• No results found

Influence of quartz surfaces on the reaction C3A + CaSO4.2H2O + water

N/A
N/A
Protected

Academic year: 2021

Share "Influence of quartz surfaces on the reaction C3A + CaSO4.2H2O + water"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Influence of quartz surfaces on the reaction C3A +

CaSO4.2H2O + water

Citation for published version (APA):

Holten, C. L. M., & Stein, H. N. (1977). Influence of quartz surfaces on the reaction C3A + CaSO4.2H2O + water. Cement and Concrete Research, 7(3), 291-296. https://doi.org/10.1016/0008-8846(77)90091-6

DOI:

10.1016/0008-8846(77)90091-6

Document status and date: Published: 01/01/1977

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

INFLUENCE OF QUARTZ SURFACES ON THE REACTION C3A + CaSO4.2H20 + WATER.

C.L.M. Holten and H.N. Stein Laboratory of General Chemistry

Technological University, Eindhoven, The N e t h e r l a n d s

(Communicated by H. F. W. Taylor) (Received February 28, 1977)

A B S T R A C T

Quartz surfaces counteract the retarding action of SO~- on the hydration of C3A, by p r e s e n t i n g additional sites for ettringite crystallization. Strong retardation requires the presence of ettringite near the C3A , influencing the local concentrations there.

Q u a r z o b e r f l ~ c h e n w i r k e n der V e r z 6 g e r u n g der Hydration des C3A durch Sulfationen entgegen, indem sie Extrapl~tze f~r die K r i s t a l l i s a t i o n des Ettringits bieten. Eine

starke V e r z ~ g e r u n g erfordert die A n w e s e n h e i t des Ettringits dicht neben dem C3A , w o d u r c h die lokalen K o n z e n t r a t i o n e n dort b e e i n f l u s s t werden.

(3)

