• No results found

Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries

N/A
N/A
Protected

Academic year: 2021

Share "Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal

of

Analytical

and

Applied

Pyrolysis

j o u r n al ho me p a g e :w ww . e l s e v i e r . c o m / l o c a t e / j a a p

Catalytic

pyrolysis

of

recalcitrant,

insoluble

humin

byproducts

from

C6

sugar

biorefineries

Shilpa

Agarwal

a

,

Daan

van

Es

b

,

Hero

Jan

Heeres

a,∗

aChemicalEngineeringDepartment,ENTEG,UniversityofGroningen,Nijenborgh4,9747AGGroningen,TheNetherlands bFood&Bio-basedResearch,WageningenUniversityandResearchCentre,6700AAWageningen,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13August2016 Receivedinrevisedform 13December2016 Accepted17December2016 Availableonline21December2016 Keywords: Pyrolysis Humins Catalyst HZSM-5 Aromatics Biobasedchemicals

a

b

s

t

r

a

c

t

Huminsaresolidby-productsformedduringtheacid-catalysedconversionsofC-6sugarstoplatform chemicalslikehydroxymethylfurfuralandlevulinicacid.Weherereportanexperimentalstudyonthe liquefaction/depolymerisationofhuminsusingcatalyticpyrolysis.Synthetichumins(SH)andcrude industrialhumins(CIH,includingpurifiedindustrial(PIH)samples)fromtheacid-catalysedconversionof C-6sugarstoHMF/LAweretested.Thermaldegradationpatternsofbothhumintypesvarysignificantly. Majorthermaldecompositionoftheindustrialhuminswasobservedbetween50and650◦C(weight lossapprox.66wt%),whereas,majorweightlosswasobservedbetween200and800◦Cforthesynthetic humins(47wt%).Aseriesofcatalyticpyrolysistestswithsynthetichuminsanddifferentzeoliteswere performedusingaPTV-GC/MS(humintocatalystwtratioof0.2,550◦C).Bestresultswereobtained usingHZSM-5(SiO2/Al2O3=50).Forquantitativeanalysis,agramscalepyrolysisunitwasused,giving

aproductoil(9–11wt%onhuminintake)withapproximately1.5and10wt%aromaticsfromsynthetic andcrudeindustrialhumins,respectively.GPCdataontheproductoilsclearlyshowsthebreakdown ofthehuminstructureintolowmolecularweightspecies.TheHHVvalueoftheliquidproducts(upto 41MJkg−1)isconsiderablyhigherthanthatofthecrudeindustrialhuminfeed(21–24MJkg−1).

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Due to the availability and vast abundance, lignocellulosic biomassisconsideredasapotentialfeedstockforrenewablefuels andvaluablebulkchemicalproducts[1,2].Inthelastdecade sub-stantialeffortshave beenmadetodevelop economically viable valorisationroutestoconvertbiomasstovaluableproducts[1,3–6]. Celluloseandhemicelluloseforma majorpartof lignocellu-losicbiomass(70–80wt%).Oneofthepathwaysinvestigatedto dateistheconversionofthecelluloseandhemicellulosefraction intobio-basedplatformchemicalslike5-hydroxymethylfurfural (HMF)andlevulinicacid(LA)[7,8].HMFisconsideredaversatile chemicalbuildingblockforC-6compounds,suchas alkoxymethyl-furanics,2,5-furandicarboxylicacid,2,5-dimethylfuran,adipicacid, 1,6-hexanediolandcaprolactam[8–10].ThedemandforHMFas a platformchemical has already lead totheopeningof a pilot plantbytheDutchcompanyAvantiumwiththeaimtoproduce 40tonnes/yearofHMF,whichmaysubsequentlybeusedtomake

∗ Correspondingauthor.

E-mailaddress:h.j.heeres@rug.nl(H.J.Heeres).

PEF(polyethylenefuranoate),abio-based,recyclablepolymerthat canbeusedasasubstituteforPET[11,12].Furthermore,LAhas alsobeenidentifiedasanimportantplatformchemicalforthe pro-ductionoffueladditives,monomersforplasticsandtextiles,and chemicals[13,14].

BothHMFandLAcanbeobtainedbythedehydrationofC-6 sug-arsusingacidcatalysts,butthisinevitablyleadstotheformation ofhuminbyproducts[15,16].Dependingontheprocess param-eters,suchas typeof substrate,acidcatalyst, temperature,and time,huminyieldscanvaryfrom5to50wt%[7,17].Forinstance intheBiofineprocess,asemi-commercialprocesstoproduceLA fromlignocellulosicbiomass,huminformationmaybeupto20wt% onfeed,anditsformationposesconsiderablechallengesinterms ofscaleup(e.g.fouling,complexwork-up)[18].For HMForLA productiontobecomeeconomicallyviable,thereisneedtoeither optimisetheprocessesbysuppressingtheformationofhumins, or,alternatively,toupgradethesehuminbyproductsintovaluable chemicals.

In recent studies, it has been shown that humins are car-bonaceous,heterogeneous,poly-dispersematerialsconsistingofa furan-richpolymernetworkcontainingdifferentfunctionalgroups [7,9,17,19].Basedonthisknowledge,afewvalorisationapproaches http://dx.doi.org/10.1016/j.jaap.2016.12.014

(2)

havealreadybeensuggestedinliterature,includingthermaland catalyticgasificationaswellashuminintroductioninPFA (poly-furfurylalcohol)tomakeanelaboratecompositewithenhanced properties[12,17].

