• No results found

Durability and leach-ability evaluation of K-based geopolymer concrete in real environmental conditions

N/A
N/A
Protected

Academic year: 2021

Share "Durability and leach-ability evaluation of K-based geopolymer concrete in real environmental conditions"

Copied!
23
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Azarsa, P., & Gupta, R. (2020). Durability and leach-ability evaluation of K-based

geopolymer concrete in real environmental conditions. Case Studies in Construction

Materials, Vol. 13, 1-22. https://doi.org/10.1016/j.cscm.2020.e00366.

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

Durability and leach-ability evaluation of K-based geopolymer concrete in real

environmental conditions

Peiman Azarsa, & Rishi Gupta

April 2020

© 2020 Peiman Azarsa et al. This is an open access article distributed under the terms of the Creative

Commons Attribution License.

https://creativecommons.org/licenses/by-nc-nd/4.0/

This article was originally published at:

(2)

Case

study

Durability

and

leach-ability

evaluation

of

K-based

geopolymer

concrete

in

real

environmental

conditions

Peiman

Azarsa

a

,

Rishi

Gupta

b,

*

,1

aDepartmentofCivilEngineering,UniversityofVictoria,Victoria,Canada bDepartmentofCivilEngineering,UniversityofVictoria,Victoria,Canada

ARTICLE INFO

Articlehistory: Received19August2019

Receivedinrevisedform20April2020 Accepted21April2020

Keywords:

Realenvironmentalexposure Geopolymerconcrete Fly-ash Bottom-ash Potassium-based Non-destructivetests Durability Leaching ABSTRACT

GeopolymerConcrete(GPC)asanalternativetoPortlandCementConcrete(PCC)isa cement-lessand greenconstructionmaterialwhich isproducedbymixingindustrial by-productswith analkalinesolution.Inthisstudy,PCCandPotassium-based(K-based)GPCsynthesizedwith 50%fly-ashand50%bottom-ashwereexposedtotherealenvironmentalconditionsto evaluatetheirchemicalmetalsleach-abilityanddurabilityover150and240daysofexposure respectively.Themix containedpotassiumhydroxideconcentrationof12molarity,potassium silicate/potassiumhydroxideratioof1.47,alkalinesolution/ashes(fly-ashandbottom-ash) ratioof0.54and total aggregatecontent of1800kg/m3.TodevelopGPC,twomethods ofcuring

(steamcuringanddrycuring) wereusedtoincreasethecompressivestrengthofGPC. Accordingtotheresultofcompressiontest,thecompressivestrengthofsteam-curedGPC increased3.5timeswhentemperatureelevatedfromambienttemperature(~10C)to80C. While,anincreaseincompressivestrengthofdry-curedGPCsampleswas2.3times. Non-DestructiveTests(NDT)sincludingSchmidthammer,ultrasonicpulsevelocityandresonant frequencytestwereemployedtomeasuretherelativedynamicmodulusofelasticity.Inthis study,paverblockhas beenselectedasanapplicationsincetothebest ofour knowledge,there is no work reported the effect of real environmental conditions on leach-ability and mechanicalpropertiesofK-basedGPCpaverblocks.Twoareaswerepavedwithatotalof150 GPCand210PCCpaverblocks.TheresultsoftheNDTsinarea1showthattheaveragevelocity andcompressivestrengthofGPCdecreasedapproximately11.6%and23.4%respectively. While,theaveragevelocityandcompressivestrengthofPCCdecreasedabout8.3%and8.2% respectively.Inarea2,theaveragerateofvelocityandcompressivestrengthlossofGPCwas about12.03%and19.51%respectively.Whereas,maximumdecreaseinaveragevelocityand compressivestrengthofPCCover240daysofexposurewas5.28%and9.65%respectively. Leach-abilityofGPCasanotherinnovativeaspectofcurrentstudywasalsomeasuredusing HACHstripssince the releaseofheavymetalscanbeaconcerninGPC.Theresults indicatethat duetotheheat-treatmentofGPCpaverblocks,alltheparametersincludingtotalalkalinity, totalhardness,pH,totalchlorine,phosphate,copper,ammonia,iron,nitrateandnitritewere withinthestandarddomainandwereconstantover150daysofexposure.Therelative dynamicmodulusofelasticitypowerfunctionmodelandexponentialfunctionmodelwere establishedtofindasuitabledamagepredictivemodelforbothtypesofconcrete.Itwas concludedthatduetothehighervaluesofAdj.R2forbothGPC(0.96)andPCC(0.92),thepower

functionrelationshipcomparedwellwiththeexponentialfunction.

©2020TheAuthor(s).PublishedbyElsevier Ltd.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

*Correspondingauthorat:DepartmentofCivilEngineering,UniversityofVictoria,Victoria,Canada. E-mailaddresses:azarsap@uvic.ca(P.Azarsa),guptar@uvic.ca(R.Gupta).

1Postaladdress:ECSbuilding,Civilengineeringdepartment,UniversityofVictoria,3800FinnertyRd,Victoria,BCV8P5C2.

https://doi.org/10.1016/j.cscm.2020.e00366

2214-5095/©2020TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

(3)

1.Introduction

Inthepastfewdecades,emissionofCarbonDioxide(CO2)throughhumanandnaturalprocessessuchashumanactivities,

disposalofwastematerialsandconsumingnaturalresourcesisconsideredasthemostimportantcauseofclimatechange.In

theconstructionindustry,cementproductionisoneofthemaincontributorstoincreasingCO2emissionintheworld.Thatis

whytheutilizationofwastematerialintheproductionofconcretecanbeapossiblealternativetocement[1].Accordingto

Mohammadhosseini et al. [2] and Dimitriou et al. [3], greater utilization of waste materials mitigate the negative

environmentalimpacts.Sincewastematerialsareusedinnumerousapplications,itisessentialtoinvestigatetheireffecton

themechanicalpropertiesofmaterialsproduced.ThestudybyMohammadhosseinietal.[4]showsthatthemechanical

propertiesofSelf-CompactingConcrete(SCC)includingcompressivestrength,splittingtensileandflexuralstrengthcanbe

improvedbywater/binderratioof0.4and30%replacementofpalmoilfuelashwithcement.

Towardachievingasustainablematerialandgreenenvironment,GeopolymerConcrete(GPC)hasbeenmaterializedas

oneofthealternativestoPortlandCementConcrete(PCC)intheconstructionindustryduetoitsabilitytominimizethe

requirementfornaturalresources.GPCusesnaturalaluminosilicatematerialsactivatedbyanalkaliactivator,whicharethen

combinedwithfineandcoarseaggregates.Moreover,previousstudies[5,6]onGPCindicatethatitcanbeusedforthe

constructionapplicationsduetosufficientdurability,workableslump,andcomparablegradeofstrengthtoitscounterpart

PCC.ThestudiesbyHardjasaputraetal.[7]andZerzourietal.[8]indicatethatGPCoffersconsiderabledurabilityand

mechanical properties compared to conventional concrete including compressive strength, flexural strength, elastic

modulus,sulfuricacidattackresistanceetc.Pereiraetal.[9]pointedoutthatbothGPCandPCCachievedsimilarcompressive

strength(̴60MPa)upto2yearsofageing.Inaddition,Nabeeletal.[10]reportedthatGPCsynthesizedbyfly-ashandslaghad

lowerUltrasonicPulseVelocity(UPV)thanOrdinaryPortlandCement(OPC).However,Nabeeletal.[10]alsomentionedthat

bothGPCandOPCwithUPVrangeof3.5–4.5Km/sarecategorizedas“good”qualityconcreteatageof7daysand28days.

Fly-ashisoneofthemainconstituentsofGPCthatispulverizedandblownwithairintothefurnacewhereitignites,

generatesheatandformsash.Fly-ashisapozzolanmaterial,containingaluminousandsiliceouswhichformsacompound

similartocement.AccordingtoAbualrousetal.[11],themosteffectivelineofattacktoincreasethewastematerialsamount

inlimitedlandsandreduceCO2emissionisusingfly-ashasasupplementarycementitiousmaterialorpartialsubstitution

forclinkerproduction.Itisreportedthatabout80%oftheunburnedmaterialorfly-ashisentrainedinthefluegaswhen

pulverizedcoalisburnedinadrycondition.Theremaining20%oftheashisdrybottom-ashthathassimilarchemical

properties tofly-ash, consisting of silica and alumina [12]. However, often ignored, bottom-ash as partof the

non-combustibleresidueofcombustioninafurnacecanalsobeusedtoproduceagreenconstructionmaterial.Thatiswhy,inthe

currentstudy,attempts havebeenmadetoproduceGPC madebycombination fly-ashandbottom-ash. Thaarriniand

Ramasamy[13]reportedthatbottom-ashbasedGPCwithSodiumHydroxide(NaOH)andSodiumSilicate(Na2SiO3)ratioof2

yieldedacompressivestrengthof41.53MPaand48.55MPaunderambientandsteamcuring(60C)conditionsrespectively.

Theutilization of fly-ashor bottom-ashtoproduce GPC requiresan alkalinesolution. Themost commonalkaline

solutionsusedinGPCstudiesareNaOHandNa2SiO3[14–18].However,afewstudiessuchasSakkasetal.[19]aswellas

Hosanetal.[20]reportedthatthecombinationofalkalinesolutionsuchasPotassiumHydroxide(KOH)andsolublesilicate

suchasPotassiumSilicate(K2SiO3)canalsobeusedintheproductionofGPC.Sabithaetal.[21]andBakharevetal.[22]

reportedthatalthoughsodium-basedactivatorsarebroadlyusedfortheproductionofGPC,potassium-basedactivatorsare

also claimed to decrease the initial setting, improve the geopolymerization process and consequently, increase the

compressivestrengthofGPCaswellasitsworkability.Therefore,inthis studyattemptshavebeenmadetodevelop a

Potassium-Based(K-based)GPCusingauniquecombinationoffly-ashandbottom-ash.Table1showstheflowofknowledge

onthedevelopmentofGPC.

