• No results found

by Hirota Method Nonlocal modified KdV equations and their soliton solutions Commun Nonlinear Sci Numer Simulat

N/A
N/A
Protected

Academic year: 2022

Share "by Hirota Method Nonlocal modified KdV equations and their soliton solutions Commun Nonlinear Sci Numer Simulat"

Copied!
22
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Commun Nonlinear Sci Numer Simulat

journalhomepage:www.elsevier.com/locate/cnsns

Research paper

Nonlocal modified KdV equations and their soliton solutions by Hirota Method

Metin Gürses

a

, Aslı Pekcan

b,

a Department of Mathematics, Faculty of Science Bilkent University, Ankara 06800, Turkey

b Department of Mathematics, Faculty of Science Hacettepe University, Ankara 06800, Turkey

a r t i c l e i n f o

Article history:

Received 24 March 2018 Accepted 9 July 2018 Available online 20 July 2018 Keywords:

Ablowitz–Musslimani reduction Nonlocal mKdV equations Hirota bilinear form Soliton solutions

a b s t r a c t

WestudythenonlocalmodifiedKorteweg–deVries(mKdV)equationsobtainedfromAKNS schemebyAblowitz–Musslimanitypenonlocalreductions.Wefirstfindsolitonsolutions of the coupled mKdV system by using the Hirota direct method. Then by using the Ablowitz–Musslimanireductionformulas,wefindone-,two-,andthree-solitonsolutions ofnonlocal mKdVandnonlocal complexmKdVequations.Thesolitonsolutionsofthese equationsareoftwotypes.Wegiveone-solitonsolutionsofbothtypesandpresentonly firsttypeoftwo-andthree-solitonsolutions.Weillustrateoursolutionsbyplottingtheir graphsforparticularvaluesoftheparameters.

© 2018ElsevierB.V.Allrightsreserved.

1. Introduction

Nonlocalintegrableequationsstudied so farare of integro-differential equation type, such asBenjamin-Onoequation.

Recently[1]AblowitzandMusslimanihaveintroducedanewtype ofnonlocalintegrableequations.Inthesenewtypesof nonlocalequations,inadditiontothetermsatthespace-timepoint(t,x),therearetermsatthemirrorimagepoint(t,−x). All such new integrableequations seem to be obtained by a reduction from an integrable system ofcoupled integrable equations.For instance when the Lax pair is a cubic polynomial of the spectral parameter we obtain coupled modified Korteweg–deVriessystemofequationsfromtheAKNSformalism[6].Theseequationsaregivenby

aqt=−1 4qxxx+3

2rqqx, (1)

art=−1 4rxxx+3

2rqrx, (2)

whereq(t,x)andr(t,x) areingeneralcomplexdynamicalvariables,a isaconstant.We calltheabove systemofcoupled equationsasnonlinearmodifiedKorteweg–deVriessystem(mKdVsystem).Wehavetwo differentlocal(standard) reduc- tionsofthissystem:

a

)

r

(

t,x

)

=k¯q

(

t,x

)

, (3)

Corresponding author.

E-mail addresses: gurses@fen.bilkent.edu.tr (M. Gürses), aslipekcan@hacettepe.edu.tr (A. Pekcan).

https://doi.org/10.1016/j.cnsns.2018.07.013 1007-5704/© 2018 Elsevier B.V. All rights reserved.

(2)

b

)

r

(

t,x

)

=kq

(

t,x

)

, (4) where k is a real constant and ¯q is the complex conjugate ofthe function q. When we apply the reduction (3) to the Eqs.(1)and(2)weobtainthecomplexmodifiedKorteweg–deVries(cmKdV)equation[2–4]

aqt=−1 4qxxx+3

2k¯qqqx, (5)

providedthat ¯a=a.Thesecondreduction(4)givestheusualmKdVequation[5]

aqt=−1 4qxxx+3

2kq2qx, (6)

withnoconditionona.

