• No results found

Dislocations in stripes and lattice Dirac fermions Mesaroš, A.

N/A
N/A
Protected

Academic year: 2021

Share "Dislocations in stripes and lattice Dirac fermions Mesaroš, A."

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation

Mesaroš, A. (2010, October 6). Dislocations in stripes and lattice Dirac fermions. Casimir PhD Series. Retrieved from

https://hdl.handle.net/1887/16013

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16013

Note: To cite this publication please use the final published version (if applicable).

(2)

[1] P. Anderson, Science 177, 393 (1972).

[2] P. Anderson, Physical Review 130, 439 (1963).

[3] P. W. Higgs, Physical Review Letters 13, 508 (1964).

[4] L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1981).

[5] T. H. Hansson, V. Oganesyan, and S. L. Sondhi, Annals of Physics 313, 497 (2004).

[6] M. A. Levin and X.-G. Wen, Physical Review B 71, 45110 (2005).

[7] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, Bull. Amer. Math. Soc.

40, 31 (2003).

[8] K. G. Wilson, Reviews of Modern Physics 55, 583 (1983).

[9] R. Jackiw, arXiv:0503039 (2005).

[10] C. Chamon, C.-Y. Hou, R. Jackiw, C. Mudry, S.-Y. Pi, and G. Semenoff, Physical Review B 77, 235431 (2008).

[11] G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, USA, 2003).

[12] H. Kleinert, Gauge Fields in Condensed Matter (World Scientific, Singa- pore, 1989).

[13] M. G¨ockeler and T. Sch¨ucker, Differential Geometry, Gauge Theories and Gravity (Cambridge Univ. Press, Cambridge, 1987).

[14] M. Toussaint, Gauge Theory of Gravity: Foundations, the charge con- cept, and a numeric solution, 1999, diploma thesis, Institute for Theoretical Physics, Cologne.

[15] D. Ivanenko and G. Sardanashvily, Phys. Rep. 94, 1 (1983).

(3)

[16] A. Kadic and D. G. B. Edelen, A Gauge theory of dislocations and discli- nations (Springer-Verlag, Berlin, 1983).

[17] M. Lazar, Annalen Phys. 9, 461 (2000).

[18] F. Hehl, J. McCrea, E. Mielke, and Y. Ne’Eman, Foundations of Physics 19, 1075 (1989).

[19] F. W. Hehl and B. K. Datta, J. of Math. Phys. 12, 1334 (1971).

[20] T. W. B. Kibble, J. of Math. Phys. 2, 212 (1961).

[21] E. Cartan, C. R. Acad. Sci. 174, 437 (1922).

[22] R. Bausch, R. Schmitz, and L. A. Turski, Phys. Rev. Lett. 80, 2257 (1998).

[23] Y. A. Sitenko and N. D. Vlasii, Nucl. Phys. B 787, 241 (2007).

[24] E. Aurell, J. Phys. A: Math. Gen. 32, 571 (1999).

[25] C. Furtado, V. B. Bezerra, and F. Moraes, Europhys. Lett. 52, 1 (2000).

[26] H. Kleinert and J. Zaanen, Physics Letters A 324, 361 (2004).

[27] S. Sachdev, Quantum Phase Transitions (CUP, Cambridge, 2001).

[28] D. Thouless, Topological quantum numbers in nonrelativistic physics (World Scientific, Singapore, 1998).

[29] W. Su, J. Schrieffer, and A. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

[30] S. M¨uhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. B¨oni, Science 323, 915 (2009).

[31] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N.

Nagaosa, and Y. Tokura, Nature 465, 901 (2010).

[32] J. Kosterlitz and D. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

[33] Z. Hadzibabic, P. Kr¨uger, M. Cheneau, B. Battelier, and J. Dalibard, Na- ture 441, 1118 (2006).

[34] D. R. Nelson and B. I. Halperin, Physical Review B (Condensed Matter) 19, 2457 (1979).