Inourpreviousworkwehavereportedthethermalpyrolysis,a matureandcommerciallyavailabletechnology[20–25],asa poten-tialroutetoconverthuminsintoapyrolysisoilenrichedwithlow molecularweightcompounds[7].Theaimofthisapproachisto convertasolid,lowenergydensityfeedintoaneasilytransportable fuelwithahighenergydensity.Thepyrolysisoilcanpotentiallybe usedasaco-feedinpowerstations,asaboilerfuel,ortoisolate highaddedvaluebulkchemicals,suchasaceticacidandformic acid.Catalyticversionsofpyrolysistechnologyhavebeen devel-opedrecentlyforarange oflignocellulosicbiomasssourcesand areconsideredaninterestingroutetoobtainlowmolecularweight aromaticslikebenzene,toluene,andxylene(BTX)[26–29].Wehere reportastudyonthecatalyticpyrolysisofhumins.Ouraimisto obtainliquefiedproductswithahighcarbonefficiencyandwhich are potentiallyenriched in valuable bulk chemicals likeBTXNE (benzene,toluene,xylenes,naphthalene,ethylbenzene).Catalytic pyrolysishastothebestofourknowledgenotbeenusedforhumin valorisation.Thisrouteismotivatedbythefactthatithasbeen shownthatfuranics,whichareconsideredthemainbuildingblocks ofhumins,canbesuccessfullyconvertedtoaromaticsinthe pres-enceofa zeolite catalyst [30].In this work,we haveused two typesofhumins:synthetichumins(SH)obtainedbytreatmentof d-glucoseinaqueousmediawithastrongmineralacids,andcrude industrialhumins(CIH)obtainedfromAvantiumChemicals,the byproductoftheconversionofC-6sugarstoHMFinmethanolas thesolvent.InadditionapurifiedformoftheAvantiumhumins (PIH)wasalsotested.

2. Materialsandmethods

2.1. Chemicals

d-Glucose(99%)andsulphuricacid(95–97%)usedfor synthe-sisofsynthetichuminswerepurchasedfromSigmaAldrichand MerckKGaA,respectively. Tetrahydrofuran(THF)wasusedasa solventandwasobtainedfromBoomB.V.Allthezeolitecatalysts (Ferrierite20,HY5.1,NaY5.1,HY80,Mordenite20,Na-Mordenite 13,Beta-25,HZSM-5(SiO2/Al2O3=23,50,80))usedinthisstudy

werepurchasedfromZeolyst.Relevantpropertiesofthecatalysts areprovidedinTablesS1andS2(Supplementaryinformation).The hydrotalcitecatalystwasobtainedfromSigmaAldrich.

2.2. Industrialhumins

Crudeindustrial(fromAvantium)humins(CIH)wereobtained asthewastestreamfromthecatalyticdehydrationofa carbohy-dratefeedstockinmethanoltoproduce,methoxymethylfurfural (MMF)andmethyllevulinate.ThisprocessisoperatedbyAvantium ChemicalsattheirpilotplantfacilitesinGeleen,TheNetherlands. Theindustrialhuminswerefurtherpurifiedusingsolvent extrac-tions to remove the residual monomers (MMF, levulinic acid). Detailsoftheextractionprocedureandcharacterisationofthe puri-fiedindustrialhumins(PIH)aregiveninreference[31].

2.3. Preparationofsynthetichuminsamples

Thesynthetichumins(SH)usedinthisstudyweresynthesised bythe acidcatalysed hydrothermal reactionof d-glucose(1M) using0.01MH2SO4[7,19].Theclearsolutionofthesugarandacid

wastransferredtoastainlesssteelautoclave(1L)equippedwithan overheadstirrerandflushedwithN2beforeheating.Thesolution

wassubjectedtoahydrothermaltreatmentat180◦C(heatingrate:

1.3◦C/min;stirringrate:120rpm)for8h.Themaximumpressure intheautoclaveat180◦Cwas15–18bar.Afterthehydrothermal treatment,theprecipitateswereseparatedusingvacuumfiltration, theresiduewaswashedwith3Ldeionisedwaterandthenvacuum driedat60◦Covernight.Driedsynthetichuminsweregroundand purifiedusingaSoxhletextractionwithwaterfor24h.Finally,the purifiedhuminswerevacuumdriedfor24hat60◦Candground intoapowder.

2.4. Analyticalmethods

Elementalanalyses(C,H,N,O,andScontent)ofthehuminsand residueaftercatalyticpyrolysiswerecarriedoutusingan auto-matedEuroVectorEA3000CHNSanalyserwithacetanilideasthe calibrationreference.Theoxygencontentwasdeterminedbythe differenceofCHNS.Allsampleswereanalysedatleastinduplicate andtheaveragevaluesarereported.

Thermogravimetricanalysis(TGA)ofallthehuminsampleswas performedusingaMettler–Toledoanalyser(TGA/SDTA851e).The huminsampleswereheatedfrom30to900◦Cinnitrogen atmo-sphere,withaheatingrateof10◦C/min.

BETsurfaceareasofthezeolitesweredeterminedbyperforming N2physisorptionexperimentsusingaMicromeriticsTristar

instru-ment.Thesamplesweredegassedinvacuumat300◦Cfor24hprior totheanalysis.

Temperatureprogrammeddesorptionofammonia(NH3-TPD):

NH3-TPD measurements were performedusing a Micrometrics

AutoChem II 2920 system (Micromeritics, Norcross, GA, USA). BeforeaTPDexperiment,thecatalyst(∼60mg)wasdegassedat 600◦Cataheatingrateof10◦C/mininaHeflowfor60min.Then thesamplewascooledto100◦CunderaHeflow.Inthenextstep, thesamplewassaturatedwithagascontaining1%ofNH3inHeflow

at100◦Cfor60min.Then,thesamplewaspurgedwithaHeflowat 100◦Cuntilaconstantbaselinelevelwasattained.TheTPD mea-surementwasperformedinthetemperaturerange100–600◦Cata rateof10◦C/minusingHeasthecarriergas.TheevolvedNH3was

detectedbyanon-linethermal-conductivitydetector,calibratedby thepeakareaofknownpulsesofNH3.

2.5. Catalyticpyrolysisexperiments 2.5.1. Small-scale(catalytic)pyrolysis

Small-scale(mg-scale)pyrolysisofhuminswasperformedusing aPTVinjector(programmabletemperaturevaporiser,Model:Optic 2fromAtlas)placedonaHP5890GCSeriesIIsystemin combina-tionwitha HP5972MSdetector(PTV-GC/MS)controlledbyan Optic2device(Fig.1).Forcatalyticexperiments,thehuminwas firstloadedinthesamplevialfollowedbythecatalyst.Typically,for thermalpyrolysis,0.5mgofhuminsamplewasused,whereasfor catalyticpyrolysis,ahumintocatalystweightratioof0.2wasused inmostexperiments(catalystscreeningusingsynthetichumins). However,forcatalyticpyrolysisexperimentscomparingdifferent humintypes,ahumintocatalystweightratioof0.05wasuseddue togeometricalconstraintsofthesamplevial.Itmustbenotedthat nosignificantdifferenceinproductyieldswereobservedwhenthe humintocatalystratiowaschangedfrom0.2to0.05(seeFig.S1in Supplementaryinformation).