1.1.Researchsignificance

Sincetheconsumptionofbottom-ashiscomparativelylimited,utilizingthisby-productmaterialisoneofthecritical

challengesinrecentdecades[23,24].Hence,oneofthemainobjectivesofthecurrentstudyistodevelopaK-basedGPC

madebyacombinationof50%fly-ashand50%bottom-ash.Further,theknowledgegaponmechanicalpropertiesand

leach-abilityunderrealenvironmentalexposureisfilled.Inthisstudy,GPCpaverblockhasbeenselectedasanapplicationsince

thereis nowork authorscouldfind thatreports theeffect oflow temperatureand wetting-dryingonK-basedGPC’s

performanceunderrealenvironmentalconditions.Asalaboratoryinvestigation,Khandoletal.[25]pointedoutthatfly-ash

basedalkaliactivatedpaverblockhassuperiorcompressive strength,abrasionresistance, andlowerwaterabsorption

comparedtoitscounterpartOPC.

LeachingassessmentofGPCisanotherimportantconcernandmatterofinterestinengineeringconcepts,whichmustbe

knownwhenusingthismaterialinexposedapplications.Numerousstudies[26–28]haveassessedtheleach-abilityofPCC,

however,thereisnoinformationavailableforK-basedGPCmadebyacombinationoffly-ashandbottom-ash.Moreover,

testsinrealenvironmentalconditionsincludingcoldclimatestoestimatetheinteractionofK-basedGPCleachingwith

ground-waterarenotreported.Hence,anothermainobjectiveofthepresentstudyistoinvestigatetheleach-abilityof

chemicalmetalsofbothPCCandGPCovereverythirtydaysofexposure.Izquierdoetal.[29]reportedthatfly-ashbased

geopolymermatrixisappropriatefortheimmobilizationofmanychemicalelementsincludingBe,Bi,Cd,Co,Cr,Cu,Nb,Ni,

(4)

ascomparedwithflyash(rawmaterial).Severalknowledgegapsthatwereindicatedinthissectionarestudiedinthis

currentwork.

2.PrecursorsofGPC

2.1.Fly-ashandbottom-ash

Inthisstudy,classFfly-ashandbottom-ashwereselectedasfineparticulateconstituentsofGPCtodevelopasustainable

concretemixforconstructingpaverblocks.BasedonASTMC618[30],threeclassesoffly-ashwithvariouspozzolanicand

cementitiouspropertiesareavailable.Generally,classFgeneratedfromburninganthraciteorbituminouscoalisusedinthe

productionofGPC.Inthisstudy,bothfly-ashandbottom-ashwereobtainedfromLafargeCanadaInc.

AccordingtoareportmadebyLafargeInc.,X-RayDiffraction(XRD)wasusedtomeasurechemicalelementsoffly-ashand

bottom-ash.Table2showsthecomparisonbetweenchemicalcompositionsofLafargefly-ashandothertypesoffly-ashfrom

othersources.AscanbeseeninTable2,alltheavailablechemicalelementsofthreetypesoffly-ashareintherangeofASTM

C618[30].Comparingthechemicalcontentsofthreetypesoffly-ash,CaOwasfoundinagreaterpercentageinLafarge

fly-ashwhichduetothepolymerizationreactionwithhydratedmaterialsresultsinagreatercompressivestrength[31].

Bottom-ashwithcoarserparticlesizecomparetofly-ashwassieved(#1.18mm)toremovelargeparticlestoincreasethe

surfaceareaofparticleusedtoultimatelyhelptoachievereasonablestrength.Table4showsthevalueofvariouschemical

elementsofthreetypesofbottom-ash.

AccordingtoTable2and Table4,thechemicalcompositionsofbothfly-ashandbottom-ashobtainedfromvarious

sourcesarevaried.Itcanbeattributedtothechemicalcontentofthecoalburnedandthetypeofoperationprocess[34].It

Table1

FlowofknowledgeonthedevelopmentofGPC.

References Gaps/Findings [1–3] Findings:

TheuseofwastematerialsinproductionofconcretereducedisposalofwastematerialsassociatedwithCO2emission.

Gaps:

Smallportionofwastematerialswasusedinproductionofconcrete.However,inthecurrentstudy,attemptshavebeen madetoremovecementfromthemixtureandusewastematerialsinproductionofGPC.

[4] Gaps:

Inthisstudy[4],PalmOilFuelAsh(POFA)wasusedtoenhanceperformanceofthemixture.However,theeffectofboth fly-ashandbottom-ashondurabilityofGPCisstillquestioned.Thatiswhyinthecurrentstudy,NDTswereemployedto investigatedurabilityofGPCmadebybothfly-ashandbottom-ash.

[5,6] Findings:

BothstudiesshowedthatGPCisapropersubstitutetocement-basedconcretewhichisenvironmentallyfriendly constructionmaterial.GPCuseslowamountofnaturalresources,emitslessCO2andhassuperiormechanicalproperties.

[7,8] Findings:

TheinvestigationofvariouspropertiesofGPCincludingelasticmodulus,flexuralstrengthandcompressivestrengthetc.in bothnormalandaggressiveconditionsshowedthatGPCsamplesareslightlyalteredcomparedtoitscounterpartPCC. [9,10] Gaps:

ThesetwostudiesinvestigatedmechanicalpropertiesofGPCmadebyfly-ash,slagandmetakaolin.However,inthe currentstudy,attemptshavebeenmadetocreateadurableGPCmadebyfly-ashandbottom-ash.Moreover,authorscould notfindanyresearchonmechanicalpropertiesofGPCmadebyfly-ashandbottom-ashinpaverblockapplication. [11,12] Findings:

Basedontheresults,fly-ashcanbeusedasaPozzolanandfineaggregateinconcrete.Moreover,thisisthemost sustainableapproachtoreducingtheamountoffly-ashdisposal.

Gaps:

Thesestudiesonlycompareddifferenttypesoffly-ashinconcrete.However,hugeamountofbottom-ashisstilldisposed allovertheworld.Thatiswhy,theauthorsofthecurrentstudyusedbottom-ashasoneofthemainprecursorsofGPC. [13] Findings:

Thisstudyshowedthatbottom-ashalsocanbeusedtoproduceadurableGPCwithcompressivestrengthrangefrom about11–49MPa.

Gaps:

Inthecurrentstudy,themechanicalpropertiesanddurabilityofGPCpaverblockshavebeeninvestigatedinreal environmentalconditionsandcomparedwithitscounterpartPCCpaverblocks.

[14–22] Gaps:

Itiswell-knownthatNa-basedsolutionisbasicallyusedinproductionofGPC.However,notmuchworkreportedonthe mechanicalpropertiesofK-basedGPCpaverblocksinrealenvironmentalconditions.Inthecurrentstudy,NDTssuchas UPVwereusedtoinvestigatedurabilityofK-basedGPCpaverblocks.

Contributionofthis currentstudy

Asaforementioned,themechanicalpropertiesanddurabilityoffly-ashandbottom-ashinGPChavebeenexploredby manyresearchers[1-22].However,notmuchinformationisavailableonthedurabilityandleachingofchemicalmetalsof K-basedGPCmadebycombinationof50%fly-ashand50%bottom-ashinrealenvironmentalconditionsassociationwith realtrafficload.Thatiswhy,thisstudycreatesaparadigmforfuturepracticalexecutionofthisnewgenerationofconcrete calledGPC.

(5)

shouldbenotedthatthereisnostandardreportedthespecification/limitationforutilizationofbottom-ashinaconcrete mixture.

Table5showstherangeofotherpropertiesofbothfly-ashandbottom-ashobtainedfromtheMaterialSafetyDataSheets

(MSDS)ofLafargeCanadaInc.Thephysicalpropertiesofbottom-ashsuchassoundnessarenotpreciselymeasuredby

LafargeCanadaInc.becausebottom-ashisnottypicallyusedintheconstructionindustry.

ThemixdesignshowninTable6wasderivedafterinitialtrialexperimentsonmortarsperformedintheFacilitiesfor

InnovativeMaterialsandInfrastructureMonitoring(FIMIM)bytheauthors[36–38].Trafficisoneofthemostfactorsinpaver

blockdesign.Thedeteriorationcausedtopaverblocksbytrafficdependsonweightofthevehiclesandnumberofload

repetitionsoverthetrafficanalysisperiod.Inordertoquantifythisdeterioration,thenumberofEquivalentSingleAxleLoads

(ESAL)shouldbecalculated.IS15658standard[39]recommendeddifferentgradeofpaverblocksforvariousconstruction

areasandtrafficcategories.InaccordancetoIS15658standard[39],thegradeofM35(f’C=35MPa)wasconsideredforthis

studybecauselessthan150commercialvehiclesdailyusedtheparkingarea.Theconcentrationof12Molarity(M)and50:50

%massratioofbottom-ashtofly-ashwereselectedtoachievetargetstrengthof35MPa.Thistargetstrengthwaschosento

Table3

Physicalpropertiesoffly-ash.

Fly-ash ASTMC618[30] Finenessretainedon45mm(No.325sieve) 17.3% <34%

(complies) StrengthactivityindexwithPortlandcement%ofcontrolat28days 99% >75%

(complies) Waterrequirement,percentofcontrol 100% <105%

(complies) Autoclaveexpansion 0.04% <0.8% (complies) Density 2.65Mg/m3 <5% (complies) Table2

ComparisonbetweenchemicalcompositionsofLafargefly-ashandothertypesoffly-ash.

Properties Fly-ash(%)Currentstudy(Lafarge) Fly-ash(%)[32] Fly-ash(%)[33] ASTMC618(%)[30]

SiO2 47.1 62.04 59.7 70(min) Al2O3 17.4 25.5 27.51 Fe2O3 5.7 4.28 4.91 CaO 14 3.96 1.45 N/A MgO 5.4 1.27 1.18 N/A SO3 0.8 0.73 0.16 5.0(max)

LOI 0.19 N/A 2.66 6.0(max)

Na2O N/A 0.46 0.82 N/A

K2O N/A N/A 2.39 N/A

TiO2 N/A 1.33 N/A N/A

P2O5 N/A 0.31 N/A N/A

Mn2O3 N/A N/A N/A N/A

Thephysicalpropertiesoffly-ashshowninTable3wereanalyzedattheLafargeSeattleConcreteLab.ItcanbeseeninTable3thatallthephysicalproperties ofusedfly-ashinthisstudycomplieswiththerequirementofASTMC618[30].