[35] V. Cvetkovic, Quantum liquid crystals (Casimir PhD Series, Delft-Leiden, 2006).

[36] N. Mermin, Rev. Mod. Phys 51, 591 (1979).

[37] M. Nakahara, Geometry, topology, and physics (Institute of Physics Pub- lishing, Bristol and Philadelphia, 2003).

(4)

[38] J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975).

[39] T. Wu and C. Yang, Phys. Rev. D 12, 3845 (1975).

[40] A. Belavin, A. Polyakov, and A. Schwartz, Physics Letters B 59B, 85 (1975).

[41] G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).

[42] G. t Hooft, Nucl. Phys. B 138, 1 (1978).

[43] A. M. Polyakov, Nucl Phys B 120, 429 (1977).

[44] H. Kleinert, Multivalued fields in condensed matter, electromagnetism, and gravitation (World Scientific Publishing Company, Singapore, 2008).

[45] P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

[46] W. G. Burgers, Proceedings of the Royal Society of London. Series A 371, 125 (1980).

[47] M. Kleman and J. Friedel, Reviews of Modern Physics 80, 61 (2008).

[48] M. Kleman, Journal de Physique Lettres 38, 199 (1977).

[49] J. Sethna, Entropy, Order Parameters, and Complexity (Oxford University Press, Oxford, 2006).

[50] H. Kleinert, arXiv:1005.1460 (2010).

[51] K. Novoselov, D. Jiang, F. Schedin, and T. Booth, Proceedings of the National Academy of Sciences 102, 10451 (2005).

[52] A. K. Geim, Science 324, 1530 (2009).

[53] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.

Geim, Reviews of Modern Physics 81, 109 (2009).

[54] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. R¨ohrl, E. Rotenberg, A. K.

Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Materials 8, 203 (2009).

[55] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P.

Kim, and H. L. Stormer, Solid State Communications 146, 351 (2008).

[56] N. P. Guisinger, G. M. Rutter, J. N. Crain, P. N. First, and J. A. Stroscio, Nano Letters 9, 1462 (2009).

[57] K. R. Knox, S. Wang, A. Morgante, D. Cvetko, A. Locatelli, T. O. Mentes, M. A. Ni˜no, P. Kim, and R. M. Osgood, Phys. Rev. B 78, 201408 (2008).

(5)

[58] J. Slonczewski and P. Weiss, Physical Review 109, 272 (1958).

[59] A. F. Young and P. Kim, Nature Physics 5, 222 (2009).

[60] K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438, 197 (2005).

[61] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T.

Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).

[62] T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, Physical Review B 77, 233406 (2008).

[63] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M.

Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. M¨ullen, and R. Fasel, Nature 466, 470 (2010).

[64] A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J. Beenakker, Physical Review B 77, 205416 (2008).

[65] G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W.

Zandbergen, L. M. K. Vandersypen, and C. Dekker, arXiv:1005.4754 1005, 4754 (2010).

[66] K. V. Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45, 494 (1980).

[67] J. Fr¨ohlich and T. Kerler, Nucl. Phys. B 354, 369 (1991).

[68] Y. Hatsugai, J. Phys.: Condens. Matter 9, 2507 (1997).

[69] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

[70] R. B. Laughlin, Physical Review Letters 50, 1395 (1983).

[71] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Physical Review B 74, 45125 (2006).

[72] A. M. Essin and J. E. Moore, Physical Review B 76, 165307 (2007).

[73] J. Moore and L. Balents, Physical Review B 75, 121306 (2007).

[74] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

[75] C. L. Kane and E. J. Mele, Physical Review Letters 95, 226801 (2005).

[76] S.-C. Zhang and J. Hu, Science 294, 823 (2001).

[77] S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).

(6)

[78] S. Murakami, N. Nagaosa, and S.-C. Zhang, Physical Review Letters 93, 156804 (2004).

