• No results found

New methods for the analysis of trial-to-trial variability in neuroimaging studies - Contents

N/A
N/A
Protected

Academic year: 2021

Share "New methods for the analysis of trial-to-trial variability in neuroimaging studies - Contents"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

New methods for the analysis of trial-to-trial variability in neuroimaging studies

Weeda, W.D.

Publication date

2012

Link to publication

Citation for published version (APA):

Weeda, W. D. (2012). New methods for the analysis of trial-to-trial variability in neuroimaging

studies.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

Contents

1 Introduction 11

1.1 A general model of trial-to-trial variability . . . 12

1.1.1 Reaction time (RT) . . . 14

1.1.2 Electroencephalography (EEG) . . . 16

1.1.3 Functional Magnetic Resonance Imaging (fMRI) . . . 17

1.2 Why trial-to-trial variability is important . . . 19

1.3 Outline . . . 20

1.4 Articles resulting from this thesis . . . 21

2 Empirical Support for a Drift Diffusion Model Account of the Worst Perfor-mance Rule 23 2.1 Introduction . . . 24

2.1.1 The drift diffusion model . . . 25

2.2 Method . . . 27

2.2.1 Participants . . . 27

2.2.2 Intelligence test . . . 27

2.2.3 Response time task . . . 27

(3)

NEW METHODS FOR THE ANALYSIS OF TRIAL-TO-TRIAL VARIABILITY IN NEUROIMAGING STUDIES

2.3 Results . . . 29

2.3.1 Preprocessing . . . 29

2.3.2 Worst Performance Rule . . . 29

2.3.3 Drift diffusion model parameters . . . 30

2.4 Discussion . . . 35

2.5 Supplementary Materials. . . 37

2.5.1 Characteristics of excluded participants . . . 37

2.5.2 Behavioral measures . . . 37

2.5.3 Drift diffusion model fits . . . 39

3 Simultaneous Estimation of Waveform, Amplitude, and Latency of Single-Trial EEG/MEG Data 41 3.1 Introduction . . . 42

3.2 Methods . . . 45

3.2.1 Model . . . 45

3.2.2 Parameter estimation . . . 47

3.2.3 Estimating single-trial amplitude and latency . . . 49

3.2.4 Multiple signals . . . 50 3.2.5 Model selection . . . 50 3.3 Simulations . . . 52 3.3.1 Results . . . 52 3.4 Empirical application . . . 59 3.4.1 Methods . . . 62 3.4.2 Results . . . 63 3.5 Discussion . . . 67

4 Activated Region Fitting: A Robust High-Power Method for the Analysis of

(4)

fMRI Data 69 4.1 Introduction . . . 70 4.2 Method . . . 71 4.2.1 Input . . . 72 4.2.2 Spatial model . . . 73 4.2.3 Estimation . . . 74 4.2.4 Model selection . . . 74 4.2.5 Variance estimation . . . 75 4.2.6 Hypothesis testing . . . 76 4.2.7 Starting values . . . 78 4.2.8 Simulations . . . 78 4.3 Results . . . 80 4.3.1 Parameter recovery . . . 80 4.3.2 Variance estimation . . . 81 4.3.3 Power analysis . . . 83

4.3.4 Real data example . . . 85

4.4 Discussion . . . 87

4.4.1 Acknowledgements . . . 89

4.5 Appendix A. Noise simulations . . . 90

4.5.1 Procedure . . . 90

4.6 Appendix B. Real data Tables . . . 91

4.7 Appendix C. Algorithm overview . . . 92

5 Functional Connectivity Analysis of fMRI Data Using Parameterized Regions-of-Interest 93 5.1 Introduction . . . 94

(5)