Table4

ComparisonbetweenchemicalcompositionsofLafargebottom-ashandothertypesofbottom-ash.

Properties Bottom-ash(%)Currentstudy(Lafarge) Bottom-ash(%)[34] Bottom-ash(%)[35]

SiO2 60.11 22.90 19.12 Al2O3 14.35 0.18 12.03 Fe2O3 5.92 11.39 9.31 CaO 10.40 17.93 43.11 MgO 4.49 1.0.4 2.11 SO3 0.10 0.73 2.39

LOI 0.00 N/A N/A

Na2O 2.232 3.68 2.35

K2O 1.766 N/A 0.84

TiO2 0.892 N/A 2.48

P2O5 0.200 N/A 2.62

(6)

produceGPCpaverblocks withpropertiescomparabletothatofcommerciallyavailablePCCpaverblocksand tolater

comparethedurabilityofthesetwotypesofpaverblocksinrealenvironmentalconditions.However,theproprietarymix

designofPCCpaverblockswasnotrevealedbythemanufacturer.CommerciallyproducedPCCpaverblockswerepurchased

fromAbbotsfordConcreteProductsManufacturerofAbbotsford,B.C.,Canada.

2.1.1.Morphologyoffly-ashandbottom-ash

AscanningElectronMicroscope(SEM)wasperformedusingHitachiS-4800tocaptureimagesoffly-ashandbottom-ash

attheAdvancedMicroscopyFacility(AMF)oftheUniversityofVictoria.Athinlayerofcarbonwassputteredonthesurfaceof

ashestoincreasetheconductivityofparticles.TheSEMacceleratingvoltageof15.0KVwasused.

Basically,fly-ashparticlesaredividedintothreeclasses:solidsphere,cenospheresandplerospheres.Cenospheresfly-ash

haslowerbulkdensity,greaterthermalresistance,higherworkabilityandsuperiorstrength[40].While,plerospheresare

createdbyimpregnatedcenosphereswithmicro-spheres,whichiswhyplerospheresareheavierthancenospheresdueto

extraweightofbaggedmicrospheres[41].

AscanbeseeninFig.1,fly-ashparticlesareglassy,sphericalinshapeandthereisnoevidenceofcenospheres(totally

hollow)andplerospheres(filledwithseveraltinyspheres)shapes.Generally,lowerfinenessandlowcarboncontentin

fly-ashdecreasethewaterdemandofconcrete[42]duetoitsspecificsurfacerole[43].Table2showsthatLossofIgnition(LOI)

ofusedfly-ashinthecurrentstudyis0.19%.Fly-ashwithlessthan4%LOIisconsideredaslowcarboncontentfly-ash.

Fig.1(a)&(b)presentthatallfly-ashparticlesaresphericalglassy.Thesphericalglassyshapeoffly-ashparticlesisalso

reportedbyDavidovits[44].

Table5

Therangeofotherpropertiesofbothfly-ashandbottom-ash.

Material Appearance Odor pH Boilingpoint Specificgravity Solubility

Fly-ash Gray/BlackorBrown/Tan(Powder) odorless 412 >1000C 2.02.9(water=1) Water:<5%(slightly)

Bottom-ash Gray/BlackorBrown/Tan(Powder) odorless 412 >1000C 2.02.9(water=1) Water:<5%(slightly)

Table6

MixproportionsofK-basedGPC.

Material Content(Kg/m3) Flyash 194 Bottomash 194 Coarseaggregates 1170 Sand 630 KOH(12M) 85.16 K2SiO3 125.74 ExtraWater 38.71

AirEntrainedAdmixture 1.5

Fig.1.SEMmicrographoffly-ashparticles.

(7)

Amagnificationof1200xisusedbothinFigs.1and2foreasycomparison.Basedontheseobservations,itisexpectedthat

replacementoffly-ashwithanyamountofbottom-ashwouldnegativelyimpactonworkability,sincenotallbottom-ash

particleswerefoundtobespherical.

Fig.2(a)and(b)wererandomlyselectedtocharacterizetheshapeofbottom-ashparticles.Itcanbeseenthatatthe

acceleratingvoltageof15.0KV,non-uniformshapeswithasmallamountofsphericalshapeweredetectedinbottom-ash

samples.

Inaccordancetoapreviousstudyonmicrostructureoffly-ashandbottom-ashperformedbythecurrentauthors[45],the

particlesizeoffly-ashwasabout1–20

m

mwithaveragesizeof10

m

m.While,themeansizeoftheroundedshape

bottom-ashparticleswas58.53

m

m.Theaverageheightandwidthoftheirregularshapedbottom-ashparticleswas22.59

m

mand

12.78

m

mrespectively.

2.2.Alkalinesolution

Asaforementioned,acombinationofalkalinesolutionandsolublesilicateisneededtobeginthegeopolymerization

process.Inthisstudy,attemptshavebeenmadetoimprovethedurabilityofGPCmadebyacombinationofKOHandK2SiO3,

aslimitedinformationisavailableonsuchtypeofGPC.TheindustrialgradeKOHflakesobtainedfromSigma-AldrichPrivate

Ltd,Canadawasusedinthiswork.

Potassium silicate powder (AgSil 16) obtained from PQ Corporation (USA) was used in this study. The chemical

compositionofK2SiO3obtainedfromtheMSDSoftheproductisshowninTable7.

2.3.Aggregates

FineaggregatesandcoarseaggregateswereobtainedfromaquarryinBritishColumbia,Canadawitharelativedry

densityof2.67and2.71respectively.Thewaterabsorptionratiooffineaggregatesandcoarseaggregateswere0.79%and

0.69%respectively.Finenessmoduliofthecoarseandfineaggregatesweremeasured6.85and3.54respectively.Theparticle

sizedistributionofcoarseandfineaggregatesweremeasured(showninFig.3)inaccordancewithASTMC33[46].

3.Methodofcastingandcuring

3.1.Specimenpreparation

Inthisstudy,300GPCpaverblockswerecastattheCivilEngineeringMaterialsFacilityattheUniversityofVictoriain

accordancewithASTMC192[47].

Fig.2.SEMmicrographofbottom-ashparticles.

(a)&(b)Tworandomareasselectedtocharacterizetheshapeofbottom-ashparticles.

Table7

ChemicalcompositionofK2SiO3.

Compound K2O SiO2 H2O

(8)

Firstofall,theKOHsolutionwaspreparedbymixingKOHflakesintowater24hpriortothebatchingday.Secondly,

sandandcoarseaggregatesweremixedfor30sindrycondition.Asheswereaddedtoaggregatesandmixedforanother

30s.Solutionswerethenaddedtothedrymaterialsandmixeduntiluniformity(̴3min),followedbya3minrestperiod,

followedby2minoffinalmixing.Thepreparedmaterialwasplacedintomoldsandvibratedusingatablefor30sto

dischargeairbubblestothesurface.Aftervibration,themoldswerecoveredwithaplasticsheetinthelabenvironment

(approximate relative humidity range of 45 %–70 % and approximate temperature range of 5C–15C); and were

demoldedafter24h.

3.2.Curingmethods

Various trialmix designs werecreated to achieve a strength target of 35MPa. Different curingtemperatures and

durationstestedoncylindricalsampleswereselectedtodevelopGPCsincethecuringtemperatureanddurationisacritical

parameterinthegeopolymerizationprocesstoobtainhigherstrength.Twotypesofacceleratedcuringmethodswereused

inthisstudy:

3.2.1.Drycuring

Sampleswerekeptinanovenattemperaturesof30,45,60,80Cforaperiodof24hfollowedby24hofambientcuring.

3.2.2.Steamcuring

Halfofthebucketswerefilledwithwaterandthenthesampleswereplacedintothebuckets.Thebucketsweresealedup

topreventexcessiveevaporationof waterduringthecuringprocessandthesampleswerethenkeptintotheovenat

temperaturesof30,45,60,80C.Authorsrefertothiscuringregimeas“steamcuring”inthispaper.Lastly,thepaverblocks

wereremovedafter24handwereleftatambienttemperature.Basedontheresultsofthecompressivestrengthtest,steam

curingatatemperatureof80Cwaschoseninthepresentresearchasthecuringmethod.

Fig.4(a)showsalltherawmaterialsusedintheproductionofGPC.Fig.4(b)alsoshowstheimmersedpaverblockinto

waterandcuredat80Ctoachievehighercompressivestrength.Fig.4(c)showsthecuredpaverblockandFig.4(d)shows

thesize,colorandshapeofGPCafter28daysofcuring.

4.Effectofgeometry

Sincethegeometryofspecimensaffectstheultimatecompressivestrengthofconcrete[48,49],thecompressivestrength

ofcylindrical-shapedsampleswascomparedtothecompressivestrengthofrectangular-shapedsamples(paverblocks)in

accordancewithBritishStandardEN-206[50].

Accordingtothisstandard,compressivestrengthtestisperformedoneither150300mmcylindricalor150mmcubical

samples.Asanexample,whentheminimumspecifiedcompressivestrengthofacylindrical-shapedsampleforlightweight

concreteis35MPa,thecubicsampleisexpectedtobe38MPa[50].However,itismentionedinBritishStandardEN-206[50]

thatcompressivestrengthforothersizesofsamplesshouldbeestimatedfornon-representativevalues.Basedonthe

above-mentioneddiscussion,inthisproject,the100200mmcylinderstrengthwascorrelatedtothepaverblockstrengthby

performinglaboratorytests.Theseresultsarepresentedlaterinthispaper.

(9)

5.Fieldplacementdetails

Twoareasattheentranceofparkinglot#3attheUniversityofVictoriawereselectedtoplaceatotalof150GPCand210

PCCpaverblocks.Area1 showninFig.5(a)was designatedtoinvestigatethecombinedeffectof trafficloadand low

temperatureonpropertiesofGPCandPCC.Fig.5(b)(Area2)indicatesthedesignatedareaforstudyingtheeffectoflow

temperatureonlyontherelativedynamicmodulusofelasticityandleach-abilityofGPCandPCC.Paverblocksinthissection

werenotexpectedtobeexposedtoanytrafficload.

