper-capnia on capillary flow velocity in the rat cerebral cortex. Microvascular Research. 1997;54(1):35–42. doi:10.1006/mvre.1997.2023.

[232] Seylaz J, Charbonné R, Nanri K, Von Euw D, Borredon J, Kacem K, et al. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy. Journal of Cerebral Blood Flow & Metabolism. 1999;19(8):863–870. doi:10.1097/00004647-199908000-00005. [233] Hutchinson EB, Stefanovic B, Koretsky AP, Silva AC. Spatial flow-volume

disso-ciation of the cerebral microcirculatory response to mild hypercapnia. Neuroimage. 2006;32(2):520–530. doi:10.1016/j.neuroimage.2006.03.033.

[234] Itoh Y, Suzuki N. Control of brain capillary blood flow. Journal of Cerebral Blood Flow & Metabolism. 2012;32(7):1167–1176. doi:10.1038/jcbfm.2012.5.

[235] Cornford EM, Hyman S. Localization of brain endothelial luminal and ablumi-nal transporters with immunogold electron microscopy. NeuroRx: the jourablumi-nal of the American Society for Experimental NeuroTherapeutics. 2005;2(1):27–43.

[236] Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. Influence of pas-sive permeability on apparent P-glycoprotein kinetics. Pharmaceutical Research. 2000;17(12):1456–1460.

(17)

[238] Kumar G, Smith QR, Hokari M, Parepally J, Duncan MW. Brain uptake, pharma-cokinetics, and tissue distribution in the rat of neurotoxic N-butylbenzenesulfonamide. Toxicological Sciences. 2007;97(2):253–264.

[239] Skipor J, Thiery JC. The choroid plexus–cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiologiae Experimen-talis (Wars). 2008;68(3):414–428.

[240] Westerhout J, Danhof M, de Lange ECM. Preclinical Prediction of Human Brain Target Site Concentrations: Considerations in Extrapolating to the Clinical Setting. Journal of Pharmaceutical Sciences. 2011;100(9):3577–3593. doi:10.1002/jps.22604. [241] Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: bi-ology and physiopathbi-ology. Journal of Neuropathbi-ology & Experimental Neurbi-ology. 2000;59(7):561–574.

[242] Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, et al. Phar-macokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Research. 1998;58(4):672–684.

[243] Saltzman WM. Interstitial transport in the brain: principles for local drug delivery. In: Transport Phenomena in Biomedical Engineering. CRC Press; 2012. p. 158–171. [244] Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience.

2004;129(4):851–860.

[245] de Witte WEA, Rottschäfer V, Danhof M, van der Graaf PH, Peletier LA, de Lange ECM. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models. Journal of Pharmacokinetics and Pharmacodynamics. 2018;45(4):621–635.

[246] Dahl G, Akerud T. Pharmacokinetics and the drug–target residence time con-cept. Drug Discovery Today. 2013;18(15-16):697–707. doi=10.1016/j.drudis.2013. 02.010.

[247] Selvaggio G, Pearlstein RA. Biodynamics: A novel quasi-first principles theory on the fundamental mechanisms of cellular function/dysfunction and the pharmacological modulation thereof. PLOS ONE. 2018;13(11):e0202376.

[248] Fang J. Metabolism of clozapine by rat brain: the role of flavin-containing monooxy-genase (FMO) and cytochrome P450 enzymes. European Journal of Drug Metabolism and Pharmacokinetics. 2000;25(2):109–114.

[249] Han H, Li K, Yan J, Zhu K, Fu Y. An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain. Science China Life Sciences. 2012;55(9):782–787. doi:10.1007/s11427-012-4361-4.

[250] Marchi N, Betto G, Fazio V, Fan Q, Ghosh C, Machado A, et al. Blood–brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema. Epilepsia. 2009;50(4):664–677. doi:10.1111/j.1528-1167.2008. 01989.x.

[251] Yamamoto Y, Välitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, et al. A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharmaceutical Research. 2016;p. 1–19. doi:10.1007/s11095-016-2065-3.

[252] Bassingthwaighte JB, Wang CY, Chan IS. Blood-tissue exchange via trans-port and transformation by capillary endothelial cells. Circulation Research. 1989;65(4):997–1020. doi:10.1161/01.res.65.4.997.

