• No results found

Opgave 3 - Dubbele Deltapotentiaal

N/A
N/A
Protected

Academic year: 2021

Share "Opgave 3 - Dubbele Deltapotentiaal"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Departement Natuur- en Sterrenkunde, Faculteit B`etawetenschappen, UU.

In elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.

Het college NS-202B werd in 2007/2008 gegeven door .

Quantummechanica 1 (NS-202B) 8 november 2007

Opgave 1 - Concepten en begrippen

Voor elk van de volgende vragen kan een bondig antwoord volstaan (wees zo volledig als nodig is maar vermijd irrelevante uitweidingen).

a) Hoe ziet de (tijdsafhakelijke) Schr¨odingervergelijking er uit?

b) Door welke operator wordt in de quantummechanica de impuls van een deeltje gegeven?

c) Hoe bereken je de verwachtingswaarde van een observabele Q in een toestand ψ(x)?

d) Door welke operatie verkrijg je uit de tijsafhankelijke Schr¨odingervergelijking de tijdsonafhan- kelijke Schr¨odingervergelijking?

e) Wat is de fysische betekenis van de absolute waarde in het kwadraat |Ψ|2 van een golffunctie?

f) Wat is de samenhang tussen Ψ(x, t) en ψ(x) voor een stationaire toestand?

g) Hoe ziet een golffunctie eruit waarvoor elke meting van x een vaste waarde x0 oplevert?

h) Wat zijn de eigenschappen van de functies die als golffunctie een fysische toestand kunnen beschrijven? (Noem er twee)

i) Wat zij de golffuncties ψn van de stationaire toestanden van een oneindige put? (normalisatie is hier niet vereist)

j) Waarom is de stationaire oplossing voor een vrij deeltje fysisch niet toegestaan?

(per vraag 1 punt)

Opgave 2 - Harmonische Oscillator

a) De ladderoperatoren zijn gegeven door:

a±≡ 1

√2~mω(mωx ∓ ip).

Toon met behulp van de canonieke commutatierelatie tussen x en p dat [a, a+] = 1.

(1 punt) b) Een operator is gegeven door:

Q ≡ 1

2m(p + mωx)2.

Schrijf deze met behulp van de ladderoperatoren. Toon aan dat voor de verwachtingswaarde in een stationaire toestand ψn van de harmonische oscillator geldt:

hQi = hHi = En.

(Let op: deze operator Q is niet gelijk aan de Hamiltoniaan en is niet eens een observabele, maar de verwachtingswaarde van Q in de stationaire toestanden komt toch overeen met de

verwachtingswaarde van de Hamiltoniaan). (2 punten)

(2)

c) Door de formule

ψn = 1

√n!(a+)nψ0

op de grondtoestand

ψ0=mω π~

14 exp

−mω 2~x2

toe te passen, toon aan dat de eerste en tweede aangeslagen toestand gegeven zijn door:

ψ1=mω π~



1 4

r2mω

~ x exp

−mω 2~x2 en

ψ2= 1

√2

mω π~

14 2mω

~

x2− 1

 exp

−mω 2~x2

.

Toets de normalisatie van ψ2. (3 punten)

d) Voor t = 0 is het deeltje in de toestand

Ψ(x, 0) = Amω π~



1 4

~ x2exp

−mω 2~x2

.

Bepal A uit de normalisatie. Bereken de verwachtingswaarde van de energie. Geef de tijds- afhankelijke golffunctie Ψ(x, t) aan. Bij welke tijd t1 > 0 komt de golffunctie voor het eerst weer overeen met Ψ(x, 0)? (Hint: je kan Ψ(x, 0) uitdrukken als superpositie van de eerste drie

toestanden.) (3 punten)

e) Bereken de verwachtingswaarde hxi in de toestand Ψ(x, t). (Hint: Gebruik de symmetrieeigen-

schappen). (1 punt)

Opgave 3 - Dubbele Deltapotentiaal

Beschouw de potentiaal

V (x) = α1δ(x + a) + α2δ(x − a).

a) Geef de algemene oplossingen van de tijdsonafhankelijke Schr¨odingervergelijking voor de drie gebieden

I : : x < −a II : : −a < x < a III : : x > a

aan voor een deeltje met energie E > 0. Hoe kan je de oplossingen verder beperken voor een

deeltje dat van links (−∞) komt? (2 punten)

b) Stel de randvoorwaarden in x = ±a op. Gebruik de continuiteit en de relatie voor de afgeleide bij een deltapotentiaal met co¨effici¨ent αi bij x = ±a:

∆ dψ dx



= −2mαi

~2

ψ(±a).

Toon aan dat de samenhang tussen de amplitude A van de van links inlopende golf en de amplitude F van de naar rechts uitlopende golf gegeven is door:

F = A · 1

(1 − iβ1)(1 − iβ2) + β1β2exp(4ika) met

βi≡ mαi

~2k en

k ≡

√2mE

~ .

(4 punten)

(3)

c) Bereken de transmissieco¨effici¨ent T voor het geval α1 = α2 ≡ α en T0 voor het geval α1 =

−α2≡ α. (2 punten)

d) Toon aan dat de transmissieco¨effici¨ent T voor a → 0 overeenkomt met:

T = 1

1 + 4β2.

Wat gebeurt met T0 voor a → 0? Hoe verandert de potentiaal in de twee gevallen als a → 0?

Kan je daarmee de limieten van de transmissieco¨effici¨enten verklaren? (2 punten)

Ter herinnering:

(Onderstaande relaties kunnen gebruikt worden, maar het is (natuurlijk!) niet per se noodzakelijk er

´

e´en of meer te gebruiken!) Z

0

x2nexp



−x2 a2



dx =√ π(2n)!

n!

a 2

2n+1

Z 0

x2n+1exp



−x2 a2



dx =√ πn!

2a2n+2

Referenties

GERELATEERDE DOCUMENTEN

[r]

• The use of computer, calculator, lecture notes, or books is not allowed. • Each problem is worth

S.D.A.P., zodat in dat jaar nog maar één socialistische partij overbleef. van Ravesteyn vormden in dat jaar de Sociaal-Democratische Partij. Daarmee was de scheiding

Als we namelijk een stochast X zo verschuiven dat de verwachtingswaarde 0 is, dan heeft ook de stochast αX verwachtingswaarde 0, maar voor α &gt; 1 zijn de enkele uitkomsten verder

In een paar voorbeelden hebben we al gezien dat we bij een experiment vaak niet zo zeer in een enkele uitkomst ge¨ıneteresseerd zijn, maar bijvoorbeeld wel in het aantal uitkomsten

Opgave 0.4 Op college hebben we een alternatief bewijs van de matrix-tree stelling gegeven, dat toestaat dat de graaf parallelle takken bevat.. Laat G = (V, E) een graaf, en stel T

[r]

• evolution can be very slow when gradient advantage and bend effects balance 34. Avulsion is strongly slowed down by