Most of the integrable nonlinear equations are local that is the solution’s behavior depends only on its local space andtimeparameters.In[1,7,8]AblowitzandMusslimaniintroducedintegrablenonlocalreductionswhichyield thespace- timereflectionsymmetric(ST-symmetric),thespacereflectionsymmetric(S-symmetric),andtimereflectionsymmetric(T- symmetric)equations.ForinstanceintheS-symmetriccase,thesolution’sbehavioratlocation(t,x)dependsontheinfor- mationnotonlyatthepoint(t,x)butalsoatthepoint(t,−x).AblowitzandMusslimaniintroducedtheST-symmetricand T-symmetricnonlocal mKdVandcmKdVequationsandthey onlyobtainedone-solitonsolutions ofST-symmetriconesby usinginversescatteringtransformin[8].Anonlocalreductionisgivenby

r

(

t,x

)

=k¯q

( ε

1t,

ε

2x

)

, (7)

where

ε

21=

ε

22=1.UnderthisconditionthemKdVsystem(1)and(2)reduceto aqt

(

t,x

)

=−1

4qxxx

(

t,x

)

+3

2k¯q

( ε

1t,

ε

2x

)

q

(

t,x

)

qx

(

t,x

)

, (8) provided that ¯a=

ε

1

ε

2a.The casefor(

ε

1,

ε

2)=(1,1) yields thelocalequation (5).There are threedifferentnonlocal re- ductions where (

ε

1,

ε

2)=

{

(−1,1),(1,−1),(−1,−1)

}

. Hence for these values of

ε

1 and

ε

2 and for different signs of k (sign(k)=± 1), we have sixdifferent nonlocal integrable cmKdVequations obtainedby Ablowitz–Musslimani type reduc- tion(7)whicharerespectivelyT-symmetric,S-symmetric,andST-symmetricnonlocalcmKdVequationsgivenbelowinpart A.

A. r(t,x)=k¯q(

ε

1t,

ε

2x)(NonlocalcmKdVequations) 1.T-symmetriccmKdVequation:

aqt

(

t,x

)

=14qxxx

(

t,x

)

+32k¯q

(

−t,x

)

q

(

t,x

)

qx

(

t,x

)

, ¯a=−a. (9)

2.S-symmetriccmKdVequation:

aqt

(

t,x

)

=−1

4qxxx

(

t,x

)

+3

2k¯q

(

t,−x

)

q

(

t,x

)

qx

(

t,x

)

, ¯a=−a. (10) 3.ST-symmetriccmKdVequation:

aqt

(

t,x

)

=14qxxx

(

t,x

)

+32k¯q

(

−t,−x

)

q

(

t,x

)

qx

(

t,x

)

, ¯a=a. (11)

ThesecondnonlocalreductionofthemKdVsystemisgivenby

r

(

t,x

)

=kq

( ε

1t,

ε

2x

)

, (12)

yieldingtheequation aqt

(

t,x

)

=−1

4qxxx

(

t,x

)

+3

2kq

(

t,x

)

q

( ε

1t,

ε

2x

)

qx

(

t,x

)

, (13) providedthat

ε

1

ε

2=1.Thereforewehaveonlyonepossibility(

ε

1,

ε

2)=(−1,−1)tohaveanonlocalequation,without anyadditionalconditiononthe parametera.TheST-symmetricnonlocal mKdVequationobtainedhereisgivenbelow inpartB.

B. r(t,x)=kq(

ε

1t,

ε

2x)(NonlocalmKdVequation) 1.ST-symmetricmKdVequation:

aqt

(

t,x

)

=−1

4qxxx

(

t,x

)

+3

2kq

(

−t,−x

)

q

(

t,x

)

qx

(

t,x

)

, (14) withnoconditionona.

(3)

ThenonlocalcmKdVandnonlocalmKdVequationshavethefocusinganddefocusingcaseswhenk<0andk>0,respec- tively.Alltheaboveequationsareintegrable.