(18)

pharma-cokinetics. Clinical Pharmacology & Therapeutics. 1979;26(3):294–305. doi:10.1002/ cpt1979263294.

[254] Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, et al. Central nervous system drug disposition: the relationship between in situ brain per-meability and brain free fraction. The Journal of Pharmacology and Experimental Therapeutics. 2007;322(1):205–213. doi:10.1124/jpet.107.121525.

[255] Schiesser WE, Griffiths GW. A compendium of partial differential equation models: method of lines analysis with Matlab. Cambridge University Press; 2009.

[256] Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201. doi:10.1016/j.neuron.2008.01.003. [257] Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to

brain disposition of small compounds and macromolecules. Molecular Pharmaceutics. 2013;10(5):1473–1491. doi:10.1021/mp300518e.

[258] De Boer AG, van Der Sandt ICJ, Gaillard PJ. The role of drug trans-porters at the blood-brain barrier. Annual Review of Pharmacology and Toxicology. 2003;43(1):629–656.

[259] Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspectives in Medicinal Chemistry. 2014;6:11. doi:10.4137/pmc.s13384.

[260] Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junc-tions: how to “open” the blood brain barrier. Current Neuropharmacology. 2008;6(3):179–192. doi:10.2174/157015908785777210.

[261] Vendel E, Rottschäfer V, de Lange ECM. The need for mathematical modelling of spatial drug distribution within the brain. Fluids and Barriers of the CNS. 2019;16(12). doi:10.1186/s12987-019-0133-x.

[262] Summerfield SG, Stevens AJ, Cutler L, del Carmen Osuna M, Hammond B, Tang SP, et al. Improving the in Vitro Prediction of in Vivo Central Nervous System Penetration: Integrating Permeability, P-glycoprotein Efflux, and Free Fractions in Blood and Brain. The Journal of Pharmacology and Experimental Therapeutics. 2006;316(3):1282–1290. doi:10.1124/jpet.105.092916.features.

[263] Summerfield SG, Lucas AJ, Porter RA, Jeffrey P, Gunn RN, Read KR, et al. Toward an improved prediction of human in vivo brain penetration. Xenobiotica. 2008;38(12):1518–1535.

[264] Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx: the journal of the American Society for Exper-imental NeuroTherapeutics. 2005;2(1):54–62.

[265] van Bree JB, de Boer AG, Danhof M, Ginsel LA, Breimer DD. Characteriza-tion of an “in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. Journal of Pharmacology and Experimental Therapeutics. 1988;247(3):1233–1239.

[266] Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood–brain barrier penetration of molecular imaging agents. Molecular Imaging & Biology. 2003;5(6):376–389.

[267] Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug dis-position and treatment of brain diseases. Progress in Neurobiology. 2005;76(1):22–76. doi:10.1016/j.pneurobio.2005.04.006.

(19)

of pravastatin in humans. Journal of Pharmacology and Experimental Therapeutics. 2009;328(2):652–662.

[269] Wang Y, Welty DR. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic ap-proach. Pharmaceutical Research. 1996;13(3):398–403.

[270] Liu X, Vilenski O, Kwan J, Apparsundaram S, Weiker R. Unbound brain concen-tration determines receptor occupancy: a correlation of drug concenconcen-tration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metabolism and Disposition. 2009;.

[271] Vauquelin G. On the ‘micro’-pharmacodynamic and pharmacokinetic mechanisms that contribute to long-lasting drug action. Expert Opinion on Drug Discovery. 2015;10(10):1085–1098.

[272] de Lange ECM, Ravenstijn PGM, Groenendaal D, van Steeg TJ. Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions us-ing microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modelus-ing. The AAPS journal. 2005;7(3):E532–E543.

[273] Gustafsson S, Sehlin D, Lampa E, Hammarlund-Udenaes M, Loryan I. Heteroge-neous drug tissue binding in brain regions of rats, Alzheimer’s patients and controls: impact on translational drug development. Scientific reports. 2019;9(1):5308.

[274] Vendel E, Rottschäfer V, de Lange ECM. Improving the Prediction of Local Brain Distribution Profiles with a New Mathematical Model. Bulletin for Mathematical Biology, Special Issue on “Mathematics to Support Drug Discovery and Development”. 2018;p. 1–31. doi:10.1007/s11538-018-0469-4.

