• No results found

PvdZon 2012 - les07

N/A
N/A
Protected

Academic year: 2021

Share "PvdZon 2012 - les07"

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Chapter 11: Resonant absorption and wave heating



Overview

Ideal MHD theory of resonant absorption

Analytical solution of a simple model problem [ book: Sec. 11.1.1 ]

The role of singularities [ book: Sec. 11.1.2 ]

Absorption versus dissipation [ book: Sec. 11.1.3 ]

Heating and wave damping in tokamaks and coronal magnetic loops

Tokamaks [ book: Sec. 11.2.1 ]

Coronal loops and arcades [ book: Sec. 11.2.2 ]

Numerical analysis [ book: Sec. 11.2.3 ]

Alternative excitation mechanisms

Foot point driving [ book: Sec. 11.3.1 ]

Phase mixing [ book: Sec. 11.3.2 ]

(2)



Motivation

plasma

WAVES and INSTABILITIES

play an important role. . .

in the dynamics of plasma perturbations

in energy conversion and transport

in the heating & acceleration of plasma

characteristics (

ν

,

λ

, amplitude. . . ) are determined by the ambient plasma

can be exploited as a diagnostic tool for plasma parameters, e.g.

wave generation, propagation, and dissipation in a confined plasma

helioseismology (e.g. Gough ’83)

MHD spectroscopy (e.g. Goedbloed et al. ’93)

interaction of external waves with (magnetic) plasma structures

sunspot seismology (e.g. Thomas et al. ’82, Bogdan ’91)

(3)





Resonant ‘absorption’ and phase mixing

involves direct or indirect excitation of

continuum waves

– singular behavior – small length scales

efficient dissipation

small length scales due to inhomo-geneity of the plasma

(cf. fusion research:

Tataronis & Grossmann (’73): incompressible Chen & Hasegawa (’74): shear, compressible)

driv

ω

A

ω

a

r

s

0

r

continuum

incident wave

Resonant AW heating in 1D cylinder

first applied to coronal loops by Ionson (’78) and to sunspots by Lou (’90)

(4)

Re(

ε

)

x

ε

2

ε

1

plasma

vacuum

(1)

(2)

(3)

(4)

antenna

x

0

c

x

1

x

2

=

0

a

Simplified (slab) set-up (cf. Chen & Hasegawa ’74), here (x) ≡ ρ(ω2− ωA2(x))

semi-infinite plasma slab (

x <

0

) next to a vacuum (

x >

0

)

unidirectional magnetic (choose

z

-axis along field)

equilibrium quantities constant in (1) and

x

-dependent for

x

1

≤ x ≤ x

2 (

≡ 0

)

(5)





cfr. MHD models: laboratory plasmas

model I model II (*) model III

ϕ n wall plasma a a n ϕ b n ϕ c b c coil vacuum vacuum plasma pl-vac wall vac. / plasma ( * ) plasma pl-vac

(a) Model I: Plasma surrounded by a wall; (b) Model II (*): Plasma isolated from the wall by a vacuum (*: or another plasma); (c) Model III: Plasma excited by currents in external coils

(6)

equilibrium only

x

-dependent:

ξ(x, y, z; t) = ξ(x) e

i(kyy+kzz−ωt) where

ω

= ω

d

+ iν

, with

0 ≤ ν  1

(cf. later)

ignore gravity + low-

β

approximation

SMWs dropped

• B

uniform (

z

-dir.)

⇒ k



= f = k

z and

k

= g = k

y constants

wave or spectral equation for a plane slab

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ d dx(γp+ B 2) d dx − f 2B2 d dxg(γp + B 2) d dxf γp − g(γp+ B2) d dx −g 2p+ B2) − f2B2 −gfγp − fγp d dx −f g γp −f 2γp ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎝ ξ η ζ ⎞ ⎟ ⎟ ⎟ ⎠ = −ρω2 ⎛ ⎜ ⎝ ξ η ζ ⎞ ⎟ ⎠ simplifies drastically:

g

= g(x) ≡ −ie

· ∇ = G/B

= k

y

,

G

≡ k

y

B

z

− k

z

B

y

= k

y

B

z

f

= f(x) ≡ −ie



· ∇ = F/B

= k

z

,

F

≡ k

y

B

y

+ k

z

B

z

= k

z

B

z

(7)

equilibrium only

x

-dependent:

ξ(x, y, z; t) = ξ(x) e

i(kyy+kzz−ωt) where

ω

= ω

d

+ iν

, with

0 ≤ ν  1

(cf. later)

ignore gravity + low-

β

approximation

SMWs dropped

• B

uniform

⇒ k



= f = k

z and

k

= g = k

y constants

ρω

2

+

d

dx

B

2

d

dx

− k

2 

B

2

d

dx

k

B

2

k

B

2

d

dx

ρω

2

− k

2 0

B

2

ξ

x

⎠ =

0

0

where

k

02

≡ k

2

+ k

2

k

= 0

: AWs and FMWs are coupled!

vital for resonant absorption!