Thereisanincreasinginterestinobtainingthenonlocalreductionsofsystemsofintegrableequationsandanalyzingtheir solutionsandproperties[9–24]afterAblowitzandMusslimani’sworks[1]and[7,8]inwhichtheyproposedmanynonlocal nonlinearintegrableequationssuch asnonlocalnonlinear Schrödinger(NLS) equation,cmKdVandmKdVequations,sine- Gordonequation, (1+1) and(2+1)dimensionalthree-wave interaction, Davey–Stewartsonequation,andderivative NLS equation.TheydiscussedLaxpairs,conservationlaws,inversescatteringtransforms,andobtainedone-solitonsolutions of someoftheseequations.InRef.[25],Maetal.showedthat ST-symmetricnonlocalcmKdVequationisgaugeequivalentto aspin-like modelwhichshowsthat thereexists significantdifference betweenthenonlocal cmKdVandthelocalcmKdV equation.TheyconstructedDarbouxtransformationsfornonlocalcmKdVandobtaineddifferenttypeofexactsolutionsin- cluding dark-soliton, W-type soliton, M-typesoliton, andperiodic solutions. Ji andZhu obtained soliton, kink, anti-kink, complexiton,breather,rogue-wavesolutions,andnonlocalizedsolutionswithsingularitiesofST-symmetricnonlocalmKdV equationthroughDarbouxtransformationandinversescatteringtransform[26,27].In[28],theauthorsshowedthatmany nonlocalintegrableequations,suchasDavey–Stewartsonequation,T-symmetricNLSequation,nonlocalderivativeNLSequa- tion,andST-symmetriccmKdVequationcanbeconvertedtolocalintegrableequationsbysimplevariabletransformations.

Theyusedthesetransformationstoobtainsolutionsofthenonlocalequationsfromthesolutionsofthelocalequationsand toderive new nonlocalintegrable equations,such ascomplex andrealST- andT-symmetric NLS equationsand nonlocal complexshortpulseequations.Forsome possibleapplicationofnonlocalNLSandnonlocalmKdVequationsonecancheck [29–31].Someofoursolutionscoincidewiththesolutionsgivenin[8,25,27,28].

The main purpose of thiswork isto search for possible integrablenonlocal reductions of the mKdV system(1) and (2) andfind their soliton solutions by the application of the Hirota direct method. To find the soliton solutions of the nonlocal mKdVand nonlocal cmKdVequations we first findsoliton solutions ofthe mKdV system(1) and(2).By using thereduction formulas (7) and(12) we find thesoliton solutions ofthe nonlocal mKdV andnonlocal cmKdVequations.

Actually,herewe introduce a generalmethod forfinding solitonsolutions ofnonlocal integrableequations.If a nonlocal equationisconsistentlyobtainedbyanonlocalreductionofasystemofequationshavingsolitonsolutionseitherbyHirota directmethod orby other techniques,such asthe inversescattering transformtechnique, one can automaticallyuse the reductionformulas(constraintequations)tofindthesolitonsolutionsofthereducednonlocalequations.

Inaprevious paper[32],wehavestudied thesolitonsolutionsofthe NLSsystemandnonlocalNLS equations.Inthis work,westudysolitonsolutionsofthenonlocalmKdVequationsofalltypes.FollowingtheworkofIwaoandHirota[2]we firstfindone-,two-,andthree-solitonsolutionsofthecoupledmKdVsystem(1)and(2)byusingtheHirotadirectmethod.

Then byusing theAblowitz–Musslimani type reductions(7)and(12),we obtainsolitonsolutions ofthe nonlocalcmKdV (includingT-, S-,and ST-symmetricequations) andnonlocal ST-symmetricmKdV equations.We show that there aretwo different types ofone-soliton solution of the reduced mKdV system. We give the corresponding two- and three-soliton solutionsofthefirsttype.Wealsopresentthegraphsofsome solutionsforcertainvaluesoftheparameters.Theyinclude one-,two-,andthree-solitonwaves,complexitons,breather-type,andkink-typewaves.