[275] Roanes-Lozano E, González-Bermejo A, Roanes-Macías E, Cabezas J. An applica-tion of computer algebra to pharmacokinetics: the Bateman equaapplica-tion. SIAM review. 2006;48(1):133–146.

[276] Tasso L, Bettoni CC, Costa TD. Pharmacokinetic plasma profile and bioavail-ability evaluation of gatifloxacin in rats. Latin American Journal of Pharmacy. 2008;27(2):270–273.

[277] Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. American Journal of Physiology-Heart and Circulatory Physiology. 1984;247(3):H484–H493. doi:10.1152/ajpheart.1984.247.3. h484.

[278] Liu X, Tu M, Kelly RS, Chen C, Smith BJ. Development of a computational ap-proach to predict blood-brain barrier permeability. Drug Metabolism and Disposition. 2004;32(1):132–139.

[279] Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid per-meability across an in situ model of the blood–brain barrier. Free Radical Biology and Medicine. 2004;36(5):592–604. doi:10.1016/j.freeradbiomed.2004.03.003.

[280] Bruns RF, Daly JW, Snyder SH. Adenosine receptors in brain membranes: binding of N6-cyclohexyl [3H] adenosine and 1, 3-diethyl-8-[3H] phenylxanthine. Proceedings of the National Academy of Sciences. 1980;77(9):5547–5551.

[281] Perry DC, Mullis KB, Øie S, Sadée W. Opiate antagonist receptor binding in vivo: evidence for a new receptor binding model. Brain Research. 1980;199(1):49–61. doi:10.1016/0006-8993(80)90229-2.

(20)

doi:10.1038/jcbfm.1989.98.

[283] Levy G. Pharmacologic target-mediated drug disposition. Clinical Pharmacology & Therapeutics. 1994;56(3):248–252. doi:10.1038/clpt.1994.134.

[284] Costes N, Merlet I, Zimmer L, Lavenne F, Cinotti L, Delforge J, et al. Model-ing [18F] MPPF positron emission tomography kinetics for the determination of 5-hydroxytryptamine (1A) receptor concentration with multiinjection. Journal of Cere-bral Blood Flow & Metabolism. 2002;22(6):753–765.

[285] Millet P, Graf C, Moulin M, Ibáñez V. SPECT quantification of benzodiazepine receptor concentration using a dual-ligand approach. Journal of Nuclear Medicine. 2006;47(5):783–792. doi:10.1038/sj.jcbfm.9591524.0661.

[286] Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opinion on Drug Delivery. 2016;13(7):963–975. doi:10.1517/17425247.2016.1171315. [287] Van Bree J, De Boer A, Danhof M, Ginsel L, Breimer D. Characterization of an

“in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovas-cular endothelial transport rates of drugs. Journal of Pharmacology and Experimental Therapeutics. 1988;247(3):1233–1239.

[288] Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: Potential implications for its pathophysiology. Annals of Neurology. 2015;78:160–177. [289] Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, et al. Neurovascular abnormalities in humans and mice with Huntington’s disease. Experimental Neurology. 2013;250:20–30.

[290] Hinds JW, McNelly NA. Capillaries in aging rat olfactory bulb: A quantitative light and electron microscopic analysis. Neurobiology of Aging. 1982;3:197–207. [291] Villena A, Vidal L, Dí­az F, Pérez De Vargas I. Stereological changes in the capillary

network of the aging dorsal lateral geniculate nucleus. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists. 2003;274A:857–861.

[292] Wilkinson JH, Hopewell JW, Reinhold HS. A quantitative study of age-related changes in the vascular architecture of the rat cerebral cortex. Neuropathology and Applied Neurobiology. 1981;7:451–462.

[293] Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology. 2018;14(3):133.

[294] Mahfouz A, Lelieveldt BPF, Grefhorst A, Van Weert LTCM, Mol IM, Sips HCM, et al. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions. Proceedings of the National Academy of Sciences. 2016;113(10):2738–2743.

[295] ©2006. Allen Institute for Brain Science. Mouse Brain Atlas. Available from: http://mouse.brain-map.org/.

Lein ES et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-176.

[296] Vendel E, Rottschäfer V, de Lange ECM. A 3D brain tissue unit model to fur-ther improve prediction of local drug distribution within brain parenchyma. PLOS Computational Biology. 2019; Submitted.