Basedonthepreliminarypyrolysistests,weobservedmaximum volatileyieldsat550◦C(resultsnotshown)andhence550◦Cwas usedasthepyrolysistemperatureinthisstudy.Thepyrolysis tem-peratureprogrammewassettorampfrom40◦Cto550◦Catarate of16◦C/sfollowedbyanisothermalperiodat550◦Cfor60s.After (catalytic)pyrolysisintheinjector,theproductsweretransferredto acapillarycolumn(AgilentTechnologiesVF–5ms,30×0.25×1.0, split50:1).Heliumwasusedasthecarriergasataflow rateof 1mL/min.ForGCmeasurementsthefollowingtemperatureprofile

(3)

Fig.1.PyrolysisGC–MS(smallscale)setup.

wasused:initialtemperatureof40◦Cfor60sfollowedbyheating witharateof10◦C/mintothefinaltemperatureof250◦C.TheMS detectorwasoperatedinthescanrangeofm/z35–400usingthe electronionisationmode(70eV)withaninterfacetemperatureof 280◦C.PyrolysisproductswereidentifiedusingtheNIST05amass spectralibrary.

Inordertogetasemi-quantitativeestimateofthe concentra-tionofGC/MSdetectedcompounds,thetotalionchromatogram (TIC)peakareasoftheMSdetectorwereusedasan approxima-tion.ItwasassumedthattheTICpeakareapercentageofacertain compoundislinearlycorrelatedtotheconcentrationofthe corre-spondingcompound.Therefore,tocalulatethesemi-quantitative yieldsofeach compound/groupofcompounds,the correspond-ingTICpeakareapercentagewasdividedbytheTICpeakareaof alltheGCdetectables.Thismethodolgyhasoftenbeenreported foranalysingthecompositionofbiomass-derivedpyrolysis prod-uct stream. For simplicity, the compounds, except BTXE, were classifiedbasedonchemicalfunctionalities,e.g.,aromatic deriva-tives(substituted benzeneandpolycyclicaromatics),furansand derivatives,napthalenes(napthaleneandsubsitutednapthalenes), phenolic derivatives (substituted), and others (mainly alkanes, alkenes,aceticacid,indanesetc).

TodeterminetheyieldsofBTXNEusingPTV-GC/MS,anexternal standardsolutionwithknownquantitiesofBTXNE,wasusedto cal-culatetheresponsefactor.Itwasassumedthattheconcentration ofthecompoundsis lineralyproportionaltothetotalion chro-matogrampeakarea.Ameasurementusinganexternalstandard solutionwasperformedpriortoeachsetofexperiments.

2.5.2. Gram-scale(catalytic)pyrolysis

Gram-scalepyrolysiswasperformedusinganin housebuilt reactorsetupconsistingoftwostainlesssteelreactors(one reac-torforthehuminsandoneforthecatalyst,Fig.2).Thepyrolysis productsfromthepyrolysisreactorpassthroughthecatalystbed

forcatalytic upgradingofthevapourstream.Immediatelyafter thecatalytic reactor,thecondensablevapourswerecollectedin twoconsecutivecondensorsimmersedinisopropanol/liquid nitro-genmixturesmaintainedat−50◦C.Non-condensablevapourphase

productswerecollectedinagasbag(SKCTedlar0.5Lsamplebag). Nitrogen(Linde3.0,11mL/min)wasusedasacarriergas.For heat-ing,thewholereactorsystemwasimmersedinafluidisedsand bathmaintainedat570◦C.Thedurationofthepyrolysisreaction was10min.Massbalancecalculationswereperformedby deter-minationoftheweightdifferenceofthereactors,coolersandtheir connectionsbeforeandafterpyrolysis.Theamountofnon condens-ables(gasphase)wascalculatedbyweighingtheamountofwater displacedwhenthegasbagwascarefullysubmergedinabeaker filledwithwater.Theliquidproductswerecollectedfromthe cool-ersandreactortubesbyrinsingwithTHF.Asthewaterandoilare bothmiscibleinTHF,asinglephaseproductliquidwasobtained.

Thewatercontentinthepyrolytichuminoilsobtainedafter gram-scale pyrolysis wasdetermined by Karl Fischer titrations using a Metrohm Titrino 758 titration device. A small amount ofsample(approximately0.02–0.06g)wasaddedtoanisolated glasschambercontainingHydranal®(KarlFischerSolvent,Riedelde Haen).ThetitrationswerecarriedoutusingtheKarlFischertitrant Composit5K(RiedeldeHaen).ThewatercontentoftheTHFwas alsomeasuredandsubtractedfromthefinalvalueofthepyrolytic huminoil.Allmeasurementswereperformedinduplicateandthe averagevalueisreported.Theamountoftheorganicphasewas cal-culatedbysubtractingthewatercontentoftheproductfromthe totalproductliquidobtainedafterreaction.

For quantification of liquid phase components, the humin oilsobtainedaftergram-scaleexperimentswereanalysedusing GC/MS-FID. GC/MS spectra were recorded using a Quadrupole Hewlett-Packard 6890 MSD connected to a Hewlett-Packard 5890gas chromatograph(GC) witha Restek RTX-1701column (60m×0.25mmi.d.and0.25␮mfilmthickness)andflame ioni-sationdetector(FID).Injectionanddetectionwereperformedat 280◦C,usingoventemperatureheatingprofilesfrom40to250◦C atarateof3◦C/min.PeakidentificationwasdoneusingtheNIST05a massspectralibrary.Quantificationofproductsinpyrolytichumin oilwasdeterminedbyusingaveragerelativeresponsefactor(RRF) ofeachcomponentcalculatedwithrespectton-nonane(internal standard).

Gasphaseswerecollectedduringcatalyticpyrolysisinagasbag (SKCTedlar0.5Lsamplebag(6×6))withapolypropylene sep-tumfitting.Quantificationofthemaingasphasecomponentswas doneuisngGC-TCDanalyses.ThesewereperformedonaHewlett Packard5890SeriesIIGCequippedwithaPoraplotQAl2O3/Na2SO4

columnandamolecularsieve(5Å)column.Theinjector tempera-turewassetat150◦Candthedetectortemperaturewasmaintained at90◦C.Theoventemperaturewaskeptat40◦Cfor2minthen heatedupto90◦Cattherateof20◦C/minandkeptatthis temper-aturefor2min.Areferencegaswasusedtoidentifythepeaksby retentiontimeandtoquantifytheproductsinthegasphase(55.19% H2,19.70%CH4,3.00%CO,18.10%CO2,0.51%ethylene,1.49%ethane,

0.51%propyleneand1.50%propane).