292 Vol. 7, No. 3 C. L. M. Holten, H. N. Stein I n t r o d u c t i o n In s t u d i e s of the r e a c t i o n C 3 A + C a S O 4 . 2 H 2 0 + }{2 ° in p a s t e s , q u a r t z is f r e q u e n t l y a d d e d as an " i n e r t " f i l l e r in o r d e r to p r e - v e n t d e m i x i n g a n d s e d i m e n t a t i o n (I, 2). The i n e r t c h a r a c t e r of the q u a r t z may, h o w e v e r , be d o u b t e d , if o n l y b e c a u s e the p r e s e n c e of a f o r e i g n s u r f a c e m i g h t i n f l u e n c e n u c l e a t i o n of h y d r a t e s . I n d i c a t i o n s of t h i s h a v e b e e n r e p o r t e d for c e m e n t p a s t e s (3). It w a s t h o u g h t d e s i r a b l e to p e r f o r m s i m i l a r e x p e r i m e n t s w i t h p u r e C 3 A s i n c e t h e y m a y g i v e a c l u e on t h e m e c h a n i s m r e s p o n s i b l e for t h e r e t a r d a t i o n of its h y d r a t i o n by S 0 4 2 - . E x p e r i m e n t a l T h e C a S O 4 . 2 H 2 0 w a s e x M e r c k p r o a n a l y s i . C 3 A , s a m p l e a, h a d 0 . 1 % f r e e C a O a n d B l a i n e s u r f a c e a r e a 0 . 0 7 5 m 2 g - 1 ; s a m p l e b h a d 0 . 3 % f r e e C a O a n d N 2 a d s o r p t i o n s u r f a c e a r e a 0.321 m 2 g -I . T h e s a m p l e s w e r e e i t h e r k e p t in a s e a l e d g l a s s a m p o u l e , or h e a t e d to I 0 0 0 o c f o r 2 h s h o r t l y b e f o r e use. T h e q u a r t z w a s e x R i e d e l de H a h n ; B l a i n e s u r f a c e a r e a 0.60 m 2 g - 1 . On t r e a t i n g w i t h HF + H 2 S O 4 , 0 . 6 % of r e s i d u e r e m a i n e d . It w a s h e a t e d to 1 0 0 0 o c f o r 2 h s h o r t l y b e f o r e use. T h e w a t e r w a s t w i c e d i s t i l l e d , a n d t h e n a g a i n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e s h o r t l y b e f o r e use. T h e c o n d u c t i o n c a l o r i m e t e r , m i x i n g a n d X - r a y d i f f r a c t i o n p r o c e d u r e s w e r e the s a m e as d e s c r i b e d p r e v i o u s l y 4). T h e S E M w a s a C a m b r i d g e M K - 2 A i n s t r u m e n t . T h e h y d r a t i o n r e a c t i o n w a s s t o p p e d by w a s h i n g w i t h a b s o l u t e e t h a n o l a n d d r y i n g in a s t r e a m of n i t r o g e n f r e e d f r o m C O 2. In s o m e c a s e s t h e d r y i n g w a s e f f e c t e d by s u c k i n g a i r t h r o u g h t h e p r e c i p i t a t e in a g l o v e - b o x in an a t m o s p h e r e f r e e of C O 2. R e s u l t s In F i g . 1 h e a t e v o l u t i o n r a t e is p l o t t e d a g a i n s t t i m e f o r p a s t e s w i t h C 3 A s a m p l e b, w e i g h t r a t i o s C 3 A : C a S O 4 . 2 H 2 0 : H 2 0 : S i O 2 = 1 . 5 : 1 . 4 3 : 5 . 0 : z (z in c a p t i o n ) . G r o u p s of t h r e e g r a p h s in t h e s a m e h o r i z o n t a l p o s i t i o n r e f e r to o n e e x p e r i m e n t ; t h e b r e a k s c o r r e s p o n d to s c a l e a d j u s t m e n t s . T h e m a i n f e a t u r e s of F i g . 1 w e r e a l s o s h o w n by p a s t e s w i t h C 3 A : C a S O 4 . 2 H 2 0 : H 2 0 : S i O 2 w e i g h t r a t i o s 1 . 5 : 0 . 7 7 : 5 . 0 : z ( 0 < z < 5 . 0 ) , for b o t h C 3 A s a m p l e s . F o r z~0, t h e e f f e c t s of i n c r e a s i n g q u a r t z c o n t e n t c a n be s u m m a r i z e d as f o l l o w s : I) T h e f i r s t h e a t e v o l u t i o n r a t e p e a k (A) is i n t e n s i f i e d a n d s h i f t e d s l i g h t l y f o r w a r d . 2) A f t e r s o m e t i m e t h e h e a t e v o l u t i o n r a t e d e c r e a s e s f u r t h e r ( s h o r t l y a f t e r s t a g e B). F o r 0 . 8 2 < z < 1 , 6 5 , a p e a k is f o u n d at s t a g e B. A t ~ r g e z v a l u e s the t r a n s i t i o n to t h e l o w h e a t e v o l u t i o n s t a g e C is s m o o t h . 3) T h e t r a n s i t i o n to s t a g e C s t a r t s e a r l i e r , a n d o n c e s t a r t e d is f a s t e r w i t h i n c r e a s i n g z. 4) T h e ~ n a l h e a t e v o l u t i o n p e a k D o c c u r s e a r l i e r . E x p e r i m e n t s w i t h p a s t e s m i x e d in a g l o v e - b o x in an a t m o s p h e r e f r e e of C O 2 d i d n o t s h o w s i g n i f i c a n t d i f f e r e n c e s f r o m

(4)

o ~ ~ ~ICqC~A~' z = o o ~ i m 1o ,o io ~ 7, c ~ z J ~ , c i o l o !~1 ~c - - t ~ s m E ,, ~ 10 i0 7o c o " • ~ ' ~ - ~ , o ?s 6 m . ~ o o z 7 ~o [ _ : , 0 m l o ~o . . . ,co 2o c o to o . ~ ~o F I G I

H e a t e v o l u t i o n rate ~8. time for p a s t e s C 3 A + C a S O 4 . 2 H 2 0 + H20 + SiO2, w e i g h t r a t i o s 1.50:1.43: 5.00:z; C 3 A s a m p l e b. The v e r t i c a l bars i n d i c a t e the r e a c t i o n s t a g e s up to w h i c h i n t e g r a t i o n of the c u r v e s was

c a r r i e d out (see text).