[79] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Physical Review Letters 94, 47204 (2005).

[80] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).

[81] B. A. Bernevig and S.-C. Zhang, Physical Review Letters 96, 106802 (2006).

[82] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).

[83] M. K¨onig, S. Wiedmann, C. Br¨une, A. Roth, H. Buhmann, L. W.

Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

[84] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Physical Review B 78, 195125 (2008).

[85] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New Journal of Physics 12, 5010 (2010).

[86] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173 (1981).

[87] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature Physics 5, 398 (2009).

[88] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z.

Hasan, Nature 452, 970 (2008).

[89] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L.

Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D.

Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).

[90] J. G. Bednorz and K. A. M¨uller, Zeitschrift f¨ur Physik B 64, 189 (1986).

[91] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

[92] P. Anderson, Science 235, 1196 (1987).

[93] J. Zaanen and O. Gunnarsson, Physical Review B (Condensed Matter) 40, 7391 (1989).

[94] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).

[95] J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M.

Fujita, and K. Yamada, Nature 429, 534 (2004).

(7)

[96] P. Abbamonte, A. Rusydi, S. Smadici, G. D. Gu, G. A. Sawatzky, and D. L.

Feng, Nature Physics 1, 155 (2005).

[97] Y.-J. Kim, G. D. Gu, T. Gog, and D. Casa, Phys. Rev. B 77, 64520 (2008).

[98] H. A. Mook, P. Dai, F. Dogan, and R. D. Hunt, Nature 404, 729 (2000).

[99] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M.

Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. Davis, Science 315, 1380 (2007).

[100] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature (London) 393, 550 (1998).

[101] J. Zaanen, Z. Nussinov, and S. I. Mukhin, Annals of Physics 310, 181 (2004).

[102] V. Cvetkovic, Z. Nussinov, S. Mukhin, and J. Zaanen, Europhys. Lett. 81, 27001 (2008).

[103] Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Physical Review Letters 88, 137005 (2002).

[104] R. Daou, J. Chang, D. Leboeuf, O. Cyr-Choiniere, F. Laliberte, N. Doiron- Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, and L.

Taillefer, Nature 463, 519 (2010).

[105] V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bern- hard, C. T. Lin, and B. Keimer, Science 319, 597 (2008).

[106] M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H.

Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E.-A. Kim, Nature 466, 347 (2010).

[107] A. Cortijo and M. A. H. Vozmediano, Europhys. Lett. 77, 47002 (2007).

[108] C. Furtado, F. Moraes, and A. M. de M Carvalho, Physics Letters A 372, 5368 (2008).

[109] J. Hamilton, Aharonov–Bohm and other cyclic phenomena (Springer, Berlin, 1997).

[110] M. V. Berry, Proceedings of the Royal Society of London. Series A 392, 45 (1984).

[111] J. Gonz´alez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 406, 771 (1993).

[112] P. E. Lammert and V. H. Crespi, Phys. Rev. Lett. 85, 5190 (2000).

(8)

[113] P. E. Lammert and V. H. Crespi, Phys. Rev. B 69, 035406 (2004).

[114] A. F. Morpurgo and F. Guinea, Phys. Rev. Lett. 97, 196804 (2006).

[115] J. Gonz´alez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 63, 134421 (2001).

[116] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).

[117] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

[118] D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 (1984).

[119] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[120] Y. Zhang, J.-P. Hu, B. A. Bernevig, X. R. Wang, X. C. Xie, and W. M.

Liu, Phys. Rev. B 78, 155413 (2008).

[121] M. O. Katanaev and I. V. Volovich, Ann. Phys. 216, 1 (1992).

[122] J. Eshelby, British Journal of Applied Physics 17, 1131 (1966).

[123] M. O. Katanaev, Theoretical and Mathematical Physics 135, 733 (2003).

[124] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1981).