GPC analyses were performed on the humin oils using an HP1100equippedwiththree300×7.5mmPLgel3␮mMIXED-E columns(temperaturemaintainedat42◦Cduringmeasurements) inseriesusingaGBCLC1240RIdetector.Averagemolecularweight calculationswereperformedwiththePSSWinGPCUnitysoftware fromPolymerStandardsService.Polystyrenesampleswereused asthecalibrationstandard.ForGPCmeasurements,THFwasused aseluentataflowrateof1mL/minat140bar,withaninjection volumeof20␮L.AllthesamplesbeforeGPCanalysiswerefiltered using0.2␮mPTFEfiltertotrapparticles,ifany,thatmayaffectthe analysis.

(4)

Fig.2. Pyrolysisgramscalesetup.

3. Resultsanddiscussion

3.1. Characterisationofthehuminsamples 3.1.1. Elementalcompositionofthehumins

Thesynthetichumincontainsapproximately66wt%[C],30wt% [O]and4wt%[H],seeTable1fordetails.Thesevaluesagreewell with the reported values in the literature [7,19]. The elemen-talcompositionofthesynthetichuminsissignificantlydifferent fromthanthatofthestartingmaterial(d-glucose)dueto dehy-dration/condensation reactions involving sugar molecules and intermediates[7,8].

For theindustrial humins, thecarbon contentis lower than forthesynthetichumin,whereasthehydrogenandoxygen con-tents are higher. The H/C and O/C ratios of industrial humins wereobservedtobesimilartothoseforHMF,seeTable1.These observationsindicatethattheindustrialhuminsamplesareless dehydratedthanthesynthetichumins.

3.1.2. Thermogravimetricbehaviourofthehuminsamples

Togainmoreinsightintothethermalbehaviourofthehumin samples,thermogravemetricanalyseswereperformedinaninert (N2)atmosphere.Thechangeintheweightofthehuminsamples

asafunctionoftemperatureisshowninFig.3.Itisclearlyevident thatthethermalbehaviourofthesyntheticandindustrial (includ-ingpurified)huminsamplesareverydifferent.Initialweightlosses startsaround50◦Cfortheindustrialhuminsamplesandlevelsoff ataround650◦C(weightlosswasapproximately66wt%).Forthe purifiedindustrialhumins(PIH)thethermaldecomposition pat-ternisquitesimilartothecrudesample,howeverthetotalweight lossisabout57wt%.Thisdecreaseinweightlosscomparedtothe crudesampleindicatesthatlowmolecularweightcompoundsare presentinthecrudeindustrialhuminsample.Forsynthetichumins, themajorweightlosswasobservedbetween200and800◦C(about 47wt%).Theseobservationsindicatethatthegasandliquidyields forindustrialhumins(includingPIH)duringpyrolysisareexpected tobehigherthansynthetichumins.

Ascanbeseenin Fig.3 (rightplot),thehighestdegradation rateforthesynthetichuminswasobservedat430◦Cwhereasfor industrialhuminssharppeakswereseenat180and200◦C.The presenceofthissharpdegradationpeakincaseofindustrialhumins pointstowardsthepresenceofconsiderableamountsofvolatile,

Table1

Elementalcompositionofthehuminsamplesandrelevantmodelcompounds.

Humins C(wt%) H(wt%) O(wt%) H/C O/C Synthetic 65.7 4.4 29.9 0.80 0.34 Crudeindustrial 56.7 5.4 37.9 1.12 0.50 HMF 57.1 4.8 38.1 1.0 0.50 Levulinicacid 51.7 6.9 41.3 1.6 0.6 Glucose 40 6.7 53.3 2.0 1.0

lowmolecularweightcomponents.Afterpurificationofthe

indus-trialhumins,thesharppeakat180◦Cdisappearsandthispoints

towardsthepartialremoval of(trapped) low molecularweight

compounds.

3.2. Thermalpyrolysisofhumins

Thermal, non-catalyticpyrolysis wasperformed on

represe-nativesamplesat550◦C usingPTV-GC/MS(mg-scale)toobtain

insightinthecompositionofthevapourphase.Thechromatograms

forallthehuminsamplesareshowninFig.4.Mainlyfuranics,such

as2-methylfuran,2,5-dimethylfuran,1,2-furanylethanone were observed inthe case ofsynthetic humins,confirming that syn-thetichuminscontainaconsiderableamountoffuranicmoieties [7,19].Interestingly,fortheindustrialhuminsandPIH,inaddition tothefuranics,monomericspecieslikeHMF,levulinicacidandtheir methylesterswerealsoobserved.Thisobservationindicatesthat industrialhuminsnotonlyconsistofcondensedfuranicsringsbut alsocontaintrappedmonomericintermediate/products.Thisisin agreementwiththeelementalanalysis(Table1)andTGA(Fig.3) data.Furthermore,afterpurificationoftheindustrialhumins,these monomerswerestillpresentinthevapourphase,whichindicates thatsomeofthesemonomersareactuallyincorporatedinthecore structureofthehumins.

3.3. Catalyticpyrolysisofhumins

3.3.1. Catalyticpyrolysisusingsynthetichumins

Aseriesofpyrolysistestswithsynthetichuminsanddifferent zeoliteswereperformedinthePTV-GC/MS(humintocatalystwt ratioof0.2)at550◦Ctoidentifythebestcatalysttoobtainliquefied productswithahighcarbonefficiencyandpotentiallyenrichedin valuablebulkchemicalslikeBTXNE.

(5)

Fig.3.TGA(left)andDTG(right)plotsofcrudeindustrial(CIH,reddashline),purifiedindustrial(PIH,bluedash-dot)andsynthetic(SH,blacksolidline)humins.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.4. PyrolysisGC/MSchromatogramofSH,PIHandCIHat550◦C.