(8)

d

dx

(

ρω

2

− k

2

B

2

ρω

2

− k

2 0

B

2

B

2

x

dx

) + (ρω

2

− k

2 

B

2

) ξ

x

= 0 ,

2nd-order ODE, special (simple) form of HL eq.

focus on nearly perpendicular propagation, i.e.

k



 k

≈ k

and very strong coupling (although

ω

A2

= k

2

v

A2

 ω

f 02

≈ k

2

v

A2)

d

2

ξ

x

dx

2

+

1



d

dx

x

dx

− k

2

ξ

x

= 0

with



(x) ≡ ρ(ω

2

− ω

A2

(x))

Chen & Hasegawa (’74):

Re[(x)] = ⎧ ⎨ ⎩ 1 (x < x1) 1 + 2 − 1 x2 − x1 (x − x1) (x1 ≤ x ≤ x2) ,

choose

ω

d

: ∃x

0

:



(x

0

) = 0

Re(ε) x ε2 ε1 plasma vacuum (1) (2) (3) (4) antenna x0 c x1 x2=0 a

(9)

Plasma solution

region (1)

: simple Helmholtz equation (since

d

dx

= 0

)

•  = 

1

ξ

x(1)

= A

1

e

k⊥(x+a)

+ B

1

e

−k⊥(x+a) (

A

1

, B

1 : from BCs)

region (2)

:

use normalized variable

X

k



d/dx

=

ak





2

− 

1

0th-order modified Bessel eq.:

d

2

ξ

x

dX

2

+

1

X

x

dX

− ξ

x

= 0

⇒ ξ

(2)

x

= A

1

(A

2

I

0

(X) + B

2

K

0

(X))

(constants such that BCs simple)

BC: solution finite as

x

→ −∞ ⇒ B

1

= 0

BC at

x

= x

1

(= −a)

: both

ξ

x and

ξ

x continuous

A2I0(X1) + B2K0(X1) = 1 A2 = X1[K0(X1) + K1(X1)] A2I1(X1) − B2K1(X1) = 1 B2 = −X1[I0(X1) − I1(X1)]

(10)

Vacuum solution

simpler equations, viz.

∇ × ˆQ = 0

and

∇ · ˆQ = 0

Q

ˆ

y

=

k

k



Q

ˆ

z

,

Q

ˆ

x

=

−i

k



∂ ˆ

Q

z

∂x

,

2

Q

ˆ

z

∂x

2

= k

2 0

Q

ˆ

z (Helmholtz)

⇒ ˆ

Q

(3)z

= A

3

e

−k0(x−c)

+ B

3

e

k0(x−c) and

Q

ˆ

(4)z

= A

4

e

−k0(x−c)

+ B

4

e

k0(x−c) Re(ε) x ε2 ε1 plasma vacuum (1) (2) (3) (4) antenna x0 c x1 x2=0 a

(11)

Vacuum solution

simpler equations, viz.

∇ × ˆQ = 0

and

∇ · ˆQ = 0

Q

ˆ

y

=

k

k



Q

ˆ

z

,

Q

ˆ

x

=

−i

k



∂ ˆ

Q

z

∂x

,

2

Q

ˆ

z

∂x

2

= k

2 0

Q

ˆ

z (Helmholtz)

⇒ ˆ

Q

(3)z

= A

3

e

−k0(x−c)

+ B

3

e

k0(x−c) and

Q

ˆ

(4)z

= A

4

e

−k0(x−c)

+ B

4

e

k0(x−c)

BC: solution finite as

x

→ +∞ ⇒ B

4

= 0

BC at

x

= x

a: surface current

j

c

= J



e

i(kyy+kzz−ωt)

⇒ [[ ˆ

Q

z

]]

c

= −J

y but

[[ ˆ

Q

x

]]

c

= 0

⇒ A

3

= A

4

+

12

J

y and

B

3

=

12

J

y

Q

ˆ

(3)z

= A

4

e

−k

0(x−c)



‘induced’

− J

 y

cosh(k

0

(x − c))



‘driven’

(12)

Linking the plasma and vacuum solutions

already 6 BCs

only

A

4 and

A

1 left

two more BCs required for unique solution of this driven problem!