Fig.5(a)showstheplacementareaof2.221m2and31m2forGPCandPCCpaverblocksrespectively.Fig.5(b)also

indicatesthattheGPCandPCCplacementsizeis10.72m2and11m2respectively.TrafficshowninFig.5(c)wasexpected

tocrossstraightoverthepaverblocksandtoturnoveranexistingconcreteslab.Sobothpavertypeswereexposedtomoreor

lessthesameconditions.

6.Testmethods

InitialtestingonGPCcylindricalsampleswasperformedduringthemixoptimizationphase.Asmentionedearlier,the

highestcompressivestrengthwasachievedatatemperatureof80Cofsteamcuring.So,samplesforallsubsequenttests

werecuredatatemperatureof80C.Inthisresearch,Non-DestructiveTesting(NDT)devicessuchasreboundhammerand

ultrasonicpulsevelocitywerealsoemployedtoevaluatethepropertiesofGPCandPCCexposedtorealenvironmental

conditions.

6.1.Compressivestrengthofcylinders

Atotalof54GPCcylindricalsamples(100mmdiameterand200mmheight)weretestedinaccordancewithASTMC39

[51]usingtheForneycompressiontestingmachine#AD650.AccordingtoASTMC39[51],thecompressiveloadonthe

specimenwasappliedatarateof0.250.05MPa/s.

(10)

6.2.Compressivestrengthofpaverblocks

According toASTM C805[52],Schmidthammer orrebound hammerprocessesthe reboundof a spring-loaded

mass impacting against the surface of a concrete sample. The Schmidt hammer knocks the concrete surface at

certain energy. Its rebound is dependent on the rigidityof the concretesurface/sample. Therebound rate can be

used to measure the concrete's compressive strength by using a conversion chart. In this study, Original Proceq

Schmidt hammer Type N/NR, as a surface hardness method, was used to measure the change in compressive

strengthof paverblocksevery monthafterinitialplacementinaccordancewithASTMC805[52].Thetestscan be

carried outin three positions including horizontal, vertically (upward or downward) and angledposition. In this

study,Schmidthammerwashitonthetopsurfaceofthepaverblocksverticallydownwardtomeasuretheirin-place

compressivestrength.According toASTMC805[52],anaverageoftenSchmidthammerreadingswascalculatedto

obtain accurate results. Moreover, Schmidt hammer was calibrated to be functioning properly after each thirty

reading using an idealtest anvil.

6.3.Ultrasonicpulsevelocity

UPVisoneoftheeffectivemethodstodetermineuniformityandqualityofconcrete.TheUPVmethodevaluates

thetraveltimeoflongitudinalultrasonicwavespassingthroughtheconcrete.Thepathlengthbetweentransducers

divided by the travel time givesthe average velocity of wave propagation. UPVis usedto checkthe existence of

internal flaws and voids in accordance with ASTM C597 [53]. Velocity reduction of UPV test results shows the

internaldeteriorationofthespecimens[54].Inthisstudy,thePunditLabProceqUPVtestinstrumentwasusedwith

bandwidth, measuring resolution, pulse voltage UPV and nominal transducer frequency of 20500kHz, 0.1 us,

125500Vand24500kHzrespectively.Indirecttransmissionmethod(transducerswereheldonthesamesurface)

wasusedtoevaluatethevelocityofpaverblocksin-situ.Sincethe paverblockswereplacedonbeddingsandand

since UPV of sand is different from that of UPV of paver blocks, the optimum pulse width, length and height

parametersinthedeviceweresettothedimensionsofpaverblockssoastoonlymeasuretheUPVofpaverblocks

andeliminate anyeffectof itssurroundings.Every month,three readingswere recorded fromeach paverblockto

have accuratedata of their UPV.

Fig.5.Sitedetails.

(a)Areaforeffectoflowtemperature&trafficloadinvestigation.

(b)Areaforlowtemperature,relativedynamicelasticmodulus&leach-ability. (c)Trafficway.

(11)

ThefollowingequationwasusedtopredictthedynamicmodulusofelasticityformmeasuredUPVinaccordancewith

ASTMC597[53]:

r

 ð1þ

m

Þ 1ð 2

m

ÞV

2

1

m

ð1Þ

E=dynamicelasticmodulus,GPa

r

= density in kg/m3 (Average measured density of GPC:

r

GPC=2439kg/m3 and average assumed density of PCC:

r

PCC=2400kg/m3)

V=measuredpulsevelocityinm/second

m

=assumeddynamicPoisson’sratio(

m

=0.24forbothtypesofconcrete)

6.3.1.Seasonalhumidityeffects

Thehumidityofmaterialschangestheirresponsetoultrasonicwavespassingthroughthem.Hence,itisimportantto

investigatetheeffectofseasonalhumidityonthevelocityofpaverblockssincethepaverblocksareexposedto

wetting-dryingcyclesanddifferenthumidityconditions.Generally,inthefield,allthepaverblocksexperiencedthreehumidity

conditions:fullywet,SaturatedSurfaceDry(SSD)anddry.So,thesamelaboratoryconditionsweresimulatedtomeasurethe

effectofhumidityonvelocityandcompressivestrengthofpaverblocks.Theseresultsarereportedlater.Fig.6showsthe

averageofhighandlowtemperaturesandaveragehumidityrecordedinthecityofVictoriafromNovember2017toAugust

2018[55].TheSchmidthammerandUPVtestwereperformedover240dayswiththelowestandhighesttemperaturesof

1C–20Crespectively.Theseresultsarealsoreportedlater.

6.4.Resonantfrequencytest

ResonantFrequencyTest(RFT)orResonantFrequencyGauge(RTG)asanewNDTmethodhasbroughtalotofattentionto

determinematerialdeterioration.However,this methodistypicallyonlyperformedina labenvironment.While, UPV

methodcanbeusedeitheron-siteorinthelaboratory.So,acomparisonbetweenrelativedynamicmodulusofelasticity

basedonRFTand UPVwas madetodevelop abetterunderstandingofanycorrelationthatexistsbetweenthesetwo

methods.RFT/RTGmethodisbasedonthedeterminationoffundamentaltransverse,longitudinalandtorsionalresonant

frequenciesofvibrationofaconcretesamplethatiscreatedbyanimpactandsensedbyanaccelerometer.

Fig.7showsdifferentpartsoftheRTG/RFTdevicewhichisdesignedforlaboratoryusage.TransverseimpactRFTandUPV

testwereperformedonthirtypaverblocks(inthelab)tomeasurethedynamicmodulusofelasticity.Inthisstudy,Olson

RFT/RTGinstrumentconsistsof aUSB poweredRTG device,BNC connection, 2oz. ball-peenhammer(sphericalhead

hammer),anaccelerometer(10mV/g)andWindows7–10devicerunningOlsoninstruments’RFT/RTGsoftwarewereused.

ThefollowingequationwasusedtopredictthedynamicmodulusofelasticityinaccordancewithASTMC215[56]:

Gd=CMn2 (2)

(12)

Where

Gd=dynamicelasticmodulus,GPa,

C=0.9464(L3T/bt3),m1,

L=lengthofGPCprism,m,

M=massofGPCcylinder(kg),

N=fundamentaltransversefrequency,Hz,

t,b=dimensionsofcross-sectionofaprism,m,

T=correctionfactor

6.5.Waterqualityassessment

Chemicalactivatorsandwastematerialscontainheavymetalsthatcanbemobilizedandcanleachintotheenvironment

[57].Hence,theleach-abilityofGPCandPCCpaverblocksweremeasuredtotracemetalsinaccordancewiththeUnited

States EnvironmentalProtectionAgencyStandard 1311 [58]. Theleaching testswereperformed usingHACH stripsto

determinethequalityofcollectedsamplewaterfromthesite.

7.Resultsanddiscussions

7.1.LaboratoryinvestigationofGPCandPCCsamples

7.1.1.CompressivestrengthofcylindricalGPCsamples

Dissolutionandgeopolymerizationofalumina-silicategelofGPCsignificantlydependonthecuringcondition.Both

highercuringtemperatureanddurationcanbeusedtoacceleratethepolycondensationprocess[59,60].Steamcuringand

drycuringmethodswereusedtoacceleratecuringofGPCatfivedifferenttemperaturesincludingambient,30C,45C,

60C,80C.AscanbeseenintheFig.8,highestcompressivestrengthwasachievedatatemperatureof80Cofsteamcuring.

Itwasalsoobservedthatthecompressivestrengthofsteam-curedsamplesanddry-curedsamplesincreasedbyabout3.5

and2.3timesrespectivelywhenthecuringtemperaturewaschangedfromambienttemperature(̴10C)to80C.Fig.8also

showsthatforthetypeofGPCdevelopedinthisstudy,aminimumincreaseinstrengthisrealizedwhencuringtemperature

isincreasedfromambientto30C.CompressivestrengthalmostdoubleswhenGPCissteam-curedat45Casopposedto

10C.Atalltemperatures,steamcuringoutperformsdrycuring.Theauthorsattributethistofullanduniforminternalcuring

ofsteam-curedsamples.Thisstudyalsoindicatesthatreasonablestrengthcanbeachievedat60Cofcuringandforsome

applicationsitmaynotbenecessarytocureathightemperaturessuchas80C.However,thetargetcompressivestrengthof

35MPaforthecurrentapplication/constructionarea(parkinglotwithlighttraffic)wasachievedat80Cafterinitialtrial

experimentsonGPCsamples.Theabovementionedfindingisingood-agreementwithaperformedstudybyNoushinietal.

(13)

[61]thatNa-basedGPCmadeonlywithfly-ashachievedahigherrateofcompressivestrengthrangedfrom27.4to62.3MPa

whensampleswereexposedtoelevatedtemperature(2390C).However,itshouldbenotedthatNa-basedGPCmadeonly

withfly-ashslightlyreachedtohighercompressivestrengththanK-basedGPCmadebyfly-ashandbottom-ash(present

study)curedtothesametemperatureandduration.ItcanbeattributedtoloweractivationpotentialofKOHcomparedto

NaOHwhichisbecauseoftheionicdiameterdifferencebetweensodiumandpotassium[62].