Asmentioned earlier,furanicswerepredominantly observed afterpyrolysisofsynthetichuminsat550◦Cintheabsenceof cat-alyst,andnotraceofaromaticswasobserved(Fig.4).However, onpyrolysisat550◦Cinthepresenceofacatalyst,theproduct distributionsignificantlychanged,ascanbeseeninFig.5and con-siderableamountsofBTXNEareformed,theexactamountbeinga functionofthezeoliteused.

Webelievethatthehuminsfirstdepolymerizethermallyaswell ascatalyticallyontheoutsidesurfaceofthezeolites.These depoly-merizedfragmentsreactfurtheratthesurfaceandinsidethepores togivearomaticproducts.Asimilarmechanismhasbeenreported forthecatalyticcrackingofpolymerslikelowdensitypolyethylene onzeolites[37].Thearomatics aremostlikelyformedby Diels-Alderadditionreactionsbetweenfuranicsandolefines(Scheme1). Inamodelcompoundstudy[30,38],ithasalreadybeen demon-stratedthataromaticsareformedbyco-feedingolefinsandfuranics overforinstanceaHZSM-5catalyst.

Remarkable differences in aromatics (BTXNE) yields were observedforthevariouscatalysts.LowestBTXNEyieldswerefound

forNaY,Na-mordeniteandthebasichydrotalcitecatalyst(Fig.5). Thesefindingsrevealthatacidic,protonatedzeolitesaredesirable for thearomatizationof thepyrolytic vapours[32–35].For the acidiczeolites,theBTXNEyieldsincreaseintheorder:Ferrierite 20<HY–80<HY5.1<H-Mordenite20<H-ZSM-5(Fig.5).These dif-ferencesareexpectedtoberelatedtozeolitepropertieslikepore dimensionsandaverageporesize(TableS1),BETsurfaceareaand acidity(TableS2).

Inthisrespect,thepoorperformanceofFerrierite20maybedue tothesmallporedimensionsandtheporesizeofthiszeolite(Table S1).Thisisagreementwithliteraturedata,wherethelowaromatic yieldforthiszeoliteisassociatedwithdiffusionlimitationsinthe catalystporesystemduetothesmallporesizes[32].

AclearrelationbetweentheBETsurfaceareaofthecatalysts (TableS2)andtheBTXNEyieldisabsent,thoughthehighestyields wereobtainedwithzeoliteswithhighBETsurfaceareas.Upon sug-gestionofoneofthereviewers,acatalyticpyrolysisexperimenthas beenperformedwithBeta-25zeoliteinthemgscaleset-up.The

(6)

Scheme1.Proposedreactionpathwayforthecatalyticpyrolysisofhumins.

Fig.5. RepresentativeGCdetectablemonomericvolatilesreleasedduringthecatalyticpyrolysisofsynthetichumins(SH)withdifferentzeolitecatalysts(Humintocatalyst wt.ratioof0.2)at550◦C.

BTXNEyieldwasabouthalfofthatobservedforH-ZSM-5(Fig.S2, Supplementaryinformation).

ThegoodperformanceoftheH-ZSM-5catalystsislikelyrelated toitsacidityincombinationwiththeporestructure/sizes.Studies intheliteraturehave alreadyshownthatHZSM-5hasthe opti-malzeoliteporestructuretoobtainthehighestyieldsofaromatics fromthecatalyticpyrolysisofbiomass[36].Assuch,itappearsthat HZSM-5hastheoptimumgeometryforfuranics,theprimary ther-malproductsfromhuminpyrolysis,toentertheporesandtobe convertedintoaromatics.

3.3.2. Catalyticpyrolysisofsyntheticandindustrialhuminsusing HZSM-5

AsHZSM-5wasshowntobethemostpromisingcatalystfor thesynthetichumins,thenextstepinthisstudywastoinvestigate theeffectoftheacidityofHZSM-5duringthecatalyticpyrolysisof bothindustrialandsynthetichumins.Weperformedthecatalytic pyrolysistestsusingHZSM-5withdifferentSiO2/Al2O3ratios(23,

50and80)andassuchwithdifferentacidity(highestfor23).It isapparentfromFig.6thatHZSM-5withaSiO2/Al2O3ratioof50

givesthehighestyieldofaromaticsforbothtypesofhumins.Witha furtherincreaseintheacidity(from50to23)adecreaseinthe aro-maticyieldwasobserved.ItisevidentthathigherBrönstedacidity isdesirableforaromaticyields,howeveratoohighvalueleadsto loweryields.

Toestimatetheyieldsofaromaticsonhuminintake,an exter-nal standard solution with known BTXNE concentrations was used.Basedonthesmall-scalepyrolysis(Py-GC/MS)experiments (Fig.7),theBTXNEyieldissignificantlyhigherforindustrialhumins (10wt%)incomparisontothesyntheticone(1.5wt%).Asexpected forPIHsamples,theBTXNEyields(5wt%)areintermediatebetween thecrudeindustrialandsynthetichumins.Wefurtherdetermined theBTXNEyieldforkraftligninundersimilarpyrolysisconditions withtheincentivetocomparetheyieldsforhuminsandlignin,the latterbeingconsideredapromisingsourceforBTXNE.Withkraft lignin,aBTXNEyieldof6wt%(onligninintake)wasobtainedby catalyticpyrolysis.ThehigherBTXNEvaluesforindustrialhumins clearlyindicatethatindustrialhuminshavepotentialtobeusedas feedsfortheproductionofbio-basedaromatics.

During catalytic pyrolysis,the colorof theHZSM-5-50 cata-lystchangedfromoffwhite/greytoblack,anindicationforcoke formation,whichiswellestablishedforcatalyticpyrolysisof ligno-cellulosicbiomass.Tocheckwhethercokeremovalispossibleand doesnotleadtoirreversibledeactivation,thespentcatalystwas calcinedat550◦Cinairfor4h.Nodifferenceinthecatalyticactivity wasobservedwhenusingtheregeneratedcatalyst,aswasevident fromtheamountsoflowmolecularweightproductsformed. Fur-therworkissuggestedtoinvestigatethelongtermstabilityofthe catalystafterrepeatedcatalytic-oxidativework-upcycles.

(7)

Fig.6.EffectoftheSiO2/Al2O3ratiooftheHZSM-5zeoliteontheproductdistributionforthecatalyticpyrolysisofcrudeindustrial(CIH)andsynthetic(SH)humins(Humin

tocatalystweightratioof0.05)at550◦C.