NEW METHODS FOR THE ANALYSIS OF TRIAL-TO-TRIAL VARIABILITY IN NEUROIMAGING STUDIES

5.2 Method . . . 95

5.2.1 Connectivity analysis . . . 96

5.2.2 Single-trial amplitude estimation . . . 96

5.2.3 Connectivity estimation . . . 97

5.2.4 Testing differences in connectivity . . . 97

5.2.5 Simulations . . . 98

5.2.6 ARF connectivity estimation and standard methods . . . 100

5.2.7 Power . . . 100

5.3 Results . . . 101

5.3.1 Power . . . 104

5.3.2 False positive rate . . . 104

5.4 Empirical application . . . 105

5.4.1 Results . . . 105

5.5 Discussion . . . 107

5.6 Acknowledgements . . . 109

5.7 Appendix A. Extension to full volume fMRI analysis. . . 110

5.7.1 Spatial model . . . 110

5.8 Appendix B. Raw time-series versus trial-by-trial amplitude . . . 112

5.9 Appendix C. Consistency of correlation estimates. . . 114

5.10 Supplementary materials . . . 115

6 arf3DS4: An Integrated Framework for Localization and Connectivity Ana-lysis of fMRI Data 119 6.1 Introduction . . . 120

6.2 Activated Region Fitting . . . 122

6.2.1 Data . . . 122 8

(6)

6.2.2 Spatial model . . . 125 6.2.3 Parameter estimation . . . 127 6.2.4 Model selection . . . 127 6.2.5 Hypothesis testing . . . 128 6.2.6 Procedure . . . 128 6.2.7 Connectivity analysis . . . 129

6.3 The arf3DS4 package . . . 130

6.3.1 Setting up an experiment . . . 132

6.3.2 Creating and customizing a model . . . 136

6.3.3 Fitting a model . . . 139

6.3.4 Finding an optimal model . . . 142

6.3.5 Connectivity analysis . . . 142

6.4 The ARF example data . . . 145

6.4.1 The experiment structure . . . 146

6.4.2 Getting a feel for the data . . . 147

6.4.3 Fitting the model . . . 150

6.4.4 Selecting an optimal model . . . 153

6.4.5 Connectivity analysis . . . 155

6.5 Empirical data . . . 157

6.6 Conclusion . . . 157

6.7 Acknowledgements . . . 158

6.8 Appendix A. NIfTI files and the fmri.data class . . . 159

6.8.1 Visualizing fMRI data . . . 160

6.9 Appendix B. S4-classes . . . 160

(7)

NEW METHODS FOR THE ANALYSIS OF TRIAL-TO-TRIAL VARIABILITY IN NEUROIMAGING STUDIES

7.1 Variability in neuroimaging data . . . 164 7.1.1 Simultaneous Estimation of Waveform Amplitude and Latency 164 7.1.2 Activated Region Fitting . . . 165 7.2 Why the analysis of trial-to-trial variability is important. . . 167

References 169

Summary in Dutch / Samenvatting in het Nederlands 185

Dankwoord 193

Referenties

GERELATEERDE DOCUMENTEN

Je mag het dictaat gebruiken, maar het gebruik van aantekeningen en een rekenmachine is niet toegestaan. d) Laat zien dat de groep (Z/nZ) ∗ niet cyclisch is. b) Laat zien dat N

d) Uit c) en opgave 8.4 volgt de inclusie [G, G] ⊂ N. Deze laatste groep heeft precies drie elementen waarvan de orde een deler van 3 is, namelijk 0, 4 en 8. Het gezochte aantal is

Er mag verwezen worden naar resultaten die in het dictaat bewezen zijn, maar niet naar opgaven, tenzij anders vermeld.. Op de achterkant staan formules en resultaten waar je ook

[r]

Er mag verwezen worden naar resultaten die in het dictaat bewezen zijn, maar niet naar opgaven, tenzij anders vermeld.. Op de achterkant staan formules en resultaten waar je ook

Als je de antwoorden niet op de logische volgorde opschrijft, vermeld dan duidelijk waar welk antwoord staat..

Vijfenzestig procent (942/1450) zei dat zij iemandd verdacht van TB zouden doorsturen naar het ziekenhuis voor onderzoek en 25%% (359/1450) zei dat ze de patiënt zouden behandelen

Other papers that study corporate acquisitiveness use different measures such as the acquisition expenditures as a fraction of total assets (Ahern & Dittmar, 2012) or net