7.1.2.CompressivestrengthofbothGPCandPCCpaverblocks

Sixpaverblockswerecastandlatercuredatatemperatureof80Ctofindthecompressivestrengthratiobetween

rectangular-shapedandcylindrical-shapedspecimens.Thesampleswereplacedhorizontallybetweentwoplatesofthe

compressivetestingmachine.AscanbeseeninFig.9,theGPCpaverblocksamplesgiveanaveragecompressivestrength

slightlylowerthanthecylindricalsampleswiththesamecuringmethodpossiblyduetohigherstressconcentrationat

cornersofpaverblocks[63].ThisresultshowsthatBritishStandardEN-206[50]overestimatedthecompressivestrengthof

theGPCpaverblock.Onereasonforthisdiscrepancycanbeattributedtothefactthatthisstandardwasoriginallydesigned

forcalculatingthecompressivestrengthofPCCandnotGPC.

TheaveragecompressivestrengthandgeometryconversionfactorofGPCpaverblockswereabout31.4MPaand0.89

respectively.TheaveragecompressivestrengthofPCCpaverblockswas33.5MPa.NoconversionfactorforPCCpaverblocks

couldbecalculatedascommerciallyavailablePCCpaverblockswereusedandnocylinderscouldbecast.However,itis

reportedbyNgocetal.[64]thatthemeancompressivestrengthconversionfactorofcubicsamples(size150mm)and

cylindricalcompressivestrength(150300mm)is0.84.

7.1.3.EffectofhumidityonmassandvelocityofGPCandPCC

AccordingtoASTMC597[53],thehumiditylevelofconcretesamplesaffectthepulsevelocity.Laboratorysimulationof

seasonalconditionswasperformedtomeasurethemassandvelocityofpaverblocksatdifferenthumiditylevelstohavea

Fig.9.AveragecompressivestrengthofGPCandPCCpaverblocks. Fig.8.Averagecompressivestrengthofsteam-curedanddry-curedGPCsamples.

(14)

better understanding of the effect of humidity and wetting-drying cycles on the velocity of paver blocks in real

environmentalconditions.SixGPCandPCCpaverblockswereimmersedintowatertomeasurethemassandUPVofSSDand

fullywetsamples(soakedfor14days).

Fig.10showstheaveragemassandvelocityofGPCandPCCpaverblocksinthreehumidityconditions.TheGPCsamples

showedthatthemassandvelocityratiobetweendryandfullywetconditionsisabout0.98and0.84respectively.While,it

canbeobservedfromtheresultsofPCCsamplesthatthemassandvelocityratiobetweendryandfullywetconditionsis

about0.97and0.79respectively.So,forbothtypesofconcrete,thevelocityandmassincreasedwithahigherhumiditylevel

aswouldbeexpected.Itisalsonotedthatthesusceptibilityformassandvelocitytoincreasewithanincreaseinmoisture

wassimilarforbothtypesofconcrete.

7.2.On-sitecompressivestrengthandvelocity

Fig.11isaschematicshowingtheplacementofPCCandGPCpaverblockson-site.Inarea1,codes1–8areforGPCand

codes9–22areforPCCpaverblocks.Inarea2,codes1–3areforGPCandcodes4–8areforPCCpaverblocks.Thecodes/

numbersarelaterusedaslabelsinFigs.12and13.ThetotalnumberofpaverblockrowsforGPCandPCCareshownwithred

colorandbluecolorrespectively.Threerowsshownwithgreenhatchwereconsideredjustforinvestigationoftheeffectof

trafficloadbutitisbeyondthescopeofthispaper.

Therelationshipbetweencompressivestrength,averagevelocitiesofeachGPCandPCCpaverblocksareshowninFigs. 12

and13.Thecompressivestrengthandvelocityofpaverblocksweremeasuredeverymonthaftertheinitialplacement.

Fig.10.EffectofhumidityonmassandvelocityofGPCandPCC.

(15)
(16)

7.2.1.CompressivestrengthandvelocityofGPC

Fromvisualinspection,overthefirst60days,smalllocaldeteriorationofsurface(scaling)ofsomeGPCpaverblockswas

observed.ThisactionledtolargecracksextendingdownwardfromthedamagedzonetothebottomofGPCpaverblocks(̴15

blocks).Overthefollowing60days,morevoidswereavailablefororganicandinorganicsolutionstopermeatethroughthe

(17)

GPC paverblocks and produce more spallingin GPC paver blocks. After120 daysof exposure toreal environmental

conditions,thecompressivestrengthandvelocitydecreasedandfinally,afterapproximately240days,15%ofGPCpaver

blocksshowedreducedstrengthandvelocityandconsequently,theirtestingwasterminated.Ofthetotalplaced,85%of

paverblocksindicatedacceptableresults.

Inthisstudy,attemptsweremadetotakeallreadingsofUPVandcompressivestrengthonasingledaytominimizethe

effectofchangingenvironmentalfactors.Fig.12showsaveragecompressivestrengthandvelocityof35GPCand59PCC

paverblocksandFig.13showsaveragecompressivestrengthandvelocityof80GPCand140PCCpaverblocks.

BothFigs.12and13showthechangeinaveragecompressivestrengthandvelocityofpaverblocksover240daysof

exposure.AscanbeseeninFigs.12and13,onanaverage,thecompressivestrengthandvelocityofGPCpaverblockswere

higherthanPCCpaverblocksonthefirstdayofexperimentscomparedto150daysofexposure;compressivestrengthand

velocityofGPCdecreasedprogressivelyover 150daysof exposure.However,itcanalsobeseenthatthecompressive

strengthandvelocityofbothtypesofpaverblocksdecreasedslightlyfrom150daysto240daysofexposure.

Fig.12showsthatwhentheageofexposureincreasedfrom1to240days,theaveragevelocityofGPCpaverblocks(1–3)

decreased from 3523.2–3099.3GPa whereas the average velocity of PCC (4–8) paver blocks decreased from 3370.8–

3192.8GPa.ItalsocanbeseeninFig. 12thattheaveragecompressivestrengthofGPC(1–3)andPCC(4–8)decreasedby19.51

%and9.65%respectively.

Fig. 13indicatesthattheaveragevelocityofGPC(1–8)andPCC(9–22)decreasedabout11.6%and8.3%respectivelywhen

theageofexposureincreasesfrom1dayto240days.TheaveragecompressivestrengthofGPC(1–8)andPCC(9–22)also

decreasedabout23.4%and8.2%overtotalageofexposure.

AccordingtotheAmericanConcreteInstitute(ACI)Code318[65],thepastecontentisinterrelatedtomaximumaggregate

size.So,GPCpastewithsmallaggregatesizedesiresmoreamountofAEA.Hence,theauthorshypothesizethatthescalingof

damagedGPCpaverblockswasduetoaninadequateamountofAEAinthepaste.

Permeabilityis anothercauseofscalingofconcretesubjectedto frostaction.Although,GPCtendstoshowa greater

permeabilityresistancethanPCC[66],thisdoesnotmeanlowmoistureabsorption[67].Thegeneralabsenceofmicro-cracksin

theInterfacialTransitionZone(ITZ)istheprincipalreasonforlowpermeability[67].AscanbeseeninFig. 14,GPCpaverblocks

absorbedmorewaterthanPCCpaverblocks.So,thiscouldbeanotherpossiblereasonthatGPCblocksexperiencedscaling

phenomena.Thisfindingisingood-agreementwithaperformedstudybyAlbitaretal.[68]thatthecement-basedconcretehas

lowerwaterabsorptionandsorptivitythanfly-ashbasedandslag-basedGPCduetothecapillarymechanismofthepastes.

AccordingtoaperformedstudybyKhateretal.[60],thecuringregimeiscriticalforthegeopolymerizationprocessof

aluminosilicategelwhichcauseshighearlystrengthgain.However,heat-treatmentmustbeappliedinaproperwaythatit

makesasupremeconditionforthedissolutionandprecipitationofdissolvedsilicaandaluminaspecies.Overall,inthis

study,thevisualinspectionshowedthatanotherpossiblereasonforGPCdeteriorationisshortercuringdurationforthe

paverblocksduringthemanufacturingstage.

Threepitsshownwithredcolor(Fig.14)wereconsideredforcollectingwatersamplespermeatedthroughpaverblocks

andestimatingtheleach-abilityofGPCandPCC.

7.2.2.CompressivestrengthandvelocityofPCC

Inthisstudy,theinitialaveragereadingofcompressivestrengthandvelocityofPCCshowedlowervaluesthanGPCpaver

blocks. Although,contraryto commonbelief, thelow compressive strength of concrete doesnot always leadto low

durability.Basically,each1%ofaddingAEAinmatrixdecreasesthestrengthofconcretebyapproximately5%[67]andasitis

reported[67],non-airentrainedconcretewithhigherstrengthmayshowlowerfrostresistancecomparedtoairentrained

concreteduetoextraairvoidsprovidedtodecreasethehydraulicpressureduringexposuretolowtemperature.Moreover,it

isreportedbyLevyetal.[69]thatuniformlydistributionofairbubbles/AEAthroughcementpasteincreasesthefreeze-thaw

(18)

resistanceofconcrete.So,itcanbeconcludedthatasufficientamountofAEAwasaddedtothePCCmatrix.Hence,thisisone

ofthereasonsthatscalingphenomenawasnotobservedonthesurfaceofPCCpaverblocks.

7.2.3.Leach-abilityofGPCandPCCpaverblocks

Ahealthyecosystemandcleanenvironmentsareessentialtothesurvivalofmankindandotherorganisms.Leaching

assessmentofmaterialsmadebywasteby-productsisvitaltocharacterizetheleachingpotentialoftoxicmetals.Inthis

research,water-proofsheetmembraneswereusedinthefoundationofasectionofpaverblockstopreventpenetrationof

watertothesub-gradelevelandallowsamplingofwaterthathaspercolatedthroughthepaverblocksandhasbeenin

contactwiththem.Watersamplespermeatedthroughpaverblockswerecollectedintothreepits(Fig.14)totracethetotal

alkalinity,totalhardness,pH,totalchlorine,phosphate,copper,ammonia,iron,nitrateandnitrite.Everythirtydays,six

watersampleswerecollectedfromeachGPCandPCCpits.Fig. 15showsthatthepHofGPCandPCCis7.9and6.8respectively

andthesevalueswereconstantoverthetotalageofexposure.GPCpaverblocksshowhigherpHvaluesthanPCCwhichis

attributabletotheuseofKOH[29].Thisfindingisingood-agreementwithaperformedstudybyPoursaeeetal.[70]that

Na-basedGPCmadebyslaghasahigherpHthanPCCduetothepresenceofalkalinesolutioninGPCmixture.Furthermore,asit

isreportedbyIzquierdoetal.[71]thatheat-treatmentofGPCimprovesthematrixmicrostructure,decreasestheporosityof

concreteanddecreasestheleach-abilityofthebinder.So,itcanbeconcludedthatsteamcuringimprovedthemicrostructure

ofGPCpaverblocksandreducedtheamountofheavymetalsinwatersamples.

