• No results found

Subduction initiation in the Neotethys:

N/A
N/A
Protected

Academic year: 2022

Share "Subduction initiation in the Neotethys: "

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Subduction initiation in the Neotethys:

from field evidences to numerical modelling

Alexis Plunder, Cédric Thieulot and Douwe J.J. van Hinsbergen.

Address

A. Plunder, C/ Thieulot, D. van Hinsbergen Dept. of Earth Sciences, Utrecht University

Van Unnikgebouw | Heidelberglaan 2 | 3584 CS Utrecht | contact: a.v.plunder@uu.nl

A. P and D.J.J. v. H are grateful to the ERC starting grant SINK (306810) awarded to D.J.J. v.H.

{ELEFANT} (Thieulot, 2014)

Finite element thermomecanically coupled code

Temperature profile of a ca. 110 vs. 160 My old oceanic lithosphere.

Computed as a semi-infinite half-space.

Material: olivine with a non Newtonian and temperature dependant viscosity following Karato & Wu (1993)

µ

eff

= f 1

2 A

n1

˙ε

(IIn1 − 1)

exp Q + P V nRT

Faculty of Geosciences

{Preliminaryresults}

Present day configuration

To be tested

0 200 400 600

0 400 800 1200 1600

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

0 200 400 600

0 400 800 1200 1600 1800

338 677 1015

0 1354

Temperature

Fracture zone

Flow in

Flow out

=

110 My 160 My

Vx=0

Vz=0 Vx=FS

Vz=FS

Africa

Fracture zone are comon objects. Average width is about 20 km and can go up to 100 km when there are close fracture zones (Romanche fracture zone for example).

Difference in age typically varies from 10 to 50 My.

South America South

America

North America Murray FZ

Udintsev FZ

FZ Mendocino FZ

Molokai FZ

Romanche FZ

FZ FZ FZ

Eltanin FZ

Clarion FZ

Subduction initiation at transform zones is possible!!!

Possibility to form metamorphic sole Influence of shear heating

Half out flow on the other side of the domain Mesh refinement

Increased resolution

{Introduction}

Subduction initiation is an unresolved question of plate

tectonics. Few models have been proposed (either conceptual of physical; e.g. Stern 2004; Maffione et al., 2015; Leng & Gurnis

2015).

My approach

Here I chosed to test wether it is possible to initiate subduction at fracture zones. Why? Because we have evidences that the ridge was gone since ca. 110 Ma in the Neotethys (in Turkey) where I did most of my previous work.

Tav.

Inner Taurid K

e Basin Taurides

Bitlis

Africa Pontides

Black Sea

10 20 30

Tav.

Inner Taurid K

e Basin Taurides

Ln

Al Sa

Bitlis

Africa Pontides

Black Sea

Di

Ha Ba Tr

10 20 30 40

New Subduction sytem @ 92 Ma

Newly formed Ophiolite

Fracture zone in the Neotethys FZ? FZ

95 92

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e-18 1e-17 1e-16 1e-15 1e-14

1.000e-19 2.851e-14

strainrate II

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

340 679 1017

1.596e+00 1.356e+03

Temperature

t=0,05 My

t=0,7 My

t=1 My

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

340 679 1017

1.596e+00 1.356e+03

Temperature

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e-18 1e-17 1e-16 1e-15 1e-14

1.000e-19 3.199e-14

strainrate II

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e-18 1e-17 1e-16 1e-15 1e-14

1.000e-19 3.199e-14

strainrate II

1e-18 1e-17 1e-16 1e-15 1e-14

1.e-19

strainrate II

338 677 1015

0 1354

Temperature

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e-18 1e-17 1e-16 1e-15 1e-14

1.000e-19 3.199e-14

strainrate II

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e+20 1e+21 1e+22 1e+23 1e+24

1.014e+19 1.000e+25

mueff (nodal)

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e+20 1e+21 1e+22 1e+23 1e+24

4.024e+19 1.000e+25

mueff (nodal)

1e+20 1e+21 1e+22 1e+23 1e+24

1.014e+19 1.000e+25

mueff

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e+20 1e+21 1e+22 1e+23 1e+24

1.014e+19 1.000e+25

mueff (nodal)

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

340 679 1017

1.596e+00 1.356e+03

Temperature

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

0 200000 400000 600000

Z Axis

0 200000 400000 600000 800000 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 2.2e+6 X Axis

1e-18 1e-17 1e-16 1e-15 1e-14

1.000e-19 3.199e-14

strainrate II

Referenties

GERELATEERDE DOCUMENTEN

To investigate the observed relationships between normal faulting aftershock locations and the depth of incomplete ruptures (i.e., events that do not rupture the whole

Figure 4: Shear wave velocity variations at 390 km depth for the 3D velocity models MABPM and JSWLW used for the time to depth correction. The large fast velocity anomaly

The elevated 410 discontinuity and thicker mantle transition zone in central Alaska are describing the thermal interaction of the cold slab with the phase transition, indicating

investigated the effect of obliquity on the geotherm of subduction zone despite the preponderance of oblique subduction trenches on Earth (Fig 1) and their possible expression in

It appears that obliquity has an effect inducing asymmetric mantle wedge flow [11] also inducing differences in the temperature predicted either at the subduction interface, in

• When using prescribed inflow boundaries, the effect of compressibility on subduction modelling is only noticeable when a subducting slab hits the 660 km phase transition. • When

It appears that obliquity has an effect inducing asymmetric mantle wedge flows [11] also inducing differences in the temperature pre- dicted either at the subduction interface or in

To conclude, there are good possibilities for Hunkemöller on the Suriname market, as it is clear there is a need for such a store in Suriname and that the potential target group