BCs at

x

= x

2

(= 0)

: continuity of

Q

ˆ

x and total pressure (i.e.

Q

ˆ

z)

⇒ k



x(2)





x2

= −

1

k



∂ ˆ

Q

(3)z

∂x







x2 and

B

k

2

B

2

− 

∂ξ

x(2)

∂x







x2

= ˆ

Q

(3)z





x2

A4 = [C cosh(k0c) − D sinh(k0c)]A1, A1 = −Jy e −k0c C − D, with C ≡ (k2/k0)B[A2I0(X2) + B2K0(X2)], and D k⊥B2 k2B2 −  2[A2 I1(X2) − B2K1(X2)]

(13)

Some remarks. . .

Chen & Hasegawa (’74) conveniently avoided the singularity at

x

0 where

ω

d

= ω

A

(x

0

)

by considering a complex

ω

= ω

d

+ iν

⇒ ν =

‘artificial damping’ (

real damping!)

resonant ‘absorption’ (solution

∼ e

νt)

solution in terms of modified Bessel functions!

what happened to the logarithmic singularity??

close to

x

0 :



 1

and thus

X

 1

(14)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 x ~ 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 0 . 0 5 0 . 0 9 0 . 1 4 x ~ 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 x ~ 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 x ~ Re( ) Im( ) Re( ) Im( ) ξ ξ ξ ξ x x y y

Analytic solutions ξx(2) and ξ(2)(= ξy) in region (2) (−a ≤ x ≤ 0) as a function of the shifted coordinate

˜x ≡ x/a + 1 for a = B = 1, ωd = k = Jy = 1, and ˜x0 = 0.5; δ = 0.001, k⊥ = 5

(15)

Energy ‘absorption’ rate

remark: complex notation

time average of

Ae

iωt and

Be

iωt is 12

AB

energy ‘absorption rate’ (in steady state) derived from Poynting vector

S =

12

E

× Q

:

dW

dt

= L

y

L

z Re

[S(x

2

) − S(x

1

)] · e

x

with

L

y and

L

z the size of the plasma in the

y

and

z

direction

• E = iω ξ × B

⇒ E



= 0,

and

E

= −iω B ξ

x

dW

dt

=

ω

d

2

L

y

L

z Im



BQ



ξ

x



xx2 1

,

=

ω

d

2

L

y

L

z Im



B

2



k

2

B

2

− 

x

dx

ξ

x



x2 x1

(16)

0 2 4 6 8 10 1 1.2 1.4 1.6 1.8 2 ωd dW/dt

Scan of the average energy absorption rate dW/dtin the steady state versus the driving frequency for 1 ≤ ωd≤ 2 for δ = 0.001, a = 0.005, c = 0.1, k = 1, k = 10, ρ1 = 1, ρ2 = 0 and J y = 1. ‘quasi-mode’

Re ω = ±



ρ

1

ω

A12

+ ρ

2

ω

A22

ρ

1

+ ρ

2

ρ

2

= 0

=⇒

Re ω =

2 ω

A1

(17)





Ideal quasi-modes (cf. Chap. 10)

x1 x2 x x 0 ω2 A2 ω2 A1

x x1 x2 ξ x 0

step discontinuity of Alfv ´en frequency surface mode

-a 0 a x ω2 A2 ω2 A1

• x x • n = 0 n = -1 n = 0 n = 1 n = 0 x x

smoothing the discontinuity damped (!) ‘quasi-mode’

(18)





Different kinds of quasi-modes

0 2.5 5 7.5 10 12.5 15 0 2.5 5 7.5 10 12.5 15 17.5 20 ω kz

Eigenfrequencies of the first three fast eigenmodes (grey lines) with upper and lower bound of the Alfv ´en continuum (black lines) as functions of kz (for L = a = 1, and ky = 0). [From: De Groof et al. [?]]

increasing

k

z results in ever more FMWs ‘swallowed’ by the continuum

for

k

y

= 0

the FMWs couple to AWs and become quasi-modes

(19)

Resonant

dissipation

visco-resistive MHD equivalent of previous Eqs. reads (for hot plasmas)

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ ρω2 + d dx B 2 d dx − k 2 B2 − iωρ(˜η + ν) d2 dx2 d dxk⊥B 2 −k⊥B2 d dx ρω 2 − k2B2 − iωρ(˜η + ν) d2 dx2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎝ ξx ⎞ ⎟ ⎠ = ⎛ ⎜ ⎝ 0 0 ⎞ ⎟ ⎠

where the (scalar) viscosity

ν

and the magnetic diffusivity

˜η ≡ η/μ

0

= η/(4π×10

−7

)