t h o s e s h o w n in Fig. I. N e i t h e r had p r e v i o u s s a t u r a t i o n of the w a t e r w i t h C a S O 4 . 2 H 2 0 any i n f l u e n c e . Stage B c o r r e s p o n d s to n e a r l y c o m p l e t e e x h a u s t i o n of the C a S O 4 . 2 H 2 0 . T h i s was f o u n d by X - r a y d i f f r a c t i o n , a g r e e i n g w i t h p r e v i o u s d a t a (2), and by the total e n t h a l p y c h a n g e e x h i b i t e d by the r e a c t i o n to stage B as found by g r a p h i c a l i n t e g r a t i o n of the h e a t

e v o l u t i o n rate curves. In the l a t t e r case, v a l u e s w e r e found in s l i g h t e x c e s s (0.20-0.24 k c a l (g C3A)-I) of the t h e o r e t i c a l v a l u e for total c o n v e r s i o n of C a S O 4 . 2 H 2 0 into e t t r i n g i t e (0.2065 k c a l (g C3A)-I , c a l c u l a t e d f r o m the e n t h a l p i e s of f o r m a t i o n of C3A (5), H 2 0 (6), C a S O 4 . 2 H 2 0 (7) and e t t r i n g i t e (8). This i n d i c a t e s the f o r m a t i o n of some o t h e r p r o d u c t b e s i d e s e t t r i n g i t e . N o p r o d u c t e x c e p t e t t r i n g i t e was f o u n d up to stage C by X - r a y d i f f r a c t i o n , but h y d r a t i o n p r o d u c t s r e s e m b l i n g A F m phases, n o t s h o w i n g the c o r r e s p o n d i n g X - r a y d i f f r a c t i o n l i n e s , h a v e been o b s e r v e d by e l e c t r o n m i c r o s c o p y in o t h e r cases (9, 10, 11). A f t e r stage D, e t t r i n g i t e was still present, in a d d i t i o n to m o n o s u l p h a t e and the 8.2 ~ h e m i c a r b o n a t e , w h i c h is c o n s i d e r e d to be f o r m e d f r o m C 4 A H 1 9 d u r i n g the p r e p a r a t i o n of the sample for X - r a y analysis.

If z = 0, the e n t h a l p y c h a n g e up to stage E (Fig. I) was -0.14 k c a l (g C 3 A ) - I . T h i s i n d i c a t e s i n h o m o g e n e i t y of this paste, b e c a u s e of the h i g h w a t e r / s o l i d s ratio: the C 3 A s e t t l e s m o r e

r a p i d l y t h a n the C a S O 4 . 2 H 2 0 and a SO42- s h o r t a g e a r i s e s n e a r the C 3 A g r a i n s b e f o r e e x h a u s t i o n of the C a S O 4 . 2 H 2 0 . W i t h large z, h o w e v e r , no d e m i x i n g o c c u r e d ; this was c h e c k e d in a s e p a r a t e e x p e r i m e n t w i t h C 3 A (sample b; w e i g h t r a t i o s 1 . 5 : 1 . 4 3 : 5 . 0 : 2 . 9 7 ) , c a r r i e d out in a g l a s s v e s s e l of d i m e n s i o n s s i m i l a r to t h o s e of the c a l o r i m e t e r v e s s e l s . S h o r t l y a f t e r b e i n g m i x e d , the paste had a r e f l e c t i n g top surface, but after 8 m i n u t e s the top s u r f a c e had b e c o m e n o n - r e f l e c t i n g . A p p a r e n t l y , c o a g u l a t i o n c a u s e d the s e d i m e n t v o l u m e to c o i n c i d e p r a c t i c a l l y w i t h the t o t a l paste volume. S e p a r a t e X - r a y a n a l y s e s of top and b o t t o m m a t e r i a l , in a r e a c t i o n stage w h e r e o n l y s m a l l a m o u n t s of C a S O 4 . 2 H 2 0 r e m a i n e d , s h o w e d g o o d m u t u a l a g r e e m e n t . D i s c u s s i o n An i n c r e a s i n g q u a r t z c o n t e n t of the p a s t e has a d i s t i n c t i n f l u e n c e w h i c h , at l e a s t for z>2.97, c a n n o t be a s c r i b e d to c o u n t e r a c t i o n of d e m i x i n g . An e v e r i n c r e a s i n g c o u n t e r a c t i o n of d e m i x i n g w i t h i n c r e a s i n g z m i g h t be h e l d r e s p o n s i b l e for the