(21)

[298] Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposi-tion in an Alzheimer disease mouse model. The Journal of Clinical Investigadeposi-tion. 2005;115(11):3285–3290.

[299] Abuznait AH, Kaddoumi A. Role of ABC Transporters in the Pathogenesis of Alzheimer’s Disease. ACS Chemical Neuroscience. 2012;3:820–831.

[300] van Assema DME, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Wind-horst AD, et al. Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain. 2012;135(1):181–189.

[301] Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, et al. Activity of P-Glycoprotein, a β-Amyloid Transporter at the Blood–Brain Barrier, Is Com-promised in Patients with Mild Alzheimer Disease. Journal of Nuclear Medicine. 2014;55(7):1106–1111.

[302] Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience. 2017;18:419–434.

[303] Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? Journal of Experimental Medicine. 2017;214(11):3151–3169. [304] Milane A, Fernandez C, Dupuis L, Buyse M, Loeffler JP, Farinotti R, et al.

P-glycoprotein expression and function are increased in an animal model of amyotrophic lateral sclerosis. Neuroscience Letters. 2010;472(3):166–170.

[305] Chan GNY, Evans RA, Banks DB, Mesev EV, Miller DS, Cannon RE. Selective induction of P-glycoprotein at the CNS barriers during symptomatic stage of an ALS animal model. Neuroscience Letters. 2017;639:103–113.

[306] Jablonski MR, Markandaiah SS, Jacob D, Meng NJ, Li K, Gennaro V, et al. In-hibiting drug efflux transporters improves efficacy of ALS therapeutics. Annals of Clinical and Translational Neurology. 2014;1(12):996–1004.

[307] Pekcek A, Unkrüer B, Stein V, Bankstahl JP, Soerensen J, Tipold A, et al. Over-expression of P-glycoprotein in the canine brain following spontaneous status epilep-ticus. Epilepsy Research. 2009;83(2-3):144–151.

[308] Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. The Journal of Pathology. 2003;201:319–327. [309] Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, et al. Imag-ing matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Science Translational Medicine. 2016;8(364):364ra152.

[310] Kortekaas R, Leenders KL, van Oostrom JCH, Vaalburg W, Bart J, Willemsen ATM, et al. Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo. Annals of Neurology. 2005;57:176–179.

[311] Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. Journal of Cerebral Blood Flow & Metabolism. 2015;35(5):747–750.

[312] Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, et al. Deep-brain stimulation associates with improved microvascular integrity in the sub-thalamic nucleus in Parkinson’s disease. Neurobiology of Disease. 2015;74:392–405. [313] Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in

(22)

[314] Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology. 2018;163-164:144–171.

[315] Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Ex-pression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. Journal of Histochemistry & Cytochemistry. 1990;38(9):1277–1287. [316] Adkins CE, Mittapalli RK, Manda VK, Nounou MI, Mohammed AS, Terrel TB, et al. P-glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases of breast cancer model. Frontiers in Pharmacology. 2013;4:136. [317] Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MCO, Haller E,

Frisina-Deyo A, Mirtyl S, et al. Impaired blood–brain/spinal cord barrier in ALS patients. Brain Research. 2012;1469:114–128.

[318] Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathologica. 2013;125(1):111–120.

[319] Koyama Y, Kondo M, Shimada S. Building a 5-HT3A receptor expression map in the mouse brain. Scientific Reports. 2017;7:42884.

[320] Groenendaal D, Freijer J, de Mik D, Danhof M, de Lange ECM. Population phar-macokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux. British Journal of Pharmacology. 2007;151:701–712. doi:10.1038/sj.bjp.0707257.

[321] Kalvas JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentra-tion ratios to in vivo P-glycoprotein efflux ratios. Drug Metabolism and Disposiconcentra-tion. 2007;35(4):660–666.

[322] Zhao R, Pollack GM. Regional differences in capillary density, perfusion rate, and P-glycoprotein activity: a quantitative analysis of regional drug exposure in the brain. Biochemical Pharmacology. 2009;78(8):1052–1059.

[323] Smith DA. Metabolism, pharmacokinetics and toxicity of functional groups: impact of chemical building blocks on ADMET. Royal Society of Chemistry; 2010.