Fig.7.BTXNEyieldsonhuminintakeobtainedduringthepyrolysisofsynthetic(SH),crude/purifiedindustrial(CIH/PIH)huminsandkraftlignin(KL)withHZSM-5-50 (Humin:Catalystweightratio=1:20)at550◦C.

3.4. Gram-scalepyrolysis

Inadditiontothesmallscalecatalyticpyrolysisexperiments, catalytic pyrolysisexperiments wereperformedwith industrial and synthetic humins at gram-scale to obtain humin oils for detailedproductanalysisandtoestimatethemassbalance clo-sures.ItmustbenotedthatTHFwasusedtocollecttheproducts fromthereactortubesandcoolersandthishamperstheaccuracy oftheoilyielddeterminations.

Based on mass-balance calculations (Fig. 8), an oil yield of approx.11–14wt%wasobtainedforthecatalyticpyrolysisofboth industrialandsynthetichumins.Thesolidresidueforthesynthetic

humins(58wt%)afterreactionismuchhigherthanforthe indus-trialones(38wt%onhuminintake),inagreementwiththeTGA data(Fig.3).

TheoilphasewasfurthercharacterisedusingGC/MS-FIDtogain detailedinsights intoproductyieldsandcomposition (Table2). Thetotalamountofdetectablearomaticspeciesforindustrialand synthetic humins were at max. 9 and 2wt% on huminintake, respectively, which confirms the results from the PTV-GC/MS experiments.Asalargefractionofthehuminoils(especiallyinthe caseofsynthetichumins)wasnotobservedbyGCandislikely non-volatileandofhighermolecularweight,wefurtheranalysedthe productoilsusingGPC(Fig.9).TheGPCspectradonotclearlyshow

(8)

Fig.8. Productdistributionforthecatalyticpyrolysisofcrudeindustrial(CIH)andsynthetichumins(SH)withHZSM-5-50at550◦C(Humintocatalystweightratioof0.2)

intheg-scalereactor.

Fig.9.Gelpermeationchromatograms(GPC)ofhuminoilsobtainedafternon-catalyticandcatalytic(withHZSM-5-50)pyrolysisofcrudeindustrial(left)andsynthetic (right)huminsat550◦C.Molecularweightvaluesarerelativenumbersbasedonpolystyrenestandards.

Table2

Distributionofpyrolysisproducts(wt%onhuminintake)forthecatalyticpyrolysis ofvarioushuminssamplesusinggramscalepyrolysis.

Compoundclass CrudeInd.humins(CIH) Synthetichumins(SH)

Aromatics 5.64 1.35 Napthalenes 2.00 0.70 Indane/Indenes 0.80 0.01 Alkanes 0.09 0.01 Polyaromatics 0.26 0.11 Total 8.79 2.18

thepresenceofhighermolecularweightspeciesintheproductoils,

thoughsometailing,associatedwithhighermolecularweight

com-pounds,cannotbeexcluded.Assuch,thedifferencesinoilyield

basedonmassbalancecalculationsandtheGCyieldsforBTXNE

arelikelyduetothecomplexwork-upoftheoilphase(usingTHF)

afterpyrolysiswhichispronetosomeexperimentalerror.

AcomparisonbetweentheGPCdataforthecatalyticand

non-catalyticpyrolysisclearlyrevealsthatthepresenceofacatalysts

leadstoareductionofthemolecularweightoftheproductoils.As

such,thecatalystsnotonlycatalysedeoxygenationreactionsbut

alsoareabletobreakdownandcrackthepolymericstructureof

thehumins.

Finally,theelementalcompositionsofhuminfeedsandthesolid

residuesobtainedaftercatalytic pyrolysisweredeterminedand

resultsareplottedintheformofavanKrevelendiagram(Fig.10).

BothhuminfeedshavesignificantlydifferentH/CandO/Cratios, howeverafterpyrolysisthecompositionoftheresiduefromboth huminsourcesisquitesimilar.Inbothcases,theoxygenand hydro-gencontentsdecreasessignificantlyuponpyrolysis.

Inaddition,thehigherheatingvalue(HHV)ofthehuminsand pyrolytichuminoilswasestimatedusingtheMilneequation(Eq. (1),whereC,H,OandSarecarbon,hydrogen,oxygenandsulphur in weight percentages, respectively. The Milne equation semi-quantitativelypredictstheHHVoffuelsorfuelresourcesobtained fromcoal,biomass,pyrolysisoilandbiodieselusingelemental com-positions.ForHHVcalculationoftheproductoil,wecalculatedthe HHVvalueusingtheelementalcompositionoftheproducts

(9)

identi-Fig.10.vanKrevelendiagramofthehuminfeedsandsolidresiduesobtainedaftercatalyticpyrolysis.

fiedbyGC–MS/FID(seeTableS3insupplementaryinformationfor details).

HHVMilne



MJ.kg−1



=0.341×C+1.322×H−0.12

×O−0.12×N+0.0686×S−0.0153×residue (1) TheHHVvaluetheforindustrialandsynthetichuminswas cal-culatedtobe21and24MJkg−1.Aftercatalyticpyrolysis,theHHV valuesignificantlyincreasedtoabout41MJkg−1forthehuminoils (industrial/synthetic).Moreover,theHHVofthecharobtainedafter pyrolysisofhuminswasfoundtobeabout30MJkg−1,which is againhigherthanthestartingfeedvalueandcanhencebe poten-tiallyusedasaco-feedinpowerstationsorforcombustionduring pyrolysis.Theseresultsclearlyprovidetheproofofprinciplethat liquefactionofhuminsbycatalyticpyrolysistogivealiquid prod-uctwithahigherenergydensityiswellpossible,thoughtheyield ofhuminoils(11–14wt%)islow.

4. Conclusions

Wehaveprovidedtheproofofprinciplefortheconversionof humins(industrialandsyntheticones)tohuminoils(11–14wt%on huminintake)enrichedinvaluablearomaticsusingcatalytic pyrol-ysis.HZSM-5(SiO2/Al2O3=50)wasfoundtobethemostpromising

catalyst.Quantitativeanalysisofthehuminoilsshowsthepresence ofapproximately2and10wt%ofaromaticsbasedonsyntheticand industrialhuminintake,respectively.TheHHVvalueofthehumin oilswasestimatedtobeabout41MJkg−1.