Thelayoutofthepaperisasfollows.InSection2weapplyHirotamethodtothecoupledmKdVsystem(1)and(2)and findsolitonsolutions.In Section3wefindsolitonsolutionsofT-symmetric,S-symmetric,andtwodifferentST-symmetric mKdVequationsandwegivesomeexamplesforone-,two-,andthree-solitonsolutionstogetherwiththeirgraphs.

2. HirotamethodforthecoupledMKdVsystem

FollowingtheworkofIwaoandHirota[2]letq= F

f andr=G

f.Eq.(1)becomes 4aFtf3− 4aFftf2+Fxxxf3− 3Fxxfxf2+6Fxfx2f− 3Fxfxxf2

− 6Ffx3+6Ffxfxxf− Ffxxxf2− 6GFFxf+6GF2fx=0, (15) whichisequivalentto

f2

(

4aDt+D3x

)

F· f− 3

(

D2xf· f+2GF

)(

DxF· f

)

=0. Similarly,theEq.(2)canbewrittenas

f2

(

4aDt+D3x

)

G· f− 3

(

D2xf· f+2GF

)(

DxG· f

)

=0. HencetheHirotabilinearformofthemKdVsystemis

P1

(

D

) {

F· f

}

(

4aDt+D3x− 3

α

Dx

) {

F· f

}

=0 (16)

P2

(

D

) {

G· f

}

(

4aDt+D3x− 3

α

Dx

) {

G· f

}

=0 (17)

P3

(

D

) {

f· f

}

(

D2x

α ) {

f· f

}

=−2GF, (18)

where

α

isan arbitraryconstant. NotethatformKdVsystemwe obtainsimilar solutionsasintheNLS systemcase[32].

ForadetailedworkoftheapplicationoftheHirotamethodtothemKdVsystemonecancheck[33].

(4)

2.1. One-solitonsolutionoftheMKdVsystem

Tofindone-solitonsolutionweusethefollowingexpansionsforthefunctionsF,G,andf,

F=

ε

F1, G=

ε

G1, f=1+

ε

2f2, (19)

where

F1=eθ1, G1=eθ2,

θ

i=kix+

ω

it+

δ

i,i=1,2. (20)

Weinserttheseexpansionsinto(16)–(18).Thecoefficientof

ε

0gives

(

D2x

α ) {

1· 1

}

=0 (21)

yieldingthat

α

=0.Analyzingthecoefficientsof

ε

n,1≤ n≤ 4givethedispersionrelations

ω

i=4k3ia, i=1,2, (22)

andthefunctionf2

f2=−e(k1+k2)x+1+ω2)t+δ1+δ2

(

k1+k2

)

2 . (23)

Take

ε

=1.HenceapairofsolutionsofthemKdVsystem(1)and(2)isgivenby(q(t,x),r(t,x))where

q

(

t,x

)

=1+eAeθ1θ1+θ2, r

(

t,x

)

=1+eAeθ2θ1+θ2, (24)

with

θ

i=kixk3i

4at+

δ

i,i=1,2,andA=− 1

(k1+k2)2.Herek1,k2,

δ

1,and

δ

2 arearbitrarycomplexnumbers.

2.2. Two-solitonsolutionoftheMKdVsystem

Fortwo-solitonsolution,wetake

F=

ε

F1+

ε

3F3, G=

ε

G1+

ε

3G3, f =1+

ε

2f2+

ε

4f4, (25)

where

F1=eθ1+eθ2, G1=eη1+eη2, (26)

with

θ

i=kix+

ω

it+

δ

i,

η

i=ix+mit+

α

i fori=1,2. When we insert above expansions into(16)–(18) andconsider the coefficientsof

ε

n,1≤ n≤ 8weobtainthedispersionrelations

ω

i=−k3i

4a, mi=−3i

4a, i=1,2, (27)

thefunctionf2,

f2=eθ1+η1+α11+eθ1+η2+α12+eθ2+η1+α21+eθ2+η2+α22 = 

1≤i, j≤2

eθi+ηj+αi j, (28)

where

eαi j=− 1

(

ki+j

)