[324] Vauquelin G. Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding. British Journal of Pharmacology. 2016;173(15):2319–2334.

[325] Potschka H, Baltes S, Fedrowitz M, Löscher W. Impact of seizure activity on free extracellular phenytoin concentrations in amygdala-kindled rats. Neuropharmacology. 2011;61(5-6):909–917.

[326] Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? The Journal of Clinical Investigation. 1985;76(3):907–912.

[327] Neves V, Aires-da Silva F, Corte-Real S, Castanho MARB. Antibody approaches to treat brain diseases. Trends in Biotechnology. 2016;34(1):36–48.

[328] Rip J, Schenk GJ, De Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opinion on Drug Delivery. 2009;6(3):227–237.

[329] Chang HY, Wu S, Meno-Tetang G, Shah DK. A translational platform PBPK model for antibody disposition in the brain. Journal of Pharmacokinetics and Phar-macodynamics. 2019;p. 1–20.

(23)

[331] Wang Q, Delva L, Weinreb PH, Pepinsky RB, Graham D, Veizaj E, et al. Mono-clonal antibody exposure in rat and cynomolgus monkey cerebrospinal fluid following systemic administration. Fluids and Barriers of the CNS. 2018;15(1):10.

[332] Ray L, Iliff JJ, Heys JJ. Analysis of convective and diffusive transport in the brain interstitium. Fluids and Barriers of the CNS. 2019;16(1):6.

[333] Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A du-ral lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine. 2015;212(7):991–999.

[334] Danhof M, de Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in transla-tional drug research. Trends in Pharmacological Sciences. 2008;29(4):186–191. [335] Fridén M, Bergström F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes

M, Bredberg, U. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metabolism & Disposition. 2011;39(3):353–362.

[336] Loryan I, Sinha V, Mackie C, Van Peer A, Drinkenburg W, Vermeulen A, Morrison D, Monshouwer M, Heald D, Hammarlund-Udenaes M. Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery. Pharmaceutical Research. 2014;31(8):2203-2219.

[337] Henderson LJ. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. American Journal of Physiology-Legacy Content. 1908;21(2):173–179.

[338] Henderson LJ. The theory of neutrality regulation in the animal organism. Amer-ican Journal of Physiology-Legacy Content. 1908;21(4):427–448.

[339] Huang Q, Riviere JE. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opinion on Drug Metabolism & Toxicology. 2014;10(9):1241–1253.

[340] Chassidim Y, Veksler R, Lublinsky S, Pell GS, Friedman A, Shelef I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids and Barriers of the CNS. 2013;10(1):9.

[341] Tønnesen J, Inavalli VVGK, Nägerl UV. Super-resolution imaging of the extracel-lular space in living brain tissue. Cell. 2018;172(5):1108–1121.

[342] Zhang Y, Fox GB. PET imaging for receptor occupancy: meditations on calculation and simplification. Journal of Biomedical Research. 2012;26(2):69–76.

(24)
(25)

Het succes van medicijnen die ontwikkeld zijn om ziekten van de hersenen te ge-nezen is nog altijd beperkt. Een belangrijke reden hiervoor is het beperkte inzicht in de complexiteit van de hersenen en in hoe een medicijn zich binnen de herse-nen distribueert. Dit is erg belangrijk om de werking en de bijwerkingen van een medicijn te kunnen begrijpen. Wiskundige modellen kunnen inzicht in de distri-butie, en de daaraan gerelateerde werking, van een medicijn binnen de hersenen vooruithelpen. Een wiskundig model is in wezen een abstracte beschrijving van een bepaald fenomeen uit de werkelijkheid. Alle wiskundige modellen zijn een versim-peling van de werkelijkheid; juist door deze versimversim-peling wordt het bestudeerde fenomeen overzichtelijker en kunnen er makkelijker inzichten over bijvoorbeeld het ontstaan van een fenomeen worden verkregen. In dit proefschrift wordt stap voor stap een wiskundig model, het 3d brain model, gebouwd om de distributie van een medicijn naar en binnen de hersenen over tijd en ruimte te bestuderen.