Themain componentsin thehuminoils arehighvalue low molecularweightaromatics.Assuch,theproductshavepotential tobeusedasanadditiveforbiofuels.Inaddition,isolatedindividual componentsmayserveasbuildingblocksforrenewablepolymers. Basedonthestoichiometryofthereaction,themaximum theorit-icalyieldofaromaticsfromthe(catalytic)pyrolysisofhuminsis approximetely50wt%onhuminintake.Inthisworkwereportan aromaticyieldof9wt%fortheindustrialhuminsamples,whichis about18wt%ofthetheoreticalmaximum.

Acknowledgements

Thisresearchwasperformedwithintheframeworkofthe Catch-Bioprogram.Theauthorsgratefullyacknowledgethesupportof theSmartMixProgramoftheNetherlandsMinistryofEconomic Affairs,AgricultureandInnovationandtheNetherlandsMinistry

of Education, Culture and Science, project number 053.70.358. AuthorsacknowledgeAvantium Chemicals BV,TheNetherlands forprovidingindustrialhuminsandWillemVogelzangBSc. (WUR-FBR) for purifying the industrial humins. The authors are also gratefultoAnneAppeldoorn,ErwinWilbersandMarceldeVries (UniversityofGroningen)fortechnicalsupport,HansvandeVelde (UniversityofGroningen)fortheelementalanalysis,LeonRohrbach (UniversityofGroningen)fortheNH3-TPDmeasurementandK.

Altena-SchildkampfortheBETmeasurements(CPM,Universityof Twente).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jaap.2016.12.014.

References

[1]A.Corma,S.Iborra,A.Velty,Chemicalroutesforthetransformationof biomassintochemicals,Chem.Rev.107(2007)2411–2502.

[2]A.J.Ragauskas,C.K.Williams,B.H.Davison,G.Britovsek,J.Cairney,C.A.Eckert, W.J.Frederick,J.P.Hallett,D.J.Leak,C.L.Liotta,J.R.Mielenz,R.Murphy,R. Templer,T.Tschaplinski,Thepathforwardforbiofuelsandbiomaterials, Science311(2006)484–489,6185.

[3]D.Carpenter,T.L.Westover,S.Czernik,W.Jablonski,Biomassfeedstocksfor renewablefuelproduction:areviewoftheimpactsoffeedstockand pretreatmentontheyieldandproductdistributionoffastpyrolysisbio-oils andvapors,GreenChem.16(2014)384–406.

[4]A.J.Ragauskas,G.T.Beckham,M.J.Biddy,R.Chandra,F.Chen,M.F.Davis,B.H. Davison,R.A.Dixon,P.Gilna,M.Keller,P.Langan,A.K.Naskar,J.N.Saddler,T.J. Tschaplinski,G.A.Tuskan,C.E.Wyman,Ligninvalorization:improvinglignin processinginthebiorefinery,Science344(2014).

[5]C.O.Tuck,E.Pérez,I.T.Horváth,R.A.Sheldon,M.Poliakoff,Valorizationof biomass:derivingmorevaluefromwaste,Science337(2012)695–699.

[6]G.W.Huber,S.Iborra,A.Corma,Synthesisoftransportationfuelsfrom biomass:chemistrycatalysts,andengineering,Chem.Rev.106(2006) 4044–4098.

[7]C.B.Rasrendra,M.Windt,Y.Wang,S.Adisasmito,I.G.B.N.Makertihartha, E.R.H.vanEck,D.Meier,H.J.Heeres,Experimentalstudiesonthepyrolysisof huminsfromtheacid-catalyseddehydrationofC6-sugars,J.Anal.Appl.Pyrol. 104(2013)299–307.

[8]R.-J.vanPutten,J.C.vanderWaal,E.deJong,C.B.Rasrendra,H.J.Heeres,J.G. deVries,Hydroxymethylfurfuralaversatileplatformchemicalmadefrom renewableresources,Chem.Rev.113(2013)1499–1597.

[9]J.Horvat,B.Klai ´c,B.Metelko,V. ˇSunji ´c,Mechanismoflevulinicacid formation,TetrahedronLett.26(1985)2111–2114.

[10]T.Buntara,S.Noel,P.H.Phua,I.Melián-Cabrera,J.G.deVries,H.J.Heeres, Caprolactamfromrenewableresources:catalyticconversionof 5-hydroxymethylfurfuralintocaprolactone,Angew.Chem.Int.Ed.50(2011) 7083–7087.

[11]A.J.J.E.Eerhart,W.J.J.Huijgen,R.J.H.Grisel,J.C.vanderWaal,E.deJong,A.de SousaDias,A.P.C.Faaij,M.K.Patel,Fuelsandplasticsfromlignocellulosic

(10)

biomassviathefuranpathway;atechnicalanalysis,RSCAdv.4(2014) 3536–3549.

[12]J.-M.Pin,N.Guigo,A.Mija,L.Vincent,N.Sbirrazzuoli,J.C.vanderWaal,E.de Jong,Valorizationofbiorefineryside-streamproducts:combinationof huminswithpolyfurfurylalcoholforcompositeelaboration,ACSSustainable Chem.Eng.2(2014)2182–2190.

[13]D.J.Braden,C.A.Henao,J.Heltzel,C.C.Maravelias,J.A.Dumesic,Productionof liquidhydrocarbonfuelsbycatalyticconversionofbiomass-derivedlevulinic acid,GreenChem.13(2011)1755–1765.

[14]J.C.Serrano-Ruiz,D.Wang,J.A.Dumesic,Catalyticupgradingoflevulinicacid to5-nonanone,GreenChem.12(2010)574–577.

[15]A.A.Rosatella,S.P.Simeonov,R.F.M.Frade,C.A.M.Afonso,

5-Hydroxymethylfurfural(HMF)asabuildingblockplatform:biological properties,synthesisandsyntheticapplications,GreenChem.13(2011) 754–793.

[16]K.M.Rapp,in,GooglePatents(1988).

[17]T.M.C.Hoang,L.Lefferts,K.Seshan,Valorizationofhumin-basedbyproducts frombiomassprocessing—aroutetosustainablehydrogen,ChemSusChem6 (2013)1651–1658.

[18]D.J.Hayes,S.Fitzpatrick,M.H.B.Hayes,J.R.H.Ross,Biorefineries-Industrial ProcessesandProducts,Wiley-VCHVerlagGmbH,2008,pp.139–164.

