• No results found

Archaeology and the application of artificial intelligence : case-studies on use-wear analysis of prehistoric flint tools Dries, M.H. van den

N/A
N/A
Protected

Academic year: 2021

Share "Archaeology and the application of artificial intelligence : case-studies on use-wear analysis of prehistoric flint tools Dries, M.H. van den"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Archaeology and the application of artificial intelligence : case-studies on

use-wear analysis of prehistoric flint tools

Dries, M.H. van den

Citation

Dries, M. H. van den. (1998, January 21). Archaeology and the application of artificial intelligence :

case-studies on use-wear analysis of prehistoric flint tools. Retrieved from

https://hdl.handle.net/1887/13148

Version:

Corrected Publisher’s Version

License:

Licence agreement concerning inclusion of doctoral thesis in the Institutional

Repository of the University of Leiden

Downloaded from:

https://hdl.handle.net/1887/13148

(2)
(3)

Archaeological Studies Leiden University

Archaeology and the application of

Artificial Intelligence

Case-studies on use-wear analysis

of prehistoric flint tools

Faculty of Archaeology University of Leiden 1998

Proefschrift

ter verkrijging van de graad van Doctor

aan de Rijksuniversiteit te Leiden,

op gezag van de Rector Magnificus Dr. W.A. Wagenaar,

hoogleraar in de Faculteit der Sociale Wetenschappen,

volgens besluit van het College van Dekanen

te verdedigen op 21 januari 1998

te klokke 15.15 uur

door

Monique Henriëtte

VAN DEN

D

RIES

(4)

Promotiecommissie

promotor: Prof.dr. L.P. Louwe Kooijmans

co-promotores: Dr. A.L. van Gijn Dr. H. Kamermans

referent: Prof.dr. J.E. Doran (University of Essex, Colchester)

(5)

1 Introduction 9

2 The application of artificial intelligence in archaeology 11 2.1 Introduction 11

2.2 Historical and contextual background 11 2.2.1 The emergence of quantitative methods 11 2.2.2 A new approach: artificial intelligence 12

2.3 Review of knowledge-based applications in archaeology 13 2.4 Attitudes towards the application of knowledge-based methods 15 2.4.1 From high expectations to cautiousness 15

2.4.2 Lessons 15 2.4.3 Discussion 16

3 Expert system fundamentals 19 3.1 Introduction 19

3.2 Architecture 19

3.3 Knowledge representation and reasoning methods 21 3.3.1 Introduction 21 3.3.2 Predicate logic 21 3.3.3 Production rules 23 3.3.4 Semantic nets 24 3.3.5 Frames 25 3.3.6 Hybrid representation 26

3.4 Expert-system development process 26 3.4.1 Introduction 26

3.4.2 Orientation 26

3.4.3 Knowledge acquisition 27

3.4.4 Design, implementation and evaluation 28 3.5 Implementation tools 28

3.5.1 Introduction 28

3.5.2 Programming languages versus shells 29

4 The application domain: use-wear analysis of prehistoric flint tools 31 4.1 Introduction 31

4.2 The emergence and development of use-wear analysis 31 4.3 Methodical aspects 33

4.3.1 Combination of information sources 33 4.3.2 Use-wear phenomena 33

4.3.3 Microscopy 35

4.4 Difficulties encountered 36

4.5 From a qualitative to a quantitative method? 37 4.5.1 Introduction 37

5

(6)

4.5.2 Automation of the observation process 38 4.5.3 Quantification of recordings 40

4.5.4 Automation of the inferencing process 40 4.6 Discussion 41

5 An expert system application for use-wear analysis: WAVES 43 5.1 Introduction 43

part one: WAVES under construction 44 5.2 The knowledge acquisition 44

5.2.1 Introduction 44

5.2.2 The elicitation of the expert knowledge 44 5.2.3 The data analyzed 46

5.2.4 Knowledge modelling and uncertainty handling 49 5.3 Design and implementation 51

5.3.1 Introduction 51 5.3.2 Knowledge handling 51 5.3.2.1 Requirements 51 5.3.2.2 Decisions 52 5.3.3 User interface 53 5.3.3.1 Requirements 53 5.3.3.2 Decisions 53