2,1≤ i,j≤ 2, (29)

thefunctionsF3andG3,

F3=

γ

1eθ1+θ2+η1+

γ

2eθ1+θ2+η2, G3=

β

1eθ1+η1+η2+

β

2eθ2+η1+η2, (30)

where

γ

i=−

(

k1− k2

)

2

(

k1+i

)

2

(

k2+i

)

2,

β

i=−

(

1− 2

)

2

(

1+ki

)

2

(

2+ki

)

2, i=1,2, (31)

andthefunctionf4

f4=Meθ1+θ2+η1+η2, (32)

where

M=

(

k1− k2

)

2

(

l1− l2

)

2

(

k1+l1

)

2

(

k1+l2

)

2

(

k2+l1

)

2

(

k2+l2

)

2. (33)

(5)

Letusalsotake

ε

=1.Thentwo-solitonsolutionofthemKdVsystem(1)and(2)isgivenwiththepair(q(t,x),r(t,x)), q

(

t,x

)

= eθ1+eθ2+

γ

1eθ1+θ2+η1+

γ

2eθ1+θ2+η2

1+eθ1+η1+α11+eθ1+η2+α12+eθ2+η1+α21+eθ2+η2+α22+Meθ1+θ2+η1+η2, (34)

r

(

t,x

)

= eη1+eη2+

β

1eθ1+η1+η2+

β

2eθ2+η1+η2

1+eθ1+η1+α11+eθ1+η2+α12+eθ2+η1+α21+eθ2+η2+α22+Meθ1+θ2+η1+η2, (35) with

θ

i=kixk3i

4at+

δ

i,

η

i=ix3i

4at+

α

ifori=1,2.Hereki,i,

δ

i,and

α

i,i=1,2arearbitrarycomplexnumbers.

2.3.Three-solitonsolutionoftheMKdVsystem

Tofindthree-solitonsolution,wetake

f=1+

ε

2f2+

ε

4f4+

ε

6f6, G=

ε

G1+

ε

3G3+

ε

5G5, F=

ε

F1+

ε

3F3+

ε

5F5, (36)

and

F1=eθ1+eθ2+eθ3, G1=eη1+eη2+eη3, (37)

where

θ

i=kix+

ω

it+

δ

i,

η

i=ix+mit+

α

i fori=1,2,3.Inserting(36)into(16)–(18)andanalyzingthecoefficientsof

ε

n,

1≤ n≤ 12givethedispersionrelations

ω

i=−k3i

4a, mi=−3i

4a, i=1,2,3, (38)

thefunctionf2

f2= 

1≤i, j≤3

eθi+ηj+αi j, eαi j=− 1

(

ki+j

)

2, 1≤ i,j≤ 3, (39)

thefunctionsF3 andG3

F3= 

1≤i, j,s≤3 i< j

Ai jseθi+θj+ηs, Ai js=−

(

ki− kj

)

2

(

ki+s

)

2

(

kj+s

)

2, 1≤ i,j,s≤ 3, i<j, (40)

G3= 

1≤i, j,s≤3 i< j

Bi jseηi+ηj+θs, Bi js=−

(

i− j

)

2

(

i+ks

)

2

(

j+ks

)

2, 1≤ i,j,s≤ 3, i< j, (41)

thefunctionf4 f4= 

1≤i< j≤3 1≤p<r≤3

Mi jpreθi+θj+ηp+ηr, (42)

where

Mi jpr=

(

ki− kj

)

2

(

lp− lr

)

2

(

ki+lp

)

2

(

ki+lr

)

2

(

kj+lp

)

2

(

kj+lr

)