(5)

294 Vol. 7, No. 3 C. L. M. Holten, H. N. Stein

i n t e n s i f i c a t i o n of the f i r s t p e a k a n d the s h i f t i n g f o r w a r d s of s t a g e B, b u t n o t for the f a c t t h a t the t r a n s i t i o n to s t a g e C, o n c e s t a r t e d , is q u i c k e r (i.e., the h y d r a t i o n of C 3 A is s l o w e d d o w n faster) in the p r e s e n c e of m o r e q u a r t z . The e x p e r i m e n t a l e v i d e n c e a g a i n s t d e m i x i n g at z = 2.97 has a l s o b e e n m e n t i o n e d . T h r e e p o s s i b l e m e c h a n i s m s for the r e t a r d a t i o n of h y d r a t i o n in the p r e s e n c e of S 0 4 2 - w i l l be c o n s i d e r e d :

I. T h e s o l u t i o n b e t w e e n the C 3 A g r a i n s is s a t u r a t e d t o w a r d s the a n h y d r o u s C 3 A , and C 3 A r e a c t s o n l y to the e x t e n t t h a t

r e a c t i o n r e p l a c e s ions w i t h d r a w n f r o m the s o l u t i o n by p r e c i p i t a t i o n of h y d r a t e s . S O 4 2 - l o w e r s the s o l u b i l i t y of C 3 A , c a u s i n g a s l o w e r p r e c i p i t a t i o n of e t t r i n g i t e as c o m p a r e d w i t h the p r e c i p i t a t i o n of A F m p h a s e s f r o m a m e d i u m less r i c h in SO. 2-. H y d r a t e p r e c i p i t a t i o n is the r a t e - d e t e r m i n i n g s t e p (12, 15). II. C 3 A r e a c t s o n l y w h e r e its s u r f a c e is m e t by d i s l o c a t i o n s ; the h y d r a t i o n is a c c o m p a n i e d by m o v e m e n t of the d i s l o c a t i o n s , and ions a d s o r b e d o n t o the s u r f a c e i m p e d e this m o v e m e n t (14).

III. A h y d r a t i o n p r o d u c t , e.g. e t t r i n g i t e (15), f o r m s a p r o t e c t i v e layer.

M e c h a n i s m II is c o n t r a d i c t e d by the fact t h a t q u a r t z has a n y i n f l u e n c e at all. C 3 A and C a S O 4 . ~H20 d i s s o l v e q u i c k l y in w a t e r , as s h o w n by e l e c t r i c a l c o n d u c t i v i t , d a t a in s y s t e m s C 3 A + H 2 0 (16) a n d C 3 A + C a S O 4 . 2 H 2 0 + H 2 0 (17), a n d by the f a c t t h a t no

d i f f e r e n c e is seen b e t w e e n p a s t e s p r e p a r e d w i t h p u r e w a t e r and w i t h w a t e r p r e v i o u s l y s a t u r a t e d t o w a r d s C a S O 4 . 2 H 2 0 . The r e a c t i o n of q u a r t z w i t h the ions c o n c e r n e d is m u c h s l o w e r (quartz has n o i n f l u e n c e on the c o n c e n t r a t i o n s in C 3 A s u s p e n s i o n s d u r i n g the i n i t i a l s t a g e s (16)). Thus, the p r e s e n c e of q u a r t z c a n n o t

r e a s o n a b l y be s u p p o s e d to i n f l u e n c e e i t h e r the c o n c e n t r a t i o n s of ions in the s o l u t i o n , or t h e i r a d s o r p t i o n o n t o the C3A.

