• No results found

Invariant color descriptors for efficient object recognition - Contents

N/A
N/A
Protected

Academic year: 2021

Share "Invariant color descriptors for efficient object recognition - Contents"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Invariant color descriptors for efficient object recognition

van de Sande, K.E.A.

Publication date 2011

Link to publication

Citation for published version (APA):

van de Sande, K. E. A. (2011). Invariant color descriptors for efficient object recognition.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

Contents

1 Introduction 1

1.1 Object appearance in the world . . . 2

1.2 ‘What’ . . . 3

1.3 ‘Where’ . . . 5

1.4 Organization of the Thesis . . . 5

2 Evaluating Color Descriptors for Object and Scene Recognition 7 2.1 Introduction . . . 7

2.2 Reflectance Model . . . 8

2.2.1 Diagonal Model . . . 9

2.2.2 Photometric Analysis . . . 10

2.3 Color Descriptors and Invariant Properties . . . 11

2.3.1 Histograms . . . 11

2.3.2 Color Moments and Moment Invariants . . . 13

2.3.3 Color SIFT Descriptors . . . 14

2.3.4 Conclusion . . . 15

2.4 Experimental Setup . . . 15

2.4.1 Feature Extraction Pipelines . . . 16

2.4.2 Classification . . . 17

2.4.3 Experiment 1: Illumination Changes . . . 19

2.4.4 Experiment 2: Image Benchmark . . . 19

2.4.5 Experiment 3: Video Benchmark . . . 19

2.4.6 Evaluation Criteria . . . 20

2.5 Results . . . 20

2.5.1 Experiment 1: Illumination Changes . . . 20

2.5.2 Experiment 2: Image Benchmark . . . 24

2.5.3 Experiment 3: Video Benchmark . . . 26

2.5.4 Comparison with state-of-the-art . . . 26

(3)

ii CONTENTS

2.5.5 Discussion . . . 30

2.6 Conclusion . . . 32

3 Illumination-Invariant Descriptors for Discriminative Visual Object Cate-gorization 33 3.1 Introduction . . . 33

3.2 Illumination-Invariant Descriptors . . . 34

3.2.1 Introduction . . . 34

3.2.2 Diagonal Model . . . 34

3.2.3 A Novel Class of Illumination-Invariant SIFT Descriptors . . . 35

3.2.4 Instantiating Illumination-Invariant Descriptors . . . 38

3.2.5 Discussion . . . 39

3.3 Methods and Experimental Setup . . . 39

3.3.1 Feature Extraction . . . 39

3.3.2 Category Model Training . . . 40

3.3.3 Experiment 1: Candidate Descriptor Selection . . . 41

3.3.4 Experiment 2: Multiple Kernel Learning . . . 41

3.3.5 Experiment 3: Optimized Multi-Channel Descriptors . . . 41

3.3.6 Datasets . . . 42

3.3.7 Evaluation criteria . . . 42

3.4 Results . . . 43

3.4.1 Experiment 1: Candidate Descriptor Selection . . . 43

3.4.2 Experiment 2: Multiple Kernel Learning . . . 43

3.4.3 Experiment 3: Optimized Multi-Channel Descriptors . . . 45

3.4.4 Application: Object Localisation . . . 48

3.5 Conclusion . . . 49

4 Empowering Visual Categorization with the GPU 51 4.1 Introduction . . . 51

4.2 Overview of Visual Categorization . . . 53

4.2.1 Image Feature Extraction . . . 53

4.2.2 Category Model Learning . . . 57

4.2.3 Test Image Classification . . . 58

4.3 GPU Accelerated Categorization . . . 58

4.3.1 Parallel Programming on the GPU and CPU . . . 59

4.3.2 Algorithm 1: GPU-Accelerated Vector Quantization . . . 59

4.3.3 Algorithm 2: GPU-Accelerated Kernel Value Precomputation . . . 61

4.4 Experimental Setup . . . 62

4.4.1 Experiment 1: Vector Quantization Speed . . . 63

4.4.2 Experiment 2: Kernel Value Precomputation Speed . . . 63

4.4.3 Experiment 3: Visual Categorization Throughput . . . 63

4.5 Results . . . 64

(4)

Contents iii

4.5.2 Experiment 2: Kernel Value Precomputation Speed . . . 65

4.5.3 Experiment 3: Visual Categorization Throughput . . . 65

4.6 Other Applications . . . 67

4.6.1 Application 1: k-means Clustering . . . 67

4.6.2 Application 2: Bag-of-Words Model for Text Retrieval . . . 67

4.6.3 Application 3: Multi-Frame Processing for Video Retrieval . . . 68

4.7 Conclusions . . . 68

5 Segmentation as Selective Search for Object Recognition 71 5.1 Introduction . . . 71

5.2 Related Work . . . 73

5.2.1 Exhaustive Search for Recognition . . . 73

5.2.2 Selective Search for Object Delineation . . . 75

5.3 Segmentation as Selective Search . . . 75

5.3.1 Our Segmentation Algorithm . . . 76

5.3.2 Shadow, Shading and Highlight Edges . . . 77

5.3.3 Discussion . . . 77

5.4 Object Recognition System . . . 77

5.5 Evaluation . . . 79

5.5.1 Exp. 1: Segmentation for Selective Search . . . 80

5.5.2 Exp. 2: Selective Search for Recognition . . . 81

5.5.3 Exp. 3: Selective Search for Object Delineation . . . 83

5.5.4 Exp. 4: Object Recognition Accuracy . . . 85

5.6 Conclusions . . . 87

6 Summary and Conclusions 89 6.1 Summary . . . 89 6.2 Conclusions . . . 91 Bibliography 102 Samenvatting 103 Dankwoord 107 Biography 109

Referenties

GERELATEERDE DOCUMENTEN

Although the presented method of holographic renormalization satisfactorily solves the prob- lem of extracting holographic correlation functions given the bulk field equations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

Precision holography and its applications to black holes..

In contrast to previous observations, traditional cardiovascular risk factors did not explain the excess mortality in this group: patients with malignant hypertension had a

Deze basale positie in de moleculaire fylogenie wordt echter niet sterk ondersteund aangezien.. de tak die claden 2-12 ver- bindt maar

Peyronie's disease - Beyond the bend: Historical, epidemiological, clinical, genetic and molecular biological aspects.. University