[125] C. Furtado, A. M. de M. Carvalho, and C. A. de Lima Ribeiro, Modern Physics Letters A 21, 1393 (2006).

[126] M. Lazar, J. Phys. A 35, 1983 (2002).

[127] A. Bashir and M. de Jesus Anguiano Galicia, Few Body Syst. 37, 71 (2005).

[128] H. Casimir, Proceedings of the IEEE 51, 1570 (1963).

[129] L. Onsager, Phys. Rev. 38, 2265 (1931).

[130] H. Casimir, Reviews of Modern Physics 17, 343 (1945).

[131] M. B¨uttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

[132] A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nat. Phys. 3, 172 (2007).

[133] A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53, 9583 (1996).

[134] S. Datta and R. K. Lake, Phys. Rev. B 44, 6538 (1991).

[135] M. G. Pala and G. Iannaccone, Phys. Rev. B 69, 235304 (2004).

[136] M. B¨uttiker, Phys. Rev. B 33, 3020 (1986).

(9)

[137] P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B 55, 4695 (1997).

[138] S. Hemmady, J. Hart, X. Zheng, J. Thomas M. Antonsen, E. Ott, and S. M. Anlage, Phys. Rev. B 74, 195326 (2006).

[139] H. U. Baranger and P. A. Mello, Phys. Rev. B 51, 4703 (1995).

[140] T. P. Pareek, S. K. Joshi, and A. M. Jayannavar, Phys. Rev. B 57, 8809 (1998).

[141] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, Phys. Rev. B 77, 085413 (2008).

[142] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).

[143] A. Lherbier, B. Biel, Y.-M. Niquet, and S. Roche, Phys. Rev. Lett. 100, 036803 (2008).

[144] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S.

Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 246803 (2007).

[145] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).

[146] M. Calandra and F. Mauri, Phys. Rev. B 76, 205411 (2007).

[147] W.-K. Tse, E. H. Hwang, and S. D. Sarma, Applied Physics Letters 93, 023128 (2008).

[148] A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77, 085423 (2008).

[149] A. Rycerz, Physica Status Solidi A 205, 1281 (2008).

[150] A. Rycerz and C. W. J. Beenakker, arXiv:0709.3397 (2007).

[151] P. Recher, B. Trauzettel, A. Rycerz, Y. M. Blanter, C. W. J. Beenakker, and A. F. Morpurgo, Phys. Rev. B 76, 235404 (2007).

[152] Y. Gefen, Y. Imry, and M. Y. Azbel, Phys. Rev. Lett. 52, 129 (1984).

[153] M. B¨uttiker, Phys. Rev. A 30, 1982 (1984).

[154] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ.

Press, Cambridge, 1995).

[155] S. Hershfield, Phys. Rev. B 43, 11586 (1991).

[156] M. B¨uttiker, IBM J. Res. Development 32, 63 (1988).

(10)

[157] M. B¨uttiker, IBM J. Res. Develop. 32, 63 (1988).

[158] A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin, Phys.

Rev. B 66, 060404 (2002).

[159] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S.

Maekawa, and E. Saitoh, Nature 455, 778 (2008).

[160] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).

[161] B. Leurs, Z. Nazario, D. Santiago, and J. Zaanen, Annals of Physics 323, 907 (2008).

[162] G. W. Semenoff, V. Semenoff, and F. Zhou, Phys. Rev. Lett. 101, 087204 (2008).

[163] C. L. Kane and E. J. Mele, Physical Review Letters 95, 146802 (2005).

[164] N. P. Ong, (private communication) (unpublished).

[165] I. Martin, Y. M. Blanter, and A. F. Morpurgo, Phys. Rev. Lett. 100, 036804 (2008).

[166] P. Simonis, C. Goffaux, P. Thiry, L. Biro, P. Lambin, and V. Meunier, Surf.

Sci. 511, 319 (2002).

[167] W.-T. Pong, J. Bendall, and C. Durkan, Surf. Sci. 601, 498 (2007).