5.3.4 Hardware and software 54 5.3.4.1 Requirements 54

5.3.4.2 Decisions 54 5.4 Discussion 55 5.4.1 Introduction 55

5.4.2 On using knowledge derived from experiments 56 5.4.3 On managing uncertainty 56

part two: WAVES in action 57

5.5 The composition of the analysis procedure 57

5.6 The composition of the hypothesis validation procedure 60 5.7 A session 61

5.7.1 Getting started 61

5.7.2 Running the analysis procedure 63 5.7.3 Interpreting the interpretation 66

5.7.4 Running the hypothesis validation procedure 69 5.8 An assessment of the composition of the application 72 5.8.1 Introduction 72

5.8.2 Answers to expectations of computer archaeologists 72 5.8.3 Answers to expectations of use-wear analysts 74 5.8.4 Unanswered questions and suggestions for additions 76 5.9 Comparison with FAST 77

6 A neural network prototype for use-wear analysis: WARP 79 6.1 Introduction 79

6.2 Neural network fundamentals 80 6.2.1 Historical backgrounds 80 6.2.2 Architecture 81

6.3 Development process 83 6.3.1 Introduction 83

6.3.2 Knowledge representation 83

6.3.3 A matter of training and experimentation 84

(7)

6.3.4 A session 85 6.4 The prototype 86 6.4.1 Introduction 86

6.4.2 The knowledge represented 86 6.4.3 The training process 88

6.5 An assessment of the prototype 89 6.5.1 Introduction 89

6.5.2 Answers to expectations of computer archaeologists 89 6.5.3 Answers to expectations of use-wear analysts 90 6.5.4 Suggestions for additions 91

7 Test results 93 7.1 Introduction 93

7.2 Blind tests in use-wear analysis 94 7.3 The first test 95

7.3.1 Test-set composition 95

7.3.2 The expert system’s achievements 96 7.3.3 The neural network’s achievements 97 7.3.4 Conclusion 98

7.4 The second test 99 7.4.1 Introduction 99 7.4.2 Test-set composition 99 7.4.3 Achievements 105 7.4.4 Conclusion 113

7.4.5 Comparison with other blind tests 117 7.5 Discussion 120

8 Synthesis 123 8.1 Introduction 123

8.2 The added value of expert systems and neural networks 123 8.2.1 Expert systems 123

8.2.2 Neural networks 124

8.2.3 Expert systems versus neural networks? 125

8.3 Added value of knowledge-based systems for archaeology 125 8.4 Recommendations 126

8.4.1 A different approach of functionality 126 8.4.2 Care for social acceptability 127

8.4.3 Change of attitude 128 8.5 Concluding remarks 129

Appendix I: The conceptual knowledge of the analysis procedure 131

Appendix II: The conceptual knowledge of the hypothesis validation procedure of WAVES 147

Appendix III: The input and output variables of WARP 153

Appendix IV: Descriptions of the blind test 155

Appendix V: Interpretations of the blind test 171

References 187

Samenvatting (Dutch summary) 195

Acknowledgements 201

Addendum: A.L. van Gijn, Richard Fullagar: Welcoming Waves 203

Referenties

GERELATEERDE DOCUMENTEN

Despite the fact that it has been demonstrated that useful knowledge-based applications can be built for archaeological purposes and that there are many potential uses, their

present OF use retouch; step and hinge equal OR step and feather equal OF retouch termination; medium OR large OF retouch width; close distribution OF retouch distribution;

Archaeology and the application of artificial intelligence : case-studies on use-wear analysis of prehistoric flint tools..

Aangezien WARP was bedoeld als een experi- menteel model dat alleen voor een vergelijking van twee benaderingen zou worden gebruikt en niet als operationeel systeem, zijn geen

Second, WAVES does integrate the four main forms of usewear: scarring, striations, rounding and polishes and permits evaluation of these forms, although values for extent of

Peripheral blood cells were stained with HLA-A2.1 tetramers containing the tyrosinase368–376 peptide followed by staining with a panel of lineage antibodies, as described in

Blades and blade fragments seem to have been especially used for longitudinal motions, mainly on plant material (7/12). Flake and flake fragments are used in different motions on

This shape also occurs in the combination artefacts (see below). The shape is the result of intensive use in a repetitive abrasive motion, carried out from different angles. In