[19]I.vanZandvoort,Y.Wang,C.B.Rasrendra,E.R.H.vanEck,P.C.A.Bruijnincx,H.J. Heeres,B.M.Weckhuysen,Formation,molecularstructure,andmorphology ofhuminsinbiomassconversion:influenceoffeedstockandprocessing conditions,ChemSusChem6(2013)1745–1758.

[20]A.V.Bridgwater,Renewablefuelsandchemicalsbythermalprocessingof biomass,Chem.Eng.J.91(2003)87–102.

[21]A.V.Bridgwater,Reviewoffastpyrolysisofbiomassandproductupgrading, BiomassBioenergy38(2012)68–94.

[22]S.Chu,A.V.Subrahmanyam,G.W.Huber,Thepyrolysischemistryofa beta-O-4typeoligomericligninmodelcompound,GreenChem.15(2013) 125–136.

[23]W.Mu,H.Ben,A.Ragauskas,Y.Deng,Ligninpyrolysiscomponentsand upgrading—technologyreview,BioEnergyRes.6(2013)1183–1204.

[24]H.Yang,R.Yan,H.Chen,D.H.Lee,C.Zheng,Characteristicsofhemicellulose celluloseandligninpyrolysis,Fuel86(2007)1781–1788.

[25]R.French,S.Czernik,Catalyticpyrolysisofbiomassforbiofuelsproduction, FuelProcess.Technol.91(2010)25–32.

[26]X.Li,L.Su,Y.Wang,Y.Yu,C.Wang,X.Li,Z.Wang,Catalyticfastpyrolysisof KraftligninwithHZSM-5zeoliteforproducingaromatichydrocarbons,Front. Environ.Sci.Eng.6(2012)295–303.

[27]D.Shen,J.Zhao,R.Xiao,S.Gu,Productionofaromaticmonomersfrom catalyticpyrolysisofblack-liquorlignin,J.Anal.Appl.Pyrolysis111(2015) 47–54.

[28]M.Inaba,K.Murata,I.Takahara,Y.Liu,Catalyticfastpyrolysisofeucalyptus usingzeolite,J.Chem.Eng.Jpn.47(2014)345–351.

[29]M.Inaba,K.Murata,I.Takahara,Y.Liu,Productionofaromaticandphenolic compoundsbyfastpyrolysisofeucalyptususingzeolitecatalysts,J.Jpn.Inst. Energy93(2014)944–952.

[30]Y.-T.Cheng,G.W.Huber,Productionoftargetedaromaticsbyusing Diels-AlderclassesofreactionswithfuransandolefinsoverZSM-5,Green Chem.14(2012)3114–3125.

[31]S.Constant,W.Vogelzang,R.K.P.Purushotaman,D.S.vanEs,P.C.A.Bruijnincx, B.M.Weckhuysen,CharacterisationofSolubleIndustrialHumins,tobe sumitted(2017).

[32]D.J.Mihalcik,C.A.Mullen,A.A.Boateng,Screeningacidiczeolitesforcatalytic fastpyrolysisofbiomassanditscomponents,J.Anal.Appl.Pyrolysis92(2011) 224–232.

[33]N.Nikbin,S.Feng,S.Caratzoulas,D.G.Vlachos,p-Xyleneformationby dehydrativearomatizationofaDiels-AlderproductinLewisandBrønsted acidiczeolites,J.Phys.Chem.C118(2014)24415–24424.

[34]D.Li,L.Wang,M.Koike,Y.Nakagawa,K.Tomishige,Steamreformingoftar frompyrolysisofbiomassoverNi/Mg/Alcatalystspreparedfrom hydrotalcite-likeprecursors,Appl.Catal.B102(2011)528–538.

[35]T.R.Carlson,J.Jae,Y.-C.Lin,G.A.Tompsett,G.W.Huber,Catalyticfastpyrolysis ofglucosewithHZSM-5:thecombinedhomogeneousandheterogeneous reactions,J.Catal.270(2010)110–124.

[36]J.Jae,G.A.Tompsett,A.J.Foster,K.D.Hammond,S.M.Auerbach,R.F.Lobo,G.W. Huber,Investigationintotheshapeselectivityofzeolitecatalystsforbiomass conversion,J.Catal.279(2011)257–268.

[37]A.Bonilla,D.Baudouin,J.Pérez-Ramírez,Desilicationofferrieritezeolitefor porositygenerationandimprovedeffectivenessinpolyethylenepyrolysis,J. Catal.265(2009)170–180.

[38]Y.-T.Cheng,J.Jae,J.Shi,W.Fan,G.W.Huber,Productionofrenewablearomatic compoundsbycatalyticfastpyrolysisoflignocellulosicbiomasswith bifunctionalGa/ZSM-5catalysts,Angew.Chem.Int.Ed.51(2012)1387–1390.

Referenties

GERELATEERDE DOCUMENTEN

'H ZRQLQJFRUSRUDWLHV LQ HUEHHN NXQQHQ HHQ URO VSHOHQ LQ KHW YHUGXXU]DPHQ YDQ KXLGLJH ZRQLQJHQ SURMHFWHQ YRRU DDQOHJ LVRODWLH GXEEHO]LMGLJ

Verwacht wordt, dat de derde hoek (met roostervloer) wordt gebruikt als mesthoek Op deze manier wordt hokbevui- ling en ammoniakemissie voorkomen en hebben de biggen een

Als dan duidelijk is hoe de beeldvorming voor deze affaires tot stand kwam in het parlement, de Volkskrant en het AD kan de hoofdvraag beantwoord worden: “Welke rol

To assess the effect of connective tissue grafting on the mid-buccal mucosal level (MBML) of immediately placed and provisionalised single implants in the maxillofacial

The distribution of the RRLs in the inner halo as described by the above best-fitting model has the following properties: the radial density is an SPL power law with an exponent α

To do this, two additions to the Distributed Mem- ory version of Paragraph Vectors that use the citation network were presented and empirically compared to several graph and text

This was already indicated in previous research and confirmed that uni-dimensional ratings might be less suitable to reduce uncertainty among customers(Tunc, Cavusoglu,

For the 86 loan facilities issued by companies with below B- rating, the coefficients of institutional status, natural log of maturity, the natural log of number of participants