• No results found

University of Groningen Large-scale 21-cm Cosmology with LOFAR and AARTFAAC Gehlot, Bharat Kumar

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Large-scale 21-cm Cosmology with LOFAR and AARTFAAC Gehlot, Bharat Kumar"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Large-scale 21-cm Cosmology with LOFAR and AARTFAAC

Gehlot, Bharat Kumar

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Gehlot, B. K. (2019). Large-scale 21-cm Cosmology with LOFAR and AARTFAAC. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Large-scale 21-cm Cosmology with

LOFAR and AARTFAAC

PhD thesis

to obtain the degree of PhD at the University of Groningen

on the authority of the

Rector Magnificus prof. dr. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Friday 08 February 2019 at 12:45 hours

by

Bharat Kumar Gehlot

born on 10 August 1991 in New Delhi, India

(3)

Supervisors

Prof. L.V.E. Koopmans Prof. R.A.M.J. Wijers

Assessment Committee

Prof. M.A.W. Verheijen Prof. P. Zarka

(4)
(5)

Cover - Designed by the author. Foreground: A radio continuum mosaic of the Northern Sky (in Hammer-Aitoff projection) produced with 6 hours of AARTFAAC data overlaid on a sky-map using the HiPS option in Stellarium software. LOFAR “Superterp” is shown in the landscape part. Background: An artist’s impression of a starry sky.

ISBN: 978-94-034-1431-7 (printed version) ISBN: 978-94-034-1430-0 (electronic version)

(6)

v

Contents

Table of Contents v

1 Introduction 1

1.1 An overview . . . 2

1.2 A Short Chronology of the Universe . . . 3

1.3 Current status of affairs . . . 5

1.3.1 Thompson scattering of CMB photons . . . 6

1.3.2 High redshift quasar and GRB absorption spectra . . . 7

1.3.3 High redshift galaxy surveys . . . 9

1.4 A new probe: the redshifted 21-cm line . . . 9

1.4.1 Current and planned 21-cm experiments . . . 11

1.4.2 The LOw-Frequency ARray (LOFAR) . . . 14

1.4.3 The AARTFAAC Cosmic Explorer . . . 17

1.5 Observational challenges in 21-cm experiments . . . 19

1.5.1 Foreground emission . . . 19

1.5.2 Ionospheric effects . . . 20

1.5.3 Calibration . . . 21

1.6 This thesis . . . 21

2 Wide-field LOFAR-LBA power-spectra analyses 25 2.1 Introduction . . . 27

2.2 Observations and Data processing . . . 29

2.2.1 LOFAR-LBA system . . . 30

2.2.2 Observations . . . 31

2.2.3 Flagging and averaging . . . 31

2.2.4 Calibration . . . 32

2.2.5 Imaging . . . 36

2.2.6 Source modeling . . . 37

2.3 Differential power Spectrum . . . 38

2.3.1 Excess Noise . . . 40

2.3.2 Effect of calibration cut . . . 41

(7)