2, (43)

for1≤ i<j≤ 3,1≤ p<r≤ 3,andthefunctionsF5andG5

F5=V12eθ1+θ2+θ3+η1+η2+V13eθ1+θ2+θ3+η1+η3+V23eθ1+θ2+θ3+η2+η3, (44)

G5=W12eθ1+θ2+η1+η2+η3+W13eθ1+θ2+η1+η2+η3+W23eθ2+θ3+η1+η2+η3, (45) where

Vi j= Si j

4a

( ω

1+

ω

2+

ω

3+mi+mj

)

+

(

k1+k2+k3+i+j

)

3, (46)

Wi j= Qi j

4a

( ω

i+

ω

j+m1+m2+m3

)

+

(

ki+kj+1+2+3

)

3, (47)

for1≤ i<j≤ 3.HereSijandQijaregiveninAppendixofRef.[33].Wealsoobtainthefunctionf6as

f6=Heθ1+θ2+θ3+η1+η2+η3, (48)

(6)

wherethe coefficient Hisalsogivenin AppendixofRef. [33]. Letusalsotake

ε

=1.Hence three-solitonsolutionof the coupledmKdVsystem(1)and(2)isgivenwiththepair(q(t,x),r(t,x))where

q

(

t,x

)

=

eθ1+eθ2+eθ3+

1≤i, j,s≤3 i< j

Ai jseθi+θj+ηs+

1≤i, j≤3 i< j

Vi jeθ1+θ2+θ3+ηi+ηj 1+

1≤i, j≤3eθi+ηj+αi j+

1≤i< j≤3 1≤p<r≤3

Mi jpreθi+θj+ηp+ηr+Heθ1+θ2+θ3+η1+η2+η3, (49)

r

(

t,x

)

=

eη1+eη2+eη3+

1≤i, j,s≤3 i< j

Bi jseηi+ηj+θs+

1≤i, j≤3 i< j

Wi jeθi+θj+η1+η2+η3 1+

1≤i, j≤3eθi+ηj+αi j+

1≤i< j≤3 1≤p<r≤3

Mi jpreθi+θj+ηp+ηr+Heθ1+θ2+θ3+η1+η2+η3. (50)

Havingobtainedtheone-, two-,andthree-solitonsolutionsofthe mKdVsystemwenow readytoobtain such soliton solutionsofthenonlocalreductionsofthemKdVsystem.SolitonsolutionsofthelocalreductionsofthemKdVsystemcan befoundin[33].Hereinoursolutionswefocusonthedomaint≥ 0,x∈R.

3. NonlocalreductionsoftheMKdVsystem

Tofindthesolitonsolutionsofthenonlocalintegrableequationswhichareobtainedbyconsistentnonlocal reductions ofanintegrablesystemofequationsweusethefollowingthreesteps.

(i) Findconsistentreductionformulaswhichreducetheintegrablesystemequationstointegrablenonlocalequations.

(ii) FindsolitonsolutionsofthesystemequationsbyuseoftheHirotadirectmethodorby inversescatteringtransform technique,orbyuseofDarbouxTransformation.

(iii) Use thereduction formulas on thesoliton solutions ofthe systemequationsto obtain the solitonsolutions ofthe reducednonlocal equations.Bythiswayone obtains manydifferentrelationsamong thesolitonparameters ofthe systemequations.

Inthissection, usingtheabovemethod,we willfirstusethereduction (7)givenbyAblowitz andMusslimani [1]and [7,8]andobtainsolitonsolutionsforthreedifferentnonlocalcmKdVequations(9)–(11)withthecondition

¯a=

ε

1

ε

2a (51)

satisfied.Secondly,we willdealwiththe reduction(12)andobtain one-andtwo-solitonsolutions ofthenonlocalmKdV equation(14).

3.1. One-solitonsolutionforthenonlocalCMKdVequations:(r=k¯q(

ε

1t,

ε

2x))

Wehavetwotypesofsolitonsolutionsofthereducednonlocalequations.Themainideahereistousetheone-soliton solutions (24)ofthemKdVsystemequations(1)–(2)andthen usethe reductionformulas(7)and(12).Bythisprocedure weobtaintwotypesofsolitonsolutionsofthereducednonlocalequations.