[168] T. R. Albrecht, H. A. Mizes, J. Nogami, S.-I. Park, and C. F. Quate, Applied Physics Letters (ISSN 0003-6951) 52, 362 (1988).

[169] S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, Journal of Materials Research 7, 341 (1992).

[170] O. V. Yazyev and S. G. Louie, Physical Review B 81, 195420 (2010).

[171] J. ˇCervenka, M. I. Katsnelson, and C. F. J. Flipse, Nature Physics 5, 840 (2009).

[172] M. A. H. Vozmediano, M. P. L´opez-Sancho, T. Stauber, and F. Guinea, Physical Review B 72, 155121 (2005).

[173] N. Peres, F. Guinea, and A. C. Neto, Phys. Rev. B 73, 1 (2006).

[174] J. ˇCervenka and C. F. J. Flipse, arXiv:0810.5657 (2008).

[175] S. Y. Zhou, G.-H. Gweon, and A. Lanzara, Annals of Physics 321, 1730 (2006).

[176] A. Carpio, L. L. Bonilla, F. de Juan, and M. A. H. Vozmediano, New Journal of Physics 10, 3021 (2008).

(11)

[177] J. M. Burgers, Proceedings of the Physical Society 52, 23 (1940).

[178] W. L. Bragg, Proceedings of the Physical Society 52, 105 (1940).

[179] W. T. Read and W. Shockley, Physical Review 78, 275 (1950).

[180] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature 430, 870 (2004).

[181] R. Tamura, K. Akagi, M. Tsukada, S. Itoh, and S. Ihara, Phys. Rev. B 56, 1404 (1997).

[182] M. L´opez-Sancho, F. Juan, and M. Vozmediano, arXiv:0806.3000v2 (2008).

[183] V. Pereira, F. Guinea, J. L. D. Santos, N. Peres, and A. C. Neto, Phys.

Rev. Lett. 96, 1 (2006).

[184] M. A. H. Vozmediano, F. Guinea, and M. P. L´opez-Sancho, Journal of Physics and Chemistry of Solids 67, 562 (2006).

[185] H. Lee, Y. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B 72, 1 (2005).

[186] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev.

B 54, 17954 (1996).

[187] L. Pisani, J. Chan, B. Montanari, and N. Harrison, Phys. Rev. B 75, 1 (2007).

[188] Y. Son, M. Cohen, and S. Louie, Nature 444, 347 (2006).

[189] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Phys. Rev. Lett. 101, 036803 (2008).

[190] J. J. Palacios, J. Fern´andez-Rossier, and L. Brey, Physical Review B 77, 195428 (2008).

[191] C. Yoon, C. Kim, and J. Megusar, Carbon 39, 1045 (2001).

[192] J. Weidmann, Spectral Theory of Ordinary Differential Operators (Springer- Verlag, Berlin, 1987).

[193] B. Thaller, The Dirac Equation (Springer-Verlag, Berlin, 1992).

[194] T. F¨ul¨op, Symmetry, Integrability and Geometry: Methods and Applica- tions 3, 107 (2007).

[195] R. Jackiw, B´eg Memorial Volume (1991).

[196] M. Persson, Lett. Math. Phys. 78, 139 (2006).

(12)

[197] Y. Aharonov and A. Casher, Physical Review A (General Physics) 19, 2461 (1979).

[198] J. Pachos and M. Stone, International Journal of Modern Physics B 21, 5113 (2007).

[199] V. R. Coffman and J. P. Sethna, Physical Review B 77, 144111 (2008).

[200] J. Tersoff, Physical Review B (Condensed Matter) 37, 6991 (1988).

[201] D. W. Brenner, Physical Review B (Condensed Matter) 42, 9458 (1990).

[202] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordej´on, Phys. Rev. B 66, 035412 (2002).

[203] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).

[204] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

[205] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).