2.4.1 ‘Pitchfork’ structure in polarised intensity . . . 45

2.5 Ionospheric Scintillation . . . 53

2.6 Conclusions and summary . . . 58

Appendix 2.A Rotation Measure synthesis . . . 61

3 Cosmic Dawn power spectrum limit with LOFAR 65 3.1 Introduction . . . 67

3.2 Observations and preprocessing . . . 69

3.2.1 LOFAR-Low Band Array . . . 69

3.2.2 Observations . . . 70

3.2.3 Data selection and preprocessing . . . 71

3.3 Calibration Scheme . . . 71

3.3.1 Calibrating the 3C220 field . . . 73

3.3.2 Calibrating the NCP field . . . 75

3.4 Noise statistics in LOFAR-LBA . . . 77

3.4.1 Physical Excess Noise . . . 77

3.4.2 Comparison with sub-band level noise . . . 81

3.5 Gaussian Process Regression . . . 82

3.5.1 Methodology . . . 82

3.5.2 Application of GPR to the LOFAR-LBA data . . . 83

3.6 Power Spectra Results . . . 86

3.6.1 The 3C220 field: cylindrical power spectra . . . 87

3.6.2 The NCP field: cylindrical power spectra . . . 89

3.6.3 Comparison with noise power spectra . . . 90

3.6.4 Spherically averaged power spectra . . . 92

3.7 Summary and Outlook . . . 94

3.7.1 Outlook . . . 96

4 AARTFAAC Cosmic Explorer 97 4.1 Introduction . . . 99

4.2 Observations and preprocessing . . . 102

4.2.1 The LOFAR AARTFAAC wide-field imager . . . 102

4.2.2 ACE observational setup and status . . . 104

4.2.3 Data preprocessing . . . 105

4.3 Calibration and Imaging . . . 105

4.3.1 Direction Independent calibration . . . 106

4.3.2 Direction Dependent calibration . . . 106

4.3.3 Imaging . . . 108

4.4 Thermal noise statistics . . . 108

4.5 Power Spectrum Analysis . . . 111

4.5.1 Cylindrically averaged power spectrum estimation . . . 112

(8)

4.5.3 Spherically averaged power spectrum estimation . . . . 119

4.6 Summary and future work . . . 123

4.6.1 Future outlook and forecast . . . 123

5 Modelling Degree-Scale foregrounds 125 5.1 Introduction . . . 127

5.2 Observations and preprocessing . . . 129

5.2.1 The AARTFAAC wide-field Imager . . . 129

5.2.2 Observational setup . . . 131

5.2.3 Data preprocessing . . . 132

5.3 Calibration and imaging scheme . . . 133

5.4 Modelling the Diffuse Galactic Emission . . . 135

5.4.1 Removing compact sources . . . 135

5.4.2 Modeling with multiscale CLEAN . . . 137

5.4.3 Modelling with Shapelets . . . 139

5.4.4 Comparing the two diffuse emission modelling methods 139 5.5 The Angular power spectrum . . . 140

5.5.1 Power spectra from diffuse foreground modelling methods142 5.6 Summary and Future work . . . 143

5.6.1 Future Work . . . 144

6 Conclusions and future outlook 145 6.1 Main results . . . 146

6.1.1 A wide-field LOFAR-LBA power-spectrum analysis . . . 146

6.1.2 A first Cosmic-Dawn 21-cm signal power spectrum limit 148 6.1.3 The AARTFAAC Cosmic Explorer . . . 149

6.1.4 Modelling foregrounds on degree scales . . . 150

6.2 Future outlook and concluding remarks . . . 150

Bibliography 153

English summary 159

Nederlandse Samenvatting 165

हदी सारांश 171

(9)

Referenties

GERELATEERDE DOCUMENTEN

Analyses of the clustering of galaxies, ei- ther through measurements of the baryon acoustic oscillations (BAO), redshift-space distortions (RSD), or the full shape of

In the countries that have some form of home detention, electronic monitoring programmes have been implemented to facilitate rehabilitation and integration and they include some

I would like to thank all my friends and colleagues at Kapteyn Institute and in the city of Groningen who made my stay in the Netherlands very enjoyable and memorable.. First

To detect the faint 21-cm signal of hydrogen from the Cosmic Dawn, the most cru- cial hurdles to overcome are the removal of the bright partly-polarised foregrounds, the ionospheric

It is hoped that community participation will generate trust between residents and the local authority (ELM). Community participation and transparency, in terms.. of

Since all the prepared forms in this study and in previous studies seem to convert eventually to the stable form II, it is clear why this form is preferred by

listisch winststreven ondergeschikt gemaakt wordt aan de bloei, het aanzien en de continuï- teit van de sociale positie der kapitaalbezitters. In tijden van opkomst en bloei

The c h apter offers significant findings and offers relevant recommendations to improve the challenges regarding availability of service benefits and its impact on