3.1.1. Type1

Firstly, we findtheconditions ontheparameters ofone-soliton solutionofthemKdV systemtosatisfy the constraint equation(7).Usingthisconstraintequationweget

ek2xk

3 2 4at+δ2 1+Ae(k1+k2)x(k

3 1+k3

2) 4a t+δ1+δ2

=k e¯k1ε2x¯k

3 1 4¯aε1t+δ¯1

1+A¯e(¯k1+¯k2)ε2x(¯k

3 1+¯k3

2) 4¯a ε1t+δ¯1+δ¯2

. (52)

Thisequation givestwo differentrelationsamongthesolitonparameters. Oneofthecase(type-1) includesthefollowing equalitiesthatmustbesatisfiedbytheparameters:

i

)

k2=

ε

2¯k1, ii

)

4k32a= ¯k31

4¯a

ε

1, iii

)

eδ2=keδ¯1, i

v )

A=A¯,

v ) (

k1+k2

)

=

(

¯k1+¯k2

) ε

2,

v

i

) (

k31+k32

)

4a =

(

¯k31+¯k32

)

4¯a

ε

1,

v

ii

)

eδ1+δ2=eδ¯1+δ¯2. (53) If we usethe conditions (51) andi) onthe left hand side of the equalityii), it isclear that this equalityis satisfied directlysince

k32

4a=

ε

2¯k31

4

ε

1

ε

2¯a= ¯k31 4¯a

ε

1.

Withtheconditiongivenini)itisobviousthativ)issatisfieddirectlysince

− 1

(

k1+k2

)

2 = 1

(

¯k2

ε

2+¯k1

ε

2

)

2 = 1

(

¯k1+¯k2

)

2.

(7)

Theconditionv)issatisfiedsince

(

k1+k2

)

=

(

¯k2

ε

2+¯k1

ε

2

)

=

(

¯k1+¯k2

) ε

2

bytheconditionk2=

ε

2¯k1orequivalentlyk1=

ε

2¯k2.Bythesamemannervi)isalreadytruesince

(

k31+k32

)

4a =

(

¯k32+¯k31

)

4

ε

1

ε

2¯a =

(

¯k31+¯k32

)

4¯a

ε

1.

Finally,considertherelationeδ2=keδ¯1 oreδ¯2=keδ1 giveninvii).Sincekisarealconstantwehaveeδ1+δ2=keδ1eδ¯1 and eδ¯1+δ¯2=keδ¯1eδ1 thatyieldtheequalityeδ1+δ2=eδ¯1+δ¯2.

Thustheparametersofone-solitonsolutionoftheEq.(8)musthavethefollowingproperties:

1

)

¯a=

ε

1

ε

2a, 2

)

k2=

ε

2¯k1, 3

)

eδ2=keδ¯1. (54)

Thecase(

ε

1,

ε

2)=(1,1)giveslocalequation.Forparticularchoiceoftheparameterslet uscheck thesolutionsofthe nonlocalreductionsofthemKdVsystemfor(

ε

1,

ε

2)=

{

(−1,1),(1,−1),(−1,−1)

}

.

3.1.1.1. Casea.(T-symmetric). r=k¯q(−t,x).Thiscasegives ¯a=−a,k2=¯k1,and aqt

(

t,x

)

=−1

4qxxx

(

t,x

)

+3

2k¯q

(

−t,x

)

q

(

t,x

)

qx

(

t,x

)

, (55) witheδ2=keδ¯1.Since ¯a=−a,aispureimaginarysaya=ib,fornonzerob∈R.Letk1=

α

+i

β

sok2=

α

− i

β

for

α

,

β

∈R,

α

=0.Thenthesolutionof(55)becomes q

(

t,x

)

= e+iβ)x+

3−3α2β)+i3−3αβ2)