[206] A. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).

[207] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[208] S. D. Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73, 220502(R) (2006).

[209] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R) (2009).

[210] J. Nilsson, A. R. Akhmerov, and C. W. J. Beenaker, Phys. Rev. Lett. 101, 120403 (2008).

[211] I. P. Radu, J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer, and K. W. West, Science 320, 899 (2008).

[212] M. Dolev, M. Heiblum, V. Umansky, A. Stern, and D. Mahalu, Nature 452, 829 (2008).

[213] C. J. Bolech and E. Demler, Phys. Rev. Lett. 98, 237002 (2007).

[214] G. W. Semenoff and P. Sodano, J. Phys. B 40, 1479 (2007).

[215] S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D.-H. Lee, Phys. Rev.

Lett. 100, 027001 (2008).

[216] L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009).

[217] C. Benjamin and J. K. Pachos, Physical Review B 81, 85101 (2010).

[218] Y. Ran, Y. Zhang, and A. Vishwanath, Nat Phys 5, 298 (2009).

(13)

[219] Y. Ran, arXiv:1006.5454 (2010).

[220] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F.

Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).

[221] A. Roth, C. Br¨une, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L.

Qi, and S.-C. Zhang, Science 325, 294 (2009).

[222] S. Chadov, X. Qi, J. K¨ubler, G. H. Fecher, C. Felser, and S. C. Zhang, Nature Materials 9, 541 (2010).

[223] C. Xu and J. E. Moore, Phys. Rev. B 73, 45322 (2006).

[224] C.-Y. Hou, E.-A. Kim, and C. Chamon, Phys. Rev. Lett. 102, 76602 (2009).

[225] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 79, 235321 (2009).

[226] R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y.

Endoh, Phys. Rev. Lett. 82, 628 (1999).

[227] L. Pintschovius, W. Reichardt, M. Kl¨aser, T. Wolf, and H. v. L¨ohneysen, Phys. Rev. Lett. 89, 037001 (2002).

[228] L. Pintschovius, D. Reznik, W. Reichardt, Y. Endoh, H. Hiraka, J. M.

Tranquada, H. Uchiyama, T. Masui, and S. Tajima, Phys. Rev. B 69, 214506 (2004).

[229] D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G. D. Gu, and J. M. Tranquada, Nature (London) 440, 1170 (2006).

[230] D. Reznik, L. Pintschovius, M. Fujita, K. Yamada, G. D. Gu, and J. M.

Tranquada, Journal of Low Temperature Physics 147, 353 (2007).

[231] T. Fukuda, J. Mizuki, K. Ikeuchi, K. Yamada, A. Q. R. Baron, and S.

Tsutsui, Phys. Rev. B 71, 060501 (2005).

[232] K. Yamada, C. H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H.

Kimura, Y. Endoh, S. Hosoya, G. Shirane, R. J. Birgeneau, M. Greven, M. A. Kastner, and Y. J. Kim, Phys. Rev. B 57, 6165 (1998).

[233] J. Zaanen, Nature 440, 1118 (2006).

[234] E. Kaneshita, M. Ichioka, and K. Machida, Phys. Rev. Lett. 88, 115501 (2002).

[235] H. Eskes, O. Y. Osman, R. Grimberg, W. van Saarloos, and J. Zaanen, Phys. Rev. B 58, 6963 (1998).

(14)

[236] E. Arrigoni, E. Fradkin, and S. A. Kivelson, Phys. Rev. B 69, 214519 (2004).

[237] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Reviews of Modern Physics 75, 1201 (2003).

[238] S. I. Mukhin, arXiv:cond-mat/0507294 (2005).

[239] X. J. Zhou, P. Bogdanov, S. A. Kellar, T. Noda, H. Eisaki, S. Uchida, Z.

Hussain, and Z.-X. Shen, Science 286, 268 (1999).

