• No results found

University of Groningen The cardiac fetal gene program in heart failure van der Pol, Atze

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen The cardiac fetal gene program in heart failure van der Pol, Atze"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

The cardiac fetal gene program in heart failure

van der Pol, Atze

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

van der Pol, A. (2018). The cardiac fetal gene program in heart failure: From OPLAH to 5-oxoproline and beyond. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Stellingen behorende bij het proefschrift

The cardiac fetal gene program in heart failure:

From OPLAH to 5-oxoproline and beyond

Atze van der Pol

1. “Characterizing the pathophysiological pathways implicated in cardiac fetal reprogramming could lead to novel therapeutic targets for heart failure.”

This thesis

2. “Oplah is a novel member of the cardiac fetal gene program.” This thesis 3. “Oplah overexpression has a cardio-protective effect in mice exposed to

ischemic heart failure, by reducing 5-oxoproline induced oxidative stress, resulting in improved cardiac function.” This thesis

4. “Complete disruption of Oplah leads to changes resembling clinical HFpEF.” This thesis

5. “Circulating 5-oxoproline, the substrate of OPLAH, has diagnostic and prognostic potential in patients with heart failure.” This thesis

6. “Bolstering the levels of endogenous GSH or increasing the activity of the γ-Glutamyl cycle may be a novel approach to dealing with oxidative stress and improving outcome of heart failure patients.” This thesis

7. “Saber más es ser más libre.” (“To know more is to be free”) César Vallejo 8. “Chance is the only source of true novelty.” Francis Crick

Referenties

GERELATEERDE DOCUMENTEN

In this study we investigated the effects of the novel myeloperoxidase (MPO) inhibitor AZM198 on obesity, liver damage and cardiac function in an obese and

The impasse in HF biomarkers research: More complex than cardiac specificity alone In this thesis, we focused on organ and tissue specificity of biomarkers, and concluded that a lack

Het centrale onderwerp van dit proefschrift is de orgaan- en weefselspecificiteit van biomarkers. De belangrijkste conclusie is dat een gebrek aan cardiale

Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged.. Financial support for the publication of this thesis is

These findings coupled to our knowledge of HF has led to the discovery that cardiac injury in the adult heart leads to a switch in gene expression which to some extend resembles

In the present review we summarize the current knowledge of the cardiac fetal gene program, by looking at the expression profiles during cardiac development and disease, with a

By exposing mice with cardiac-specific OPLAH overexpression to cardiac injury, we demonstrate that these mice have less oxidative stress, lower 5-oxoproline, and reduced

Here we report the development and validation of an LC-MS method for the simultaneous quantitative determination of 5-oxoproline, L-glutamate, GSH (derivatized with NEM) and GSSG