Totalhardnessinwaterreferstotheamountofdissolvedcalcium(Ca)andmagnesium(Mg).Generally,waterhardness

concentrationbelow60ppm is consideredas soft;60120ppm,moderatelyhard;120180ppm,hard,and more than180ppm,

veryhard.Koziseketal.[72]suggestedthehighestandlowestrateofCa(4080mg/l)andMg(2030mg/l)indrinkingwater

anddefinedtotalhardnessasthesumofCaandMgconcentrationof24mmol/L.ThetotalhardnessofGPCandPCCis120ppm

and180ppmrespectivelyover150daysofexposure.IronasoneofthemainchemicalelementsofGPCandPCCis0.15and0.2

respectivelyoverthetotalageofexposure.Forbothtypesofconcrete,otherelementssuchaschlorine,NitrateandNitritewere

constantover150daysandtheirleach-abilitywerebelowthedetectionlimit.Theresultsshowthatallthemetalswere

immobilizedeffectivelyforbothtypesofconcretes.AlltheelementsofK-basedGPCpaverblockswereconstantover150daysas

the steam curingmethod was used to develop the paste structure [71], which is attributed to a fullreactionof

fly-ashandbottom-ashparticles.ThisisalsoconfirmedbyZhangetal.[73]thatslag-basedGPCcuredat80Cfor8hcaneffectivelyimmobilize

chemicalmetalswhentheamountofchemicalmetalsisintherangeof0.10.3%.

7.3.Dynamicelasticmodulus

7.3.1.ComparisonbetweendynamicelasticmodulusofRFTandUPV

Inthisstudy,after180daysofexposure,thirtypaverblockswereextractedfromthesitetomakeacomparisonbetween

relativedynamicelasticmodulusderivedfromUPVandRFT.

AveragedynamicmodulusofelasticityderivedfromRFTandUPVwerecalculatedinaccordancewithASTMC215[56]and

ASTM C597[53] respectively.In this study,theUPVand thetransverseresonantfrequencyof GPCpaverblocks were

convertedtorelativedynamicelasticmodulususingEqs.(1)and(2)respectively.Atzerodaysofexposure,theaverage

relativedynamicelasticmodulifromRFTandUPVwas12.20GPaand7.78GParespectively.Acomparisonbetweendynamic

elasticmoduliofGPC[37]andreporteddynamicelasticmoduliforPCC[67]showsthatGPChaslowervaluesthanPCC.

Basically,dynamicelasticmoduliofconcreteisimprovedbythemodulusofelasticityoftherawconstituents,aggregate

porosity,propertiesof pasteandcharacteristicsof transitionzonessuchas capillaryvoids andmicro-cracks [67]. The

abovementionedfindingisconfirmedbyFangetal.[74]thatduetothevariousfactorsincludingslagreplacementlevel,

amountofmolarityetc.,thedynamicelasticmodulusofGPCmadebyfly-ashandslagisvariedfrom12to58GPa.

Initially,averagerelativedynamicelasticmoduliofGPCpaverblocksbeforeexposuretocoldweatherwasconsideredto

be100%tohaveauniquereferenceandthentheaveragerelativedynamicelasticmoduliofGPCafter180daysofexposure

wascalculatedandwasexpressedinpercentagetodeterminematerialdeteriorationusingthetwoNDTs.

AscanbeseeninFig.16,relativedynamicelasticmodulusdecreasedafter180daysofexposure.Itcanalsobeobserved

thattherelativedynamicelasticmoduluscalculatedusingtheRFTmethodishigherthanthatobtainedfromtheUPV

method.ThisdifferencebetweentherelativedynamicelasticmoduliofRFTandUPVcanbeduetosurfaceconditionsamong

otherreasons.About18paversblockshadunevensurfaceafter180daysofexposureandbasically,smoothnessofcontactthe

surfaceaffectsUPV[75].While,RFTcanmeasuresfrequencyevenonabumpysurface.

7.3.2.DynamicmodulusofelasticityofGPCandPCCpaverblocks

Table8showstheaveragerelativedynamicmodulusofelasticityofGPCandPCCpaverblocksplacedinarea2.Thiswas

calculatedusingUPVvalues.Ascanbeseen,therelativedynamicmodulusofelasticityofPCCishigherthanthatofGPCpaver

blocksovertheentiretestperiod.Therelativedynamicmodulusofelasticitydecreasedprogressivelyinthefirsttwomonths

ofexposureforbothtypesofconcretes.However,testresultsrevealthataftertwomonths,thedynamicelasticmodulusof

GPCpaverblocksdecreasedmuchfasterthanthatofPCC.

Yaweietal.[76]establishedadamagemechanismmodelbyusingrelativedynamicelasticmodulusandproposedthata

powerfunctionmodelismoreprecisethananexponentialfunctionmodel.Thesamemodelswereusedtocreateadynamic

(19)

Yaweietal.[76]assumedthatE0istheinitialdynamicmodulusofelasticityofsamplesandEnisthedynamicmodulusof

elasticityafterNnumberoffreeze-thawcycles.Inourstudy,Nwasconsideredasexposureperiod(N=1forevery30days)

since the temperaturevariation was not controllable in real environmental conditions. According to theexponential

function,relativedynamicelasticmodulusattenuationcanbecreatedas:

Y=En/E0=aebN (3)

En=E0aebN (4)

(20)

Thepowermodelalsocanbeusedtocreatearelativedynamicelasticitymodulusmodel:

Y=Ei/E0=aNb (5)

Where,

Y=Relativedynamicelasticitymodulusofsamples,percentage

EnandEi=DynamicelasticitymodulusofsamplesafterNtimesfreeze-thawcycles,percentage

E0=Dynamicelasticitymodulusofsamplesbeforeexposingtofreeze-thawcycles,percentage

Fig.16.RelativedynamicmodulusofelasticityofUPVvs.RFT.

Table8

RelativedynamicelasticmodulusofGPCandPCCover240daysofexposure.

Exposed(Days) GPC PCC

Relativedynamicelasticmodulus(%) Relativedynamicelasticmodulus(%)

1 100 100 30 98.04 99.04 60 94.83 97.93 90 94.28 96.5 120 91.20 96.18 150 88.70 95.54 180 88.56 95.38 210 88.14 95.23 240 85.49 95.23

(21)

aandb=Constantvariables

TheEqs.(4)and(5)weremodeledinOriginsoftwaretoestablishadamagemodelforbothtypesofconcreteusedinthis

studyandareplottedinFig.17(a)and(b)respectively.Thevaluesfromthemodelsareplottedalongsidemeasuredfielddata

(showninTable8).

According tothepower function,the coefficients a and b for GPC were122.41 and -0.06respectively. While, the

coefficientsaandbforPCCwere106.11and-0.02respectively.ItalsocanbeobservedfromfiguresthatAdj.R2ofpower

functionofbothGPCandPCCissuperiorcomparedtotheexponentialfunction.Hence,thisfunctioncanbeusedtocorrelate

fieldexposuretodamageofGPCandPCCasithasfewererrors.Itshould,however,benotedthatthisproposedmodelisvalid

forthesomewhatmildwinterconditionsrecordedinVictoria,Canada.Hence,cautionshouldbeexercisedbeforeusingthis

modeltopaverblocksinmoresevereweatherconditions.

8.Conclusions

Theobjectivesofthisstudyweretoinvestigatetheeffectofrealenvironmentalexposureonleach-abilityandchangein

mechanicalpropertiesofK-basedGPC.Thiswasfurthercomparedtotraditionalconcrete(PCC).Numerousconclusionscan

bedrawnfromthepresentstudy:

SteamcuringanddrycuringmethodsincreasethecompressivestrengthofGPCbyabout3.5and2.3timesrespectively

whenthetemperatureincreasesfromambienttemperature(̴10C)to80C.Thecompressivestrengthofsteam-curedGPC

washigherdue tothepreventionofexcessive moistureevaporation,anddue totheidenticalinternalcuringofGPC

samples.

AccordingtotheresultsofcompressiontestonrectangularandcylindricalGPCsamples,rectangularsteam-curedGPC

samplesshowedanaveragecompressivestrengthlower(about10.28%)thanthecylindricalsteam-curedGPCsamples

probablybecauseofthehigherrate ofstressconcentrationatcornersofrectangular steam-curedGPCsamples.The

averagestrengthconversionfactorbetweencylindricalandrectangularGPCsamplesis0.89.

Thelaboratorysimulationofseasonalhumiditywasalsocarriedouttomeasuretheeffectofmoisturelevel(dry,SSD,fully

wet)onmassandUPVofbothGPCandPCC.TheresultsoftheexperimentindicatethatthevelocityandmassofGPCand

PCCsamplesincreasedwhenhumiditylevelwaschangedfromdryconditiontofullywetcondition.Themassandvelocity

ratioofGPCwasabout0.98and0.84respectivelywhenthemoisturelevelwereincreasedfromdrytofullywet.Whereas,

themassandvelocityratioofPCCsampleswas0.97and0.79respectively.

AccordingtotheresultsoftheUPVtest,thedecreaseinvelocityofGPCwasabout11.6%(area1)and12.03%(area2).While,

thevelocityofPCCdecreasedabout8.3%(area1)and5.28%(area2).Moreover,theresultoftheSchmidthammershowed

thattheaveragecompressivestrengthofGPCdecreasedabout2.34%(area1)and19.51%(area2).Whereas,thedecreasein

compressivestrengthofPCCwasabout8.2%(area1)and9.65%(area2).