M e c h a n i s m I m i g h t a c c o u n t for the i n t e n s i f i c a t i o n of the f i r s t peak, a n d the s h i f t i n g f o r w a r d s of s t a g e B w i t h i n c r e a s i n g z. A l t h o u g h q u a r t z c a n n o t c h a n g e the c o n c e n t r a t i o n s in a

s o l u t i o n s a t u r a t e d t o w a r d s C 3 A and C a S O 4 . 2 H 2 0 , the q u a r t z s u r f a c e s c o u l d f a c i l i t a t e n u c l e a t i o n of h y d r a t e s , t h u s

a c c e l e r a t i n g w h a t is, a c c o r d i n g to t h i s m e c h a n i s m , the r a t e - d e t e r m i n i n g step. H o w e v e r , the f o l l o w i n g a r g u m e n t s are a d d u c e d a g a i n s t m e c h a n i s m I: I) qhe c o n c e n t r a t i o n s in a s o l u t i o n s a t u r a t e d t o w a r d s C~A, as c a l c u l a t e d f r o m t h e r m o d y n a m i c d a t a (18), are at l e a s t 100 t z m e s l a r g e r t h a n t h o s e f o u n d e x p e r i m e n t a l l y in C 3 A + C a S O 4 + H 2 0 s y s t e m s (2). 2) The c o n c e n t r a t i o n s f o u n d e x p e r i m e n t a l l y c o r r e s p o n d to the s o l u b i l i t i e s of the h y d r a t e s . T h e large d i f f e r e n c e b e t w e e n the e n t h a l p i e s of d i s s o l u t i o n of the h y d r a t e s on the one hand, a n d of C 3 A on the other, l e a d to the e x p e c t a t i o n t h a t the s o l u b i l i t y of C 3 A s h o u l d be m u c h l a r g e r t h a n t h o s e of the h y d r a t e s .

3) If s u c h S O 4 2 - c o n c e n t r a t i o n s as are p r e s e n t in a s o l u t i o n s a t u r a t e d t o w a r d s C a S O 4 . 2 H 2 0 w o u l d r e d u c e the s o l u b i l i t y of C 3 A

2- m u s t s t r o n g l y to the e x t e n t r e q u i r e d by the m e c h a n i s m , t h e n SO4

i n c r e a s e the a c t i v i t y c o e f f i c i e n t s of the o t h e r ions p r e s e n t . T h i s is n o t k n o w n in the t h e r m o d y n a m i c s of e l e c t r o l y t e s o l u t i o n s

(6)

p r e s e n c e of S 0 4 2 - (19)).

A c c o r d i n g to m e c h a n i s m III, the q u a r t z p r e s e n t s a d d i t i o n a l sites for e t t r i n g i t e c r y s t a l l i z a t i o n and p r e v e n t s f o r m a t i o n of e t t r i n g i t e on the C 3 A surface. This is c o m p a t i b l e w i t h the h e a t e v o l u t i o n rate data; h o w e v e r , e t t r i n g i t e l a y e r s as f o r m e d in h y d r a t i n g p a s t e s a r e too i n c o h e r e n t for c o m p l e t e s c r e e n i n g of the C 3 A (13).

H o w e v e r , t h e r e is no n e e d to a s s u m e such a c o m p l e t e s c r e e n i n g . If e t t r i n g i t e is the sole h y d r a t e formed, and

c o u n t e r a c t s the t r a n s p o r t of ions f r o m the b u l k s o l u t i o n t o w a r d s the v i c i n i t y of the C 3 A s u f f i c i e n t l y for a c o n c e n t r a t i o n g r a d i e n t to e x i s t b e t w e e n those regions, there w i l l arise a local SO42- s h o r t a g e n e a r the C3A. If i n i t i a l l y the s o l u t i o n is s a t u r a £ e d t o w a r d s C a S O 4 . 2 H ~ O , H?O and C a S O 4 r e a c h the C 3 A in a w e i g h t to w e i g h t r a t i o of ~ 0 0 : 1 7 if e t t r i ~ g i t e p r e c i p i t a t e s as the sole h y d r a t e , H20 and C a S O 4 are w i t h d r a w n f r o m the s o l u t i o n in a w e i g h t to w e i g h t r a t i o of 14:1. Thus, p r e d o m i n a n t e t t r i n g i t e f o r m a t i o n leads to a local S O 4 2 - s h o r t a g e n e a r the C3A. N e v e r t h e l e s s , the r e a c t i v i t y of C 3 A is lower than in S O 4 2 - - f r e e pastes. It has b e e n s u g g e s t e d (2) that a m o r p h o u s AI(OH) 3 is f o r m e d b e c a u s e the