[240] X. J. Zhou, T. Yoshida, S. A. Kellar, P. V. Bogdanov, E. D. Lu, A. Lanzara, M. Nakamura, T. Noda, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Hussain, and Z.-X. Shen, Phys. Rev. Lett. 86, 5578 (2001).

[241] T. Yoshida, X. J. Zhou, K. Tanaka, W. L. Yang, Z. Hussain, Z.-X. Shen, A. Fujimori, S. Sahrakorpi, M. Lindroos, R. S. Markiewicz, A. Bansil, S.

Komiya, Y. Ando, H. Eisaki, T. Kakeshita, and S. Uchida, Phys. Rev. B 74, 224510 (2006).

[242] K. Gofron, J. C. Campuzano, A. A. Abrikosov, M. Lindroos, A. Bansil, H.

Ding, D. Koelling, and B. Dabrowski, Phys. Rev. Lett. 73, 3302 (1994).

[243] V. I. Anisimov, M. A. Korotin, A. S. Mylnikova, A. V. Kozhevnikov, D. M.

Korotin, and J. Lorenzana, Phys. Rev. B 70, 172501 (2004).

[244] G. Khaliullin and P. Horsch, Physica C: Superconductivity 282-287, 1751 (1997), proceedings of the International Conference on Materials and Mech- anisms of Superconductivity High Temperature Superconductors V.

[245] F. Barriquand and G. A. Sawatzky, Phys. Rev. B 50, 16649 (1994).

[246] C. Falter, Physics Reports 164, 1 (1988).

[247] B. Horovitz, H. Gutfreund, and M. Weger, Phys. Rev. B 12, 3174 (1975).

[248] E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Macken- zie, arXiv:0910.4166 (2009).

[249] J. A. Robertson, S. A. Kivelson, E. Fradkin, A. C. Fang, and A. Kapitulnik, Physical Review B 74, 134507 (2006).

[250] A. D. Maestro, B. Rosenow, and S. Sachdev, Phys. Rev. B 74, 24520 (2006).

[251] M. Vojta, Physical Review B 78, 144508 (2008).

[252] M. Vojta, Advances in Physics 58, 699 (2009).

[253] P. W. Anderson and N. P. Ong, Journal of Physics and Chemistry of Solids 67, 1 (2006).

(15)

[254] C. E. Weatherburn, A First Course in Mathematical Statistics (CUP, Cam- bridge, 1949).

[255] N. Read and S. Sachdev, Physical Review Letters 62, 1694 (1989).

[256] A. B. Harris, Journal of Physics C: Solid State Physics 7, 1671 (1974).

[257] L.-K. Lim, A. Hemmerich, and C. Morais Smith, Phys. Rev. A 81, 23404 (2010).

Referenties

GERELATEERDE DOCUMENTEN

This thesis explores the role of special physical states, topological defects (with emphasis on dislocations), within several electronic two dimensional condensed matter

Before we analyze the curved space structure, our first task is to identify the action of a lattice topological defect on a graphene Dirac electron that encircles it.. This action on

Deep in the quantum regime where the phase coherence length is large compared to the size of the ring L, long Feynman paths encircle the ring many times, having ample opportunity

Within a continuum description of dislocated graphene in the form of a gauged Dirac equation, we find that in fact arrays of dislocations (which comprise grain.. boundaries) can lead

Fig. 5.1), where the presence of dislocations within the interferometer area causes a topological phase shift on the edge states due to the translational effect of the

Their fingerprints described above include binding of the anomalous phonon momentum to 1D inrastripe 2k F wavevector and hence to its doping dependence; a Yamada plot behavior of

Their presence (i) reveals the incommensurate nature of the stripes, (ii) provides for the main disorder mechanism leading to short stripe correlation lengths, and (iii) provides

In Chapter 4 we make direct predictions of the LDOS in graphene grain boundaries, based on the model of free tight binding electrons.. However this is only the first necessary step