Theleach-abilityofheavymetals,includingtotalalkalinity,totalhardness,pH,totalchlorine,phosphate,copper,ammonia,

iron,nitrateandnitriteofPCCandGPCpaverblocksweremeasuredeverythirtydays(150daysintotal)ofexposuretoreal

environmentalconditionsusingHACHstrips.TheresultsshowthatthepHofGPCpaverblocksis13.92%higherthanpHof

PCCpaverblocksduetotheuseofKOHintheGPCpaverblockmixture.Theresultsalsoindicatedthatthesteamcuring

methodhelpedGPCtodeveloppastestructureandcausedallthechemicalmetalsofGPCpaverblockstoremainconstant

over150daysofexposure.

Therelativedynamicmodulusofelasticitywascorrelatedtothefieldexposureofpaverblocks.Inthisregard,adamage

mechanismmodelwas derivedforbothPCCandGPCpaverblocksafter240daysofexposuretorealenvironmental

conditionsusingthepowerfunctionalmodelandexponentialfunctionmodel.Thecomparisonbetweenexponentialand

powerfunctionshowedthatpowerfunctionissuperiortoexponentialfunctionduetothehigherachievedvaluesofAdj.R2

forbothGPC(0.96)andPCC(0.92).

9.Challenges

IndevelopingGPC,thechemicalcomponentofprecursorsincludingthechemistryphaseandsizeofparticlesiscriticalin

thereactionprocesswithalkalinesolutions.Highquality-checkingandoptimizationofcoalashesandactivatorsarealways

requiredtomakehigh-qualityGPCasthedifferenttypeofby-productmaterialsareavailableinvariouspowerplants.

Basically,GPCcertainlyisasensitivematerialtotemperatureandhumiditycomparedtoPCC.So,morefacilitiessuchas

steamcuringoven,skillsandexpertisearerequiredtocurefreshpasteineitherrealenvironmentalconditionsoratthe

laboratory.

Despitethe growing marketpull for ‘sustainable’construction materials,sucha technology is not available onan

industry-widelevelandhasrestrictedapplicationsinthemarket.Consequently,therearenorelatedstandardsforGPC

reporteduptodateandbasically,standardsmadeforPCCareusedforperformingtestsonGPC.

ThecuringregimeofGPCisanotherconcerninthecoldregionduetoGPC’ssensitivitytomoistureandtemperature.So,

(22)

DeclarationofCompetingInterest None.

Acknowledgements

TheauthorsappreciativelyacknowledgethefinancialsupportfromCanada-IndiaResearchCentreofExcellence

(IC-IMPACTS)andauthorsarealsothankfultoDr.UrmilDave,ProfessoratNirmaUniversity,forhishelpinthisstudy;Matt

Dalkie,technicalservicesengineerofLafargeCanadaInc.andMikeMcDonald,fieldchemistofNationalSilicatesanaffiliate

ofPQCorporationCompanyforprovidingmaterialsforthisstudy.AuthorsalsoliketothankPriyankaMorlaforherhelpin

productionofGPCpaverblocks.

References

[1]N.H.A.S.Lim,H.Mohammadhosseini,M.M.Tahir,M.Samadi,A.R.M.Sam,Microstructureandstrengthpropertiesofmortarcontainingwasteceramic nanoparticles,Arab.J.Sci.Eng.43(10)(2018)5305–5313.

[2]H.Mohammadhosseini,N.H.A.S.Lim,M.M.T.R.Alyousef,H.Alabduljabbar,M.Samadi,Enhancedperformanceofgreenmortarcomprisinghighvolume ofceramicwasteinaggressiveenvironments,Constr.Build.Mater.212(2019)607–617.

[3]G.Dimitriou,P.Savva,M.Petrou,Enhancingmechanicalanddurabilitypropertiesofrecycledaggregateconcrete,Constr.Build.Mater.158(2018)228– 235.

[4]H.Mohammadhosseini,A.Abdul,H.E.Abdul,Influenceofpalmoilfuelashonfreshandmechanicalpropertiesofself-compactingconcrete,Indian Acad.Sci.40(2015)1989–1999.

[5]F.Okoye,Geopolymerbinder:averitablealternativetoPortlandcement,Materialstoday:Proceed.4(4)(2017)5599–5604.

[6]B.Singh,I.G.M.Gupta,S.Bhattacharyya,Geopolymerconcrete:areviewofsomerecentdevelopments,Constr.Build.Mater.85(2015)78–90. [7]H.Hardjasaputra,M.Cornelia,Y.Gunawan,I.Surjaputra,H.Lie,Rachmansyah,G.P.Ng,Studyofmechanicalpropertiesofflyash-basedgeopolymer,IOP

Conf.Ser.:Mater.Sci.Eng.615(2019)012009.

[8]L.M.Zerzouri,S.Alehyen,M.E.Alouani,M.Taibi,Theeffectofaggressiveenvironmentsonthepropertiesofalowcalciumflyashbasedgeopolymerand theordinaryPortlandcementpastes,Mater.Today.Proc.13(2019)1169–1177.

[9]D.Sd.T.Pereira,F.J.daSilva,A.B.R.Porto,V.S.Candido,A.C.R.daSilva,F.D.C.G.Filho,S.N.Monteiro,Comparativeanalysisbetweenpropertiesand microstructuresofgeopolymericconcreteandportlandconcrete,J.Mater.Res.Technol.7(2018)606–611.

[10]F.Nabeel,M.NeazSheik,M.N.S.Hadi,Investigationofengineeringpropertiesofnormalandhighstrengthflyashbasedgeopolymerandalkali-activated slagconcretecomparedtoordinaryPortlandcementconcrete,Constr.Build.Mater.196(2019)26–42.

[11]Y.Abualrous,CharacterizationofIndianandCanadianFlyAshforUseinConcrete,DepartmentofCivilEngineering,UniversityofToronto,Toronto, Canada,2017.

[12]J.G.Speight,Chemicalsintheenvironment,ReactionMechanismsinEnvironmentalEngineering,Butterworth-Heinemann,2018,pp.43–79. [13]J. Thaarrini,V.Ramasamy,FeasibilitystudiesoncompressivestrengthofGroundcoalashgeopolymermortar,PeriodicaPolytechnica (Civil

Engineering)59(2015)373–379.

[14]Eu.Haq,S.K.Padmanabhan,A.Licciulli,Synthesisandcharacteristicsofflyashandbottomashbasedgeopolymers–acomparativestudy,CeramicInt. 40(2)(2014)2965–2971.

[15]F.Okoye,J.Durgaprasad,N.Singh,Flyash/Kaolinbasedgeopolymergreenconcretesandtheirmechanicalproperties,DataBrief5(2015)739–744. [16]P.Chindaprasirt,C.Jaturapitakkul,W.Chalee,U.Rattanasak,Comparativestudyonthecharacteristicsofflyashandbottomashgeopolymers,Waste

Manage.(Oxford)29(2)(2009)539–543.

[17]R.M.Hamidi,Z.Man,K.A.Azizli,ConcentrationofNaOHandtheeffectonthepropertiesofflyashbasedgeopolymer,ProcediaEng. 148(2016)189–193. [18]F.Puertas,B.González-Fonteboa,I.González-Taboada,M.M.Alonso,M.Torres-Carrasco,G.Rojo,F.Martínez-Abella,Alkali-activatedslagconcrete:

freshandhardenedbehaviour,Cem.Concr.Compos.85(2018)22–31.

[19]K.Sakkas,D. Panias,P.P.Nomikos,A.I. Sofiano,Potassiumbased geopolymerforpassivefireprotectionof concretetunnelslinings, Tunnel. UndergroundSpaceTechnol.43(2014)148–156.

[20]A.Hosan,SharanyHaque,F.Shaikh,ComparativeStudyofSodiumandPotassiumBasedFly-AshGeopolymeratElevatedTemperatureAustralia,(2015) .

[21]D.Sabitha,J.K.Dattatreya,N.Sakthivel,M.Bhuvaneshwari,S.A.J.Sathik,Reactivity,workabilityandstrengthofpotassiumversussodium-activated highvolumeflyash-basedgeopolymers,Curr.Sci.103(2012)1320–1327.

[22]T.Bakharev,GeopolymericmaterialspreparedusingclassFflyashandelevatedtemperaturecuring,CementConcrete35(6)(2005)1224–1232. [23]R.Siddique,UtilizationofindustrialBy-productsinconcrete,ProcediaEng.95(2014)335–347.

[24]T.Xie,T.Ozbakkaloglu,Behavioroflow-calciumflyandbottomash-basedgeopolymerconcretecuredatambienttemperature,Ceram.Int.41(2015) 5945–5958.

[25]Y.P.Khandol,D.U.Dave,DevelopmentofFly-AshandBottom-AshBasedAlkaliActivatedPaverBlocks,Departmentofcivilengineering,instituteof technology,NirmaUniversity,Ahmedabad,2016382481.

[26]S.R.Hillier,C.M.Sangha,B.A.Plunkett,P.J.Walden,Long-termleachingoftoxictracemetalsfromPortlandcementconcrete,Cem.Concr.Res.29(1999) 515–521.

[27]H.Lu,F.Wei,J.Tang,J.P.Giesy,Leachingofmetalsfromcementundersimulatedenvironmentalconditions,J.Environ.Manage.169(2016)319–327. [28]A.P.Galvín,F.Agrela,J.Ayuso,M.G. Beltrán,A.Barbudo,Leachingassessmentofconcrete madeofrecycled coarseaggregate:physical and

environmentalcharacterisationofaggregatesandhardenedconcrete,WasteManage.34(2014)1693–1704.

[29]M.Izquierdo,X.Querol,J.Davidovits,D.Antenucci,H.Nugteren,C.Fernández-Pereira,Coalflyash-slag-basedgeopolymers:microstructureandmetal leaching,J.Hazard.Mater.166(2009)561–566.

[30]A.S.T.M.C618/C618M,StandardSpecificationforCoalFlyAshandRaworCalcinedNaturalPozzolanforUseinConcrete,AmericanSocietyforTesting andMaterials,USA,2017.