Achtergrond

(26)

ob-stakels wordt diffusie binnen de hersen-ECF gehinderd en is de effectieve diffusie van een medicijn binnen de hersen-ECF lager dan de vrije diffusie van ditzelfde medicijn in water. De impact van de bulkstroming van de hersen-ECF op medi-cijntransport binnen de extracellulaire hersenvloeistof staat onder discussie, maar er is bewijs dat bulkstroming belangrijk is voor de verspreiding van een medicijn binnen de hersenen. De binding van een medicijn aan cellulaire componenten kan specifiek maar ook niet specifiek zijn, en kan zowel intra- als extracellulair plaats-vinden. Specifieke bindingsplaatsen zijn de plaatsen waar een medicijn aan bindt (op basis van de eigenschappen van het medicijn) en door die binding een gewenste werking teweegbrengt. Niet-specifieke bindingsplaatsen zijn de plaatsen waar een medicijn niet voor ontworpen is om aan te binden en daar, door binding, helemaal geen, of een ongewenste werking teweegbrengt. De specifieke binding is in de regel sterker dan de niet-specifieke binding.

Het BHB-transport en de verspreiding van het medicijn in de hersenen verschilt per medicijn en individu en wordt bovendien beïnvloed door factoren zoals voeding, leeftijd en ziekte. Bovendien kunnen de processen verschillend zijn tussen plaatsen binnen de hersenen, door bijvoorbeeld variaties in eigenschappen binnen de her-senen of door lokale ziekteprocessen. Omdat een medicijn alleen werkt wanneer het specifiek gebonden is aan haar doelwit, de ‘target’, bepaalt het lokale medi-cijntransport over zowel de BHB als binnen de hersenen uiteindelijk het effect van het medicijn. Er is dus begrip nodig van de factoren die de lokale concentratie-tijdsprofielen van medicijnen in de hersenen bepalen en daarmee uiteindelijk de effecten van een medicijn beïnvloeden. Wiskundige modellen kunnen helpen bij dit begrip.

In het tweede deel van hoofdstuk 2 wordt een overzicht gegeven van modellen die veranderingen in de concentratie-tijdsprofielen van medicijnen in de hersenen beschrijven. De reeds bestaande modellen richten zich meestal slechts op één pro-ces. Zo zijn er modellen die medicijntransport over de BHB beschrijven en is er veel onderzoek verricht om medicijntransport door de hersen-ECF (via diffusie en bulkstroming) te beschrijven. In ‘farmacokinetische modellen’ wordt vaak het transport van een medicijn tussen verschillende delen binnen en rondom de herse-nen beschreven, zoals het bloed, de extracellulaire hersenvloeistof, de cerebrospina-le hersenvloeistof en de celcerebrospina-len, met behulp van gewone differentiaalvergelijkingen. Echter wordt hierbij de distributie van medicijnen binnen deze delen niet in acht genomen. Er zijn daarom modellen nodig die niet alleen het transport tussen de onderdelen van de hersenen bestuderen, maar ook het ruimtelijk transport

bin-nen deze delen beschrijven. Deze modellen zijn schaars. Er is dus behoefte aan

Referenties

GERELATEERDE DOCUMENTEN

Figure 2.13: Schematic representation of a model on drug transport in brain tumour and surrounding normal tissue after treatment with convection- enhanced delivery [141]. Both

3.2.1 Formulating the model based on the physiology of the brain We aim for a model that covers all essential aspects of drug distribution within the brain: drug exchange between

The focus of the model is on drug distribution within the brain ECF and, to that end, the model includes descriptions of changes in drug concentrations within the blood plasma,

De veranderingen in lokale concentraties van een medicijn in het hersenweefsel als gevolg van een hersenziekte kunnen modelmatig beschreven worden met behulp van medicijnspecifieke

14. van Eijk R, Stevens L, Morreau H, van Wezel T. Assessment of a fully automated high-throughput DNA extraction method from formalin-fixed, paraffin-embedded tissue for KRAS,

Part III Genetic counseling in endocrine tumor predisposition syndromes 81 Chapter 5 CDC73-Related Disorders: Clinical Manifestations and Case Detection. in

These questions, i.e. Why?, Who?, and How?, are the backbone of this thesis, which describes investigations of the genetic background of a wide variety of rare endocrine

Panel 1, macroscopy hemi thyroidectomy right; Panel II and III, hematoxylin and eosin stain (HE) (×25 /×200) showing hyperplastic thyroid nodule with a somatic DICER1 RNase IIIb