• No results found

University of Groningen Transfer of Triplet Excitons in Singlet Fission-Silicon Solar Cells Daiber, Benjamin

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Transfer of Triplet Excitons in Singlet Fission-Silicon Solar Cells Daiber, Benjamin"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Transfer of Triplet Excitons in Singlet Fission-Silicon Solar Cells

Daiber, Benjamin

DOI:

10.33612/diss.163964740

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Daiber, B. (2021). Transfer of Triplet Excitons in Singlet Fission-Silicon Solar Cells: Experiment and Theory Towards Breaking the Detailed-Balance Efficiency Limit. University of Groningen.

https://doi.org/10.33612/diss.163964740

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

A B ST R A C T

This thesis explores the theory and experimental design of singlet fission-silicon solar cells. Singlet fission is a process that can convert one high-energy photon into two excitons of roughly half the high-energy. When com-bined with a lower-bandgap material like silicon, singlet fission materials can increase the efficiency of solar cells by using the energy of blue and green part of the incoming light more efficiently. To enable this dream we have to then disassociate or transfer these triplet excitons so we can extract the additional energy in the singlet fission process and make it us-able as a real-life electricity source. In this thesis we demonstrate several theoretical and experimental insights that can help with the development of useful singlet fission-solar cells.

chapter 1 introduces the singlet fission process and its application in solar cells. We discuss the difference between inorganic and organic semiconductors and how that difference presents special challenges when combining the two.

chapter 2 describes how a thin layer of quantum dots can help with transfer from a singlet fission material into silicon. We calculate the trans-fer efficiency for the Förster Resonant Energy Transtrans-fer (FRET) mechanism and find that, since silicon is an indirect bandgap semiconductor, the transfer can only be efficient if the quantum dot layer is very close to the silicon surface. We modify the standard FRET model to describe the transfer from a dipole donor (the quantum dot) into a bulk acceptor (the silicon) and find that the distance dependence weaker, predicting a higher transfer efficiency than expected from the standard model. chapter 3 contains solar cell efficiency calculations for three different transfer mechanisms. One mechanism is FRET transfer for which we use

(3)

160 bibliography

the FRET model from Chapter II to calculate a realistic but optimistic solar cell efficiency that is much higher than of just the silicon solar cell alone. Transfer can also happen by directly transferring the triplet exciton via Dexter transfer, for which we find an even higher efficiency, if the energy levels of the singlet fission material and silicon match well. The last transfer mechanism we discuss is via charge transfer, dissociating the triplet exciton at the silicon interface. This transfer mechanism has the highest efficiency gains of the three and puts the least constraints in the singlet exciton energies, but also adds experimental complexity.

chapter 4 discusses a new method of detecting evidence for triplet exciton transfer by quenching of the delayed photoluminescence of tetracene, a singlet fission material, on a silicon surface. Detecting quench-ing is necessary to determine if transfer occurs and we combined height maps and photoluminescence lifetime data of hundreds of small tetracene islands to correlate height and lifetime. We model photoluminescence in the islands with a diffusion model and find that we expect shorter lifetimes for thinner islands. We then apply this method to different silicon surface treatments and find that there is no quenching in these specific surface treatments.

chapter 5 demonstrates a singlet fission silicon solar cell with energy transfer of triplet excitons from tetracene into silicon. We detect the characteristic behavior of the solar cell current under a magnetic field and find evidence for triplet energy transfer if the protective layers of the silicon solar cell have been removed and the cell with tetracene has been exposed to air. We then use photoluminescence decay data and fit a differential equation describing the different species in tetracene that allows us to quantify the transfer efficiency. This solar cell is only the second demonstration of a singlet fission-silicon solar cell and works with a surprisingly simple geometry once the crystal packing of the singlet fission material is favorable for energy transfer.

S A M E N VAT T I N G

van de proefschrift:

Overdracht van Triplet Excitons in Singlet Splitsing-Siliciumzonnecellen

Experimenten en Theorie Omtrent het Doorbreken van de Efficiëntielimiet van de Gedetailleerde Balans

Deze thesis onderzoekt de theorie en het ontwerp van singlet splitsing-silicium zonnecellen. Singlet splitsing is een proces waarbij één hooge-nergetisch foton kan worden omgezet in twee excitonen met een lagere energie, elk met ruwweg de helft van de oorspronkelijke fotonenergie. Wanneer ze gecombineerd worden met een materiaal met lage band-kloof, zoals silicium, kunnen singlet splitsing materialen de efficiëntie van zonnecellen verhogen door de energie uit het blauwe en groene deel van inkomende licht efficiënter te gebruiken. Om deze droom te kunnen verwezenlijken moeten de triplet excitonen gedissocieerd danwel overgedragen worden zodat de toegevoegde energie van het singlet split-singsproces kan worden geëxtraheerd en kan worden gebruikt als echte bron van elektriciteit. In deze thesis onderzoeken wij enkele theoretische en experimentele inzichten die kunnen helpen om de ontwikkeling van singlet splitsing zonnecellen realiteit te maken.

hoofdstuk 1 introduceert het singlet splitsingsproces en zijn toepas-sing voor zonnecellen. We bediscussiëren het verschil tussen anorganische en organische halfgeleiders en hoe dit verschil uitdagingen vormt wan-neer beiden gecombiwan-neerd worden.

Referenties

GERELATEERDE DOCUMENTEN

Transfer of Triplet Excitons in Singlet Fission-Silicon Solar Cells: Experiment and Theory Towards Breaking the Detailed-Balance Efficiency Limit.. University

Recently, direct transfer of a triplet exciton has been reported between a lead-halide perovskite and rubrene [ 86 ] which is relevant for singlet fission solar cells as it is

Dexter transfer has an exponential distance dependence, which leads to transfer distances of around 1 nm but it does not depend on the absolute molar absorption coefficient of

the last example, a single layer of singlet fission material on top of the silicon cell absorbs the high-energy part of the spectrum, generates up to two triplet excitons per

To quantify the error introduced by different reference samples we use a fresh, not aged sample as a reference and perform the same model as before, seen in Figure 5.11 e) and f).

During our demonstration of a singlet fission-silicon solar cell in Chap- ter 5 we saw that the polymorphism of tetracene can facilitate triplet transfer into silicon. In future work

“Enhancing Silicon Solar Cells With Singlet Fission: The Case for Förster Resonant Energy Transfer Using a Quantum Dot Intermediate.” In: Journal of Photonics for Energy 8.02

hoofdstuk 4 bediscussieert een nieuwe methode voor het detecte- ren van de energieoverdracht van triplet excitonen vanuit tetraceen, een singlet splitsing materiaal, op silicium via