[31]S.Pilehvar,V.D.Cao,A.M.Szczotok,M.Carmona,L.Valentini,M.Lanzón,R.Pamies,A.-L.Kjøniksen,Physicalandmechanicalpropertiesofflyashand slaggeopolymerconcretecontainingdifferenttypesofmicro-encapsulatedphasechangematerials,Constr.Build.Mater.173(2018)28–39. [32]R.Zhao,Y.Yuan,Z.Cheng,T.Wen,J.Li,F.Li,Z.J.Ma,Freeze-thawresistanceofclassFflyash-basedgeopolymerconcrete,Constr.Build.Mater.222(2019)

474–483.

[33]Z.Yang,R.Mocadlo,M.Zhao,R.DJr,M.Tao,J.Liang,PreparationofageopolymerfromredmudslurryandclassFflyashanditsbehavioratelevated temperatures,Constr.Build.Mater.221(2019)308–317.

[34]F.-Y.Chang,M.-Y.Wey,Comparisonofthecharacteristicsofbottomandflyashesgeneratedfromvariousincinerationprocesses,J.Hazard.Mater.138 (2006)594–603.

(23)

[35]X.Goa,B.Yuan,Q.Yu,H.Brouwers,Characterizationandapplicationofmunicipalsolidwasteincineration(MSWI)bottomashandwastegranite powderinalkaliactivatedslag,J.CleanerProd.164(2017)410–419.

[36]R.Gupta,H.M.Rathod,CurrentstateofK-basedgeopolymercementscuredatambienttemperature,Emerg.Mater.Res.4(1)(2015)125–129. [37]C.Yang,R.Gupta,Predictionofthecompressivestrengthfromresonantfrequencyforlow-calciumflyash-basedgeopolymerconcrete,J.Mater.Civ.

Eng.(2018)Vols.DOI:10.1061/(ASCE)MT.1943-5533.0002228.

[38]F.Belforti,P.Azarsa,R.Gupta,U.Dave,EffectofFreeze-ThawonK-BasedGeopolymerConcreteandPortlandCementConcreteIndia,(2017). [39]IS15658,PrecastConcreteBlocksforPaving-Specification,IndianStandard,India,2006.

[40]N.Ranjbar,C.Künzel,Cenospheres:areview,"areview,FuelJ.207(2017)1–12.

[41]F.Goodarzi,H.Sanei,Plerosphereanditsroleinreductionofemittedfineflyashparticlesfrompulverized,coal-firedpowerplants,FuelJ.88(2009) 382–386.

[42]R.Hooton,Bridgingthegapbetweenresearchandstandards,Cem.Concr.Res.38(2007)247–258.

[43]M.K.Wari,Bajpai,S.Dewangan,U.K,Flyashutilization:abriefreviewinIndiancontext,Int.Res.J.Eng.Technol.(IRJET)03(04)(2016)949–956. [44]J.Davidovits,GeopolymerChemistryandApplication,4ed.,InstitutGeopolymere,France,2015.

[45]P.Azarsa,R.Gupta,Novelapproachtomicroscopiccharacterizationofcryoformationinairvoidsofconcrete,Micron122(2019)21–27,doi:http://dx. doi.org/10.1016/j.micron.2019.04.004.

[46]ASTMC33/C33M,StandardSpecificationforConcreteAggregates,AmericanSocietyforTestingandMaterials,USA,2015.

[47]ASTMC192/C192M,StandardPracticeforMakingandCuringConcreteTestSpecimensintheLaboratory,AmericanSocietyforTestingandMaterials, USA,2015.

[48]N.Zabihi,Ö.Eren,Compressivestrengthconversionfactorsofconcreteasaffectedbyspecimenshapeandsize,"researchjournalofappliedsciences, Eng.Technol.7(2014)4251–4257.

[49]E.Ferretti,Shape-effectintheeffectivelawsofPlainandrubberizedconcrete,CMC-Tech.Sci.Press30(2012)237–284. [50]EN206,Concrete—Specification,Performance,ProductionandConformity,BritishStandard,UK,2014.

[51]ASTMC39/C39M,StandardTestMethodforCompressiveStrengthofCylindricalConcreteSpecimens,AmericanSocietyforTestingandMaterials,USA, 2015.

[52]ASTMC805/805M,StandardTestMethodforReboundNumberofHardenedConcrete,AmericanSocietyforTestingandMaterials,USA,2013. [53]ASTMC597/C597M,StandardTestMethodforPulseVelocitythroughConcrete,AmericanSocietyforTestingandMaterials,USA,2016.

[54]S.A.Omer,R.Demirboga,W.H.Khushefati,RelationshipbetweencompressivestrengthandUPVofGGBFSbasedgeopolymermortarsexposedto elevatedtemperatures,Constr.Build.Mater.94(2015)189–195.

[55]AccuaWeather, AccuaWeather[Online]. Available:,(2017) . https://www.accuweather.com/en/ca/victoria/v8r/augustweather/47163?monyr=8/1/ 2018&view=table.

[56]ASTMC215/C215M,StandardTestMethodforFundamentalTransverse,Longitudinal,andTorsionalResonantFrequenciesofConcrete,American SocietyforTestingandMaterials,USA,2016.

[57]J.Z.Xu,Y.L.Zhou,Q.Chang,H.Q.Qu,Studyonthefactorsofaffectingtheimmobilizationofheavymetalsinflyash-basedgeopolymers,Mater.Lett.60 (2006)820–822.

[58]USEPA,UnitedStatesEnvironmentalProtectionAgency(US-EPA)Standard1311,USEPA,USA,2016.

[59]G.S.Ryu,Y.B.Lee,K.T.Koh,Y.S.Chung,Themechanicalpropertiesofflyash-basedgeopolymerconcretewithalkalineactivators,Constr.Build.Mater.47 (2013)409–418.

[60]H.Khater,Effectofcalciumongeopolymerizationofaluminosilicatewastes,J.Mater.Civ.Eng.24(2011)pp.902-101.

[61]A.Noushini,A.Castel,Theeffectofheat-curingontransportpropertiesoflow-calciumflyash-basedgeopolymerconcrete,Constr.Build.Mater.112 (2016)464–477.

[62]W.K.Part,M.Ramli,C.C.Ban,Anoverviewontheinfluenceofvariousfactorsonthepropertiesofgeopolymerconcretederivedfromindustrial by-products,Constr.Build.Mater.77(2015)370–395.

[63]M.Li,H.Hao,Y.Shi,Y.Hao,Specimenshapeandsizeeffectsontheconcretecompressivestrengthunderstaticanddynamictests,Constr.Build.Mater. 161(2018)84–93.

[64]L.T.Ngoc,C.-A.Graubner,UncertaintiesofconcreteparametersinshearcapacitycalculationofRCmemberswithoutshearreinforcement,Beton-und Stahlbetonbau(2018)1–8.

[65]ACI318,BuildingCodeRequirementsforStructuralConcreteandCommentary,AmericanConcreteInstitute,USA,2014. [66]K.Ramujee,M.Potharaju,Permeabilityandabrasionresistanceofgeopolymerconcrete,IndianConcreteJ.88(2014)34–43. [67]P.J.M.Monteiro,P.K.Mehta,ConcreteMicrostructure,4ed.,Properties,andMaterials,USA,2014.

[68]M.Albitar,M.M.Ali,P.Visintin,M.Drechsler,Durabilityevaluationofgeopolymerandconventionalconcretes,Constr.Build.Mater. 136(2017)374–385. [69]S.Levy,Calculationsrelatingtoconcreteandmasonry,ConstructionCalculationsManual,(2012),pp.211–264.

[70]A.Poursaee,Corrosionofsteelinconcretestructures,CorrosionofSteelinConcreteStructures,(2016) pp.139-33.

[71]M.Izquierdo,X.Querol,C.Phillipart,D.Antenucci,M.Towler,TheroleofopenandclosedcuringconditionsonTheleachingpropertiesoffly ash-slag-basedgeopolymer,J.Hazard.Mater.176(2010)623–628.

[72]F.Kozisek,HealthRisksfromDrinkingDeminirelizedWater,CentreofEnvironmentalHealth,NationalInstituteofPublicHealth,Prague,Czech Republic,2004.

[73]Y.Zhang,S.Wei,C.Qianli,C.Lin,Synthesisandheavymetalimmobilizationbehaviorsofslagbasedgeopolymer,J.Hazard.Mater.143(2007)206–213. [74]G.Fang,W.K.Ho,W.Tu,M.Zhang,Workabilityandmechanicalpropertiesofalkali-activatedflyash-slagconcretecuredatambienttemperature,

Constr.Build.Mater.172(2018)476–487.

[75]IndianStandard1331,Non-DestructiveTestingofConcreteMethodsofTest,IndianStandard,India,2016.

[76]F.Yawei,L.Cai,Y.Wu,Freeze–thawcycletestanddamagemechanicsmodelsofalkali-activatedslagconcrete,Constr.Build.Mater.25(2011)3144– 3148.

Referenties

GERELATEERDE DOCUMENTEN

The results show that the preparation of the Lesson Study made the teachers aware, in line with Verhoef, Coenders, van Smaalen and Tall’s (2013) research outcomes, of the fact

These reasons include the fact that Life Orientation content explicitly and implicitly engages with gender and gender related concepts; Life Orientation is a compulsory

First-time sexual experiences of same-sex attracted adolescents and young adults in the Netherlands: The role of sexual scripts..

Post-modern technological culture simply treats human beings as part of nature.” Niet alleen de wereld om ons heen zal immers te (ver)bouwen zijn, ook wij zelf.. centrale

In the case of RM the power of the high frequency components is spread over a frequency range, contrary to deterministic modula- tion (DM), where the spectrum power density

Op basis van de beperkte hoeveelheid gegevens uit bestaande meetnetten is niet te zeggen in hoe- verre er verschillen zijn in trends tussen de bos- sen die beheerd worden

Begin april wordt in alle percelen met drains of greppels al op meer dan 90 % van het oppervlak voldoende draagkracht gemeten, ondanks een regelmatige neerslagaanvoer hoger dan

vegetatiestructuur te handhaven. De schapen of maaimachines kunnen zorgen voor de versprei- ding van de nog aanwezige soorten binnen een terrein en tussen verschillende locaties.