• No results found

University of Groningen Optimizing levofloxacin dose in the treatment of multidrug-resistant tuberculosis Ghimire, Samiksha

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Optimizing levofloxacin dose in the treatment of multidrug-resistant tuberculosis Ghimire, Samiksha"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Optimizing levofloxacin dose in the treatment of multidrug-resistant tuberculosis Ghimire, Samiksha

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Ghimire, S. (2019). Optimizing levofloxacin dose in the treatment of multidrug-resistant tuberculosis: An integrated PK/PD approach. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

PROPOSITIONS

1. Dosing of fluoroquinolones has been too low – and this has created more problems than it has resolved. (This thesis)

2. Pre-extensively drug resistant TB is partly man made due to inadequate dosing of levofloxacin. (This thesis)

3. The under-dosing of first-line TB drugs has led to increased use of second line drugs. 4. Pharmacokinetic/pharmacodynamic based approach considering AUC/MIC ratio for

levofloxacin could help clinicians select the right dose for the treatment of MDR-TB patients. (This thesis)

5. Multi-drug regimens require multi-analyte assays for optimal work flow. (This thesis) 6. It is high time that national TB programs integrate Therapeutic Drug Monitoring (TDM)

as a core component alongside TB diagnostics and supply of first- and second- line drugs. (This thesis)

7. Saliva is an excellent screening matrix for levofloxacin exposure. (This thesis) 8. The future of TDM lies on micro-sampling techniques using limited time-points.

9. When you come out of the storm, you won't be the same person who walked in. (Haruki Murakami)

10. Nowhere is home. Everywhere is home. (Ben A. Wise)

Referenties

GERELATEERDE DOCUMENTEN

Publication of this thesis was financially supported by University of Groningen, Univer- sity Medical Center Groningen, Graduate School of Medical Sciences, Eric Bleumink Fund,

Multidrug-resistant tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Management of patients

Ultimately, 37 articles were included describing in vitro susceptibility testing of levofloxacin against MDR-TB strains, and clinical studies on pharmacokinetic monitoring

Al- though 86 % of patients with drug susceptible TB are cured with estab- lished first line drugs, treatment is often longer than six months due to slow response, compliance

Treatment success rate is a potentially biased outcome parameter; our primary efficacy end point to estimate the usefulness of LFX was time to sputum culture conversion within

The last study [33] developed and validated a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the analysis of

Therefore, membrane filtration was found to be suitable for sterilization of saliva samples, before analyzing for therapeutic drug monitoring purposes (7). However, it is likely that

In this prospective pharmacokinetic study (May 2016 to October 2017; ERB approval no. 115/2016), we aimed to evaluate the factors associated with time to sputum culture conversion