e t t r i n g i t e c r y s t a l s t e n d to g r o w f u r t h e r w h e n there is no S O 4 Z - - at hand, w i t h 2OH- r e p l a c i n g SO42- , c a u s i n g a l o c a l l y low pH and Ca 2+ c o n c e n t r a t i o n n e a r the C3A. A l t h o u g h m i x e d c r y s t a l s

C a 6 A I 2 ( O H ) 1 2 ( S O 4 2 - ) ~ ( O H - ) ~ _ 2 5 H 2 0 are n o t k n o w n the e f f e c t

- - X x

s u g g e s t e d here m a y de a s u r f a c e e f f e c t r a t h e r than a b u l k effect. E a r l i e r (2) it was s u p p o s e d that the a m o r p h o u s AI(OH) 3

p r e c i p i t a t e s f r o m solution. H o w e v e r , r e c e n t d a t a on the h y d r a t i o n of C 3 A in N a O H s o l u t i o n s (10, 20) s u g g e s t the f o r m a t i o n of a

d i s t u r b e d s u r f a c e layer on the C 3 A , a p p r o a c h i n g Ca(OH) 2 in

c o m p o s i t i o n , by p r e f e r e n t i a l e x t r a c t i o n of a l u m i n a t e ions f r o m the C 3 A and t h e i r r e p l a c e m e n t by OH-. It w o u l d be m o r e in line w i t h t h e s e d a t a to t h i n k in the p r e s e n t case of a d i s t u r b e d s u r f a c e layer on the C 3 A a p p r o a c h i n g AI(OH) 3 in c o m p o s i t i o n , f o r m e d by p r e f e r e n t i a l e x t r a c t i o n of Ca 2+ and its r e p l a c e m e n t by H +.

The o c c u r e n c e at stage B of a p e a k at small v a l u e s of z, and a q u i c k e r and s m o o t h e r t r a n s i t i o n to stage C at l a r g e r values, can be e x p l a i n e d thus. As long as S042- d i f f u s e s b e t w e e n the e t t r i n g i t e c r y s t a l s t o w a r d s the C 3 A , the e t t r i n g i t e r e m a i n s stable. The SO42- r e p l a c e s OH- in or on e t t r i n g i t e , and the h y d r a t i o n of C 3 A c o n t i n u e s slowly. If, h o w e v e r , no S O 4 2 - r e a c h e s the CqA, the e t t r i n g i t e is c o n v e r t e d into m o n o s u l p h a t e and C 4 A H 1 9 , but n S t C 2 A H 8 (2, 17). If C A A H I ~ p r e c i p i t a t i o n d o m i n a t e s , the pH and Ca 2+ c o n c e n t r a t i o n n e a r ~he ~3 A d e c r e a s e again (Ca 2+ and a l u m i n a t e ions e n t e r the s o l u t i o n in 3:2 m o l a r ratio, but are w i t h d r a w n f r o m it in 2:1 ratio), l e a d i n g to a r a p i d n e w

r e t a r d a t i o n . This w i l l o c c u r when, on e t t r i n g i t e c o n v e r s i o n , l i t t l e SOJ 2- is f r e e d for m o n o s u l p h a t e f o r m a t i o n ; i.e w h e n a large f r a c t i o n of the e t t r i n g i t e is not f o r m e d n e a r the C3A , but on the SiO 2 s u r f a c e s ; i.c. at large z.

S E M e v i d e n c e s u p p o r t e d e t t r i n g i t e f o r m a t i o n on q u a r t z s u r f a c e s and the i n c o h e r e n t c h a r a c t e r of the e t t r i n g i t e l a y e r s n e a r the C 3 A , a l t h o u g h it was d i f f i c u l t to be sure t h a t no a r t e f a c t s w e r e i n t r o d u c e d d u r i n g s a m p l e p r e p a r a t i o n .