, are only retained in terms with derivatives in the

x

-direction

remove the singularity (like ‘artificial’ damping)

nearly-singular behavior

dissipative effects cause a real mono-periodically driven plasma to reach a stationary state after a finite time

(20)



Remark on resistive solution

Kappraff & Tataronis (’77): similar planar set-up, resistive solution:

ξ

(t) ∼

=



N

d

)

t

exp(−iω

d

t

)

(for

t < t

h)

N

d

) t

h

exp(−iω

d

t

)

(for

t > t

h)

,

with

N

d

)

a constant (independent of

η

), and with

t

h

=



24μ

0

ω

d2

η



1/3



2B

 1

(x

0

)

B

ρ



(x

0

)

ρ



−2/3

.

(21)





Remark on resistive energetics

Maxwell’s law + Faraday’s law:

−∇ · (E

× Q) =

j

1

· E

+ Q ·

∂tQ

electrical energy:

j

1

· E

= η|j

1

|

2

+ v

· j

1

× B

0

equation of motion

‘mechanical energy equation’:

ρ

0

v

·

v

∂t

= −v

· ∇p

1

+ v

· j

0

× Q + v

· j

1

× B

0

.

combined and integrated over the plasma volume

V

: resistive energy balance

1 2



V

∇ · (E

× Q) dV =

1 2



V

ρ

0

v

·

v

∂t

dV



˙ K

+

1 2



V

v

· ∇p

1

− v

· j

0

× Q + Q ·

Q

∂t

dV



˙ Wp

+

1 2



V

η

|j

1

|

2

dV



˙ D

.

(22)





Remark on resistive solution (cont.)

LHS is related to power emitted by the antenna: LHS

=

+

12



ˆ V

∇ · (ˆE

× ˆ

Q) = −

1 2



ˆ V

ˆj

 c

· ˆE

d ˆ

V



Pant

1 2



ˆ V

ˆQ ·

∂ ˆ

Q

∂t

d ˆ

V



˙ Wv

(the inflow of electromagnetic energy in the plasma equals the outflow of electromag-netic energy out of the vacuum region and the power emitted by the antenna (

P

ant) minus the rate of change of the vacuum magnetic energy (

W

˙

v))

combining the previous two equations yields

P

ant

= ˙K + ˙W

p

+ ˙

W

v

+ ˙D

it has been shown that:



V

ηJ

12

dx

=

dW

(23)

 

Applications in tokamaks

supplementary HEATING:

theory from early ’70s (Tataronis & Gross-mann (’73); Chen & Hasegawa (’74))

many experiments (TCV!):

very efficient!

but: mainly edge heating

too efficient for 2-resonance heating!

DAMPING of gap modes

(discrete and global modes)

destabilized by

α

-particles

⇒ α

-particles lost by particle-wave resonance (was demonstrated in TFTR and DIII-D)

experiments showed a higher threshold than predicted from theory (clear indication of damping

∼ 0.5 − 1 %

)

(24)

Continuum branches and gap modes for n = −3, m = 2, 3, 4, 5, 6

damping of gap modes may be caused by coupling to continuum modes corresponding to continuum branches overlying the gaps

(25)

Convergence study of the relative damping versus plasma resistivity (3.4%)

Referenties

GERELATEERDE DOCUMENTEN

Ook het onderzoek van Wageningen-UR kwam, net voor de eeuwwisseling, tot de conclusie dat goed omspringen met voeding qua stalemissie tot een resultaat kan leiden dat gelijk aan

Kannetjes met een bolvormig lichaam, drie tweevoudig ingeknepen voetjes, trechtervormige hals met afgeronde lip (diam.: 10-11 cm); oor aan de rand vastgehecht; ribbels

Gestimuleerd door de goede resultaten van het gebruik van het Algemeen Hoogtebestand Nederland (AHN) bij de kartering en evaluatie van Celtic Fields in Nederland92, voerden we

African schools does not effectively address racial integration, which can lead to the realisation of social justice in HOA schools, because of a lack of

Sleuf I tot IV (gelegen het dichtst bij de Garonnestraat) hadden allen een quasi gelijkaardige opbouw (zie foto sleuf 1); beschrijving:.. 0-20

The equilibrium director con6guration of a twist- nematic LC cell at a given voltage across the plates is found by minimizing the Gibbs free energy.. The tilt angle 8 determines