4b t+δ1

1−4kα2e2αx+iα3−32bαβ2t+δ1+δ¯1

. (56)

Thissolutionisalsogivenin[28].Thecorrespondingfunction|q(t,x)|2is

|

q

(

t,x

) |

2= e2αx+

3−3α2β) 2b t+δ1+δ¯1



k

4α2e2αx+δ1+δ¯1− cos

(

3−32bαβ2)t

) 

2

+sin2

(

3−32bαβ2)t

)

. (57)

When

α

3− 3

αβ

2=0andt= α32−3nbαβπ 2, 4αk2e2αx+δ1+δ¯1(−1)n=0wherenisaninteger,forbothfocusinganddefocusing cases,thesolutionissingular.When

α

3− 3

αβ

2=0thesolutionforfocusingcaseisnon-singular.When

α

=0thesolution isexponentially growing for βb3 >0 andexponentially decayingfor βb3 <0.Now forparticular choicesoftheparameters satisfyingtheconditions(54)wegiveanexampleofasolutionoftheEq.(55)andpresentthegraphofthesolution.

Example1. Fortheparameters(k1,k2,eδ1,eδ2,k,a)=(23+2i,2√

3− 2i,1+i,−1+i,−1,10i)weobtainthenon-singular solutionof(55)as

q

(

t,x

)

= 24

(

1+i

)

e(23+2i)x85t

24+e43x , (58)

sothefunction|q(t,x)|2 is

|

q

(

t,x

) |

2=12e165tsech2

(

23x+

δ )

, (59)

where

δ

=−12ln(24).Thesolutionisanasymptoticallydecayingsolutionfort>0.Thegraphof(59)isgiveninFig.1.

3.1.1.2.Caseb.(S-symmetric):r=k¯q(t,−x). Inthiscasewehave ¯a=−a,k2=−¯k1,and

aqt

(

t,x

)

=14qxxx

(

t,x

)

+32k¯q

(

t,−x

)

q

(

t,x

)

qx

(

t,x

)

(60)

witheδ2=keδ¯1.Since ¯a=−a,itispure imaginary,say a=ib for nonzerob∈R.Letalsok1=

α

+i

β

andso k2=−

α

+i

β

for

α

,

β

∈R,

β

=0.Thenthesolutionof(60)becomes q

(

t,x

)

= e+iβ)x+

3−3α2β)+i3−3αβ2)

4b t+δ1

1+4βk2e2iβx+iα3−32bαβ2t+δ1+δ¯1

, (61)

andsothefunction|q(t,x)|2 is

|

q

(

t,x

) |

2= e2αx+

3−3α2β) 2b t+δ1+δ¯1



k

4β2e3−32bα2β)t+δ1+δ¯1+cos

(

2

β

x

) 

2

+sin2

(

2

β

x

)

. (62)

Referenties

GERELATEERDE DOCUMENTEN

Due to this reason their integrability is examined by studying their Painlev´e property and by the existence of soliton solutions by Hirota method rather then searching for

Bodemeenheid: Pcm (matig droge lichte zandleem met diepe antropogene humus A-horizont)..

(Zdh). Een deel van het in totaal 2,3 ha gebied was niet toegankelijk voor onderzoek, door de aanwezigheid van bestaande bebouwing en een weg. De noordoostelijke hoek

The invention relates to a process for injection moulding of objects consisting of a number of layers of different materials, in which process the different materials ar

Abstract— In this paper, a new approach based on least squares support vector machines LS-SVMs is proposed for solving linear and nonlinear ordinary differential equations ODEs..

(a) and (b) Estimation of time varying parameter hðtÞ in Problem 5.4 from observational data for different values of signal to noise ratio... It is assumed that the initial function H

We discuss a moving boundary problem arising from a model of gas ionization in the case of negligible electron diffusion and suitable initial data.. It describes the time evolution

Nonlocal modifications of general relativity constructed out of inverse differential operators give rise to infrared effects that become relevant at large temporal and spatial