The final p e a k (stage D) at z~0 can be u n d e r s t o o d by

(7)

296 Vol. 7, No. 3 C. L. M. Holten, H. N. Stein

c o n v e r t e d too, c o n v e r t i n g C 4 A H 1 9 i n i t i a l l y f o r m e d into m o n o s u l p h a t e a n d i n c r e a s i n g local pH n e a r the C3A.

The p r o p o s e d m e c h a n i s m is r e g r e t t a b l y c o m p l i c a t e d , but the c o m p l i c a t e d h e a t e v o l u t i o n rate c u r v e s c a n n o t be e x p l a i n e d by a s i m p l e m e c h a n i s m .

A c k n o w l e d g e m e n t s

We t h a n k M i s s B l i j l e v e n s for a s s i s t e n c e w i t h SEM, and Mr. S p i e r i n g s for p r o v i d i n g one of the C 3 A s a m p l e s .

R e f e r e n c e s

I E.E. S e g a l o v a , E.S. S o l o v ' e v a a n d P.A. R e b i n d e r , Koll. Zh. 23, 194 (1961).

2. H.N. Stein, J. Appl. Chem. (London) 15, 314 (1965).

3. G.D. de Haas, P.C. K r e i j g e r , E . M . M . G . Ni@l, J.C. S l a g t e r , H.N. Stein, E.M. T h e i s s i n g a n d M. v a n W a l l e n d a e l , Cem. C o n c r . Res. 5, 295 (1975).

4. W.A. C o r s t a n j e , H.N. S t e i n a n d J.M. S t e v e l s , Cem. C o n c r . Res. 3, 791 (1973). 5. F. M a s s a z z a a n d M. C a n n a s , Ann. Chim. 51, 904 (1961). 6. M.Kh. K a r a p e t ' y a n t s and M.L. K a r a p e t ' y a n t s , T h e r m o d y n a m i c C o n s t a n t s of I n o r g a n i c a n d O r g a n i c C o m p o u n d s , p. I06, A n n A r b o r - H u m p h r e y S c i e n c e P u b l i s h e r s , A n n A r b o r - L o n d o n (1970). 7. L a n d o l t - B ~ r n s t e i n , Z a h l e n w e r t e u n d F u n k t i o n e n aus P h y s i k , C h e m i e etc., p.211, S p r i n g e r - V e r l a g , B e r l i n etc. 2 (4) (1961). 8. H.A. B e r m a n and E.S. N e w m a n , Proc. 4th Int. Symp. Chem. C e m e n t ,

W a s h i n g t o n 1960, p.247.

9. E. B r e v a l , Cem. Concr. Res. 6, 129 (1976).

10. G . A . C . M . S p i e r i n g s a n d H.N. Stein, Cem. C o n c r . Res. 6, 265 (1976) .

11. P. Gupta, S. C h a t t e r j i a n d J.W. J e f f e r y , Cem. Tech. I--, 59 (1970) .

12. W. Lerch, Proc. Am. Soc. Test. Mat. 46, 1252 (1946). 13. P.K. M e h t a , Cem. Concr. Res. 6, 169 (1976).

14. R.F. F e l d m a n and V.S. R a m a c h a n d r a n , Mag. C o n c r . Res. 18, 185 (1966) .

15. H.N. Stein, Rec. Tray. Chim. P a y s - B a s 81, 881 (1962).

16. H.N. Stein, H i g h w a y R e s e a r c h B o a r d , W a s h i n g t o n , S p e c i a l R e p o r t 90, 368 (1966).

17. W.A. C o r s t a n j e , H.N. S t e i n a n d J.M. S t e v e l s , Cem. C o n c r . Res. 4, 581 (1974).

18. H.N. Stein, Cem. C o n c r . Res. 2, 167 (1972). 19. J . M . T . M . G i e s k e s , Z. P h y s i k . Chem. 50 78 (1966).

20. G . A . C . M . S p i e r i n g s and H.N. Stein, Cem. C o n c r . Res. 6